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where the J dS, is taken over the surface of constant
energy e in k" space and is of order n(e)A, J,~. We
denote this integral U(k, k, e) and assume it to be a
a well-behaved function of & for k and k' values of
interest. In performing f de in (A2), it is shown

by Schiffa' that the path of integration should pass
under singularities on the real axis. The final re-
sult for the first term in (Al) then becomes

—,'m,
& m+ I II'I m&

U(k, k, 6) dE

+ iwU(k', k, a.
„I) (As)

Barring irregular behavior of U, the quantity in
large parentheses in (A3) is of order A, J,~/ez as
was to be shown.

The above argument can be carried through in a
similar fashion for process (b) of Table I as well,
leading to the conclusion that terms (a) and (b) both
produce relatively small corrections to the Kor-
ringa process.
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A study of the forbidden hyperfine transitions up to 4m =+ 5 within the central fine-structure
component of the EPR spectrum of Mn2' in calcite is reported. The line positions are interpreted
with spin-Hamiltonian parameters previously determined and with a quadrupole-interaction
parameter of 0. 5 + 0. 1 G. 'Two approaches were used for calculating line intensities; per-
turbation theory and the effective-electron-magnetic field method. Good agreement with ex-
periment was obtained.

INTRODUCTION

Forbidden hyperfine transitions (bM=+I, 4m
eo) have been observed in the electron-paramag-
netic-resonance (EPR) spectra, of Mna' in a series
of crystals The grea. t majority of these investiga-

tions have dealt with &M = +1, &m= +1 transitions,
while transitions of larger values of ~m have sel-
dom been considered. Important requirements for
the occurrence of forbidden transitions in the spec-
trum of the Mna'( S) ion are that (i) the fine-struc-
ture parameter be large enough, and (ii) the lines
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be narrow and well resolved. In the case of cal-
cite, the not very large fine-structure parameter
is somewhat compensated by the extreme narrow-
ness of the lines, resulting in a great variety of
forbidden transitions.

Although there is evidence for ~M=+1, &m=+1
forbidden transitions in the EPR spectra of Mn2'

in calcite observed by Hurd, Sachs, and Hersch-
berger, ~ the first one to note their existence
was Mataresse. Subsequently, the forbidden tran-
sitions &M = + 1, ~m = + 1, and + 2 were studied by
us3'4 using the third-order perturbation theory; we
also reported the appearance in the spectra of the
transitions with bM =+1, 4m= +3. Transitions of
&M=+1, ~m=+1, and +2 were reported by Lazu-
kin and eo-workers. ' Transitions of 4M =+1,
4m = +1 were examined with the help of the second-
order perturbation theory and by diagonalization
of the full matrix by Mankowitz and Low. ~

We have been able to observe the hyperfine tran-
sitions with 4M = +1, 4m= +4, a,nd y5. In this
paper we deal mainly with the transition probabil-
ities and with some facts concerning the line posi-
tions which have not been reported previously.

EXPERIMENT

The samples were natural calcite single crys-
tals with Mn2' ion present as a substitutional im-
purity (0. 001-0.01 at. %). In the calcite lattice,
Mn2' is surrounded by an octahedron of oxygens,
distorted along one of the (111}axes, parallel to
the macroscopic c axis of the crystal. There are
two magnetic complexes in the unit cell related to
each other by a rotation about the c axis of the
crystal.

The EPR measurements were carried out at
room, liquid-nitrogen, and liquid-helium tempera-
tures, in the X, K, and Q microwave bands. The
observed spectra are very complex and show a
strong angular dependence. The forbidden transi-
tions were studied in the central lines, since their
probability is maximum in this region. We have

used calcite crystals with a pronounced mosaicity.
This leads to a strong broadening of the outer and
intermediate fine-structure lines, but affects to a
much lesser extent the central fine-structure com-
ponent. In this situation the superposition of the
lines of the various fine-structure sets does not
interfere with the study. However, this mosiac
structure unequally affects the width of the six hyper-
fine components of the central fine-structure transi-
tion. Consequently, in the study of the line intensities
we have taken the quantity (&II)'h as a measure of
the area under the absorption curve, hH being
the l.inewidth between the extrema of the first
derivative curve and h its height. We note that
the shape of all the hyperf inc-structure components
was practically the same.

The positions of the forbidden transitions de-
pend on the orientation of the sample in the ex-
ternal magnetic field. For a limited range of the
polar and azimuthal angles 8 and p, we observed
an additional splitting of the forbidden transitions.
This splitting was observed only in the X band at
low temperatures (liquid-nitrogen and liquid-hel-
ium temperatures) and is clearly seen in Fig. 2 of
Ref. 3 for the 4M = + 1, 4m = + 1, and y 2 transitions.
This splitting is consistent with the existence of
two inequivalent cation positions in the lattice. It
must be noticed that the transitions ~m=k and
4m= —k are unequally split for the same value
of m,

Because of the very strong dependence of the
line intensities on k= (&m ) and on the orientation,
it was very difficult to follow the forbidden lines
with k &2 in the whole range of orientations. How-
ever, the agreement between the observed and
calculated line positions and intensities is fairly
good within the observation range.

THEORY

The point symmetry of the Mn ' site in the cal-
cite lattice is S hence the spin Hamiltonian used
for the interpretation of the spectra iso

1 AB 1 A.B B —AK=gp~S, +KS,I + — —B (S,I, +S I )+ — +B (S I,+S,I )+ (S,+S )I sin2p

+ —, Q 3 3 cos P-1 (I ——,I(I+1)) ——A 2 1 1 AB
E 8 3

2 K Q sin2p[(I, —,'}I,+ (I,+ —,')I]—
B . g 3 3 Ag„cos 8+ Bgg sin 8 Ag„—Bgg

Kg
HI, —yp.„-— H sin28 t'I, +Jj4',

++~D (3 cosip-1) O~o —g sin2p Oz'+ —,
' D sinmp033—,'( —,'(35 cos4p-30 cosmp+ 3) 0,

+ —', sin2 p (3 - 7 cosm p) O 4
—-', (7 cos p - 8 cosm p+ 1}0 ~4 —35 cos p sin~ p 0 S4+ ~8 sin4 p 04)

+ — cos3p(-, sin p cosp O, ——,(4 cos p —5 cos p+1) O'
av 2 ~ 3 0 J, 4 2
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+ —,
' sin p cos' p 04) + —,

'
(4 cos' p+ 3 cos) p- 3) 0,'—ll) sin2 p (cos p+ 3) 0,)- 9

x sin3y (-,' cos p sinn p 0,' + -,' sin p (3 cos' p- 1)0, + -,' cos p (9 cos)p- 5}0,'- + sin p (3 cos)p+ 1) O,'},
(1)

where

cosp= (g„/g) cos8, sinp= (g,/g) sin8.

The derivation of this spin Hamiltonian is given in
the Appendix.

The energy levels were computed by perturba-
tion theory up to the third order. By using the
selection rules for the various transitions, the

l

corresponding resonance fields and the forbidden-
doublet splittings were calculated. The forbidden
doublet is defined as the difference between the
resonance fields for the transitions with 4m =+ k
and —A. After labeling the forbidden transitions
with ~M —1, X- —,'k) —)M, X+ —,'k) and )M —1, &

+ —,'k) —IM, A- ~k), where &=m- —,
' for odd k and

~= m for even 4, the expression for the forbidden-
doublet separation EII)(X) is

17AB 1 67 AB
II@(~) II[&/ 1&L-'a/-) & I&/, a+a/2 & l&f-l, A+ a/2 & IN, 4 &&/) & = k) ~ ) ~

2 K H

2
yp, ~ & Ag„cos'8+Bg, sin'8 A' B'-A'+2 II Q ) cos p 1A.—-4D —sin 2ppB Kg2 'K K H

17 B,A3 K)}Ag„cos 8+Bg sin 8 yp, „ 1 AI+K)

+K ) K) II) (35 cos p-30 cos p+3) & — (A +K ) ) ) sin pcospcos3y y .4 &&
50W2 B g

3 K

(2)

The last term in Eq. (2) predicts an azimuthal
dependence of the forbidden doublet, in agreement
with the experiment. This term arises from adif-
ferent p dependence of the two forbidden lines of
the doublet. The fact that the p angle for the two
magnetic complexes differs by the angle n leads
to a splitting of the forbidden and allowed hyper-
fine components of the central fine-structure corn-
ponent due to the terms of the type

(A +K)B a
) sin'P cosP cos3y.

Clearly, for a given orientation of the crystals the
forbidden-doublet splitting will also be different
for the two complexes.

As previously pointed out, the quadrupole-inter-
I

action parameter enters as a first-order term in
the expression of the forbidden-doublet splitting.
Consequently, the study of the forbidden hyper-
fine transitions should lead to such a parameter.
The determination of Q with the help of Eq. (2)
must be performed taking into account the signifi-
cant terms of order H ~. To avoid the complica-
tions caused by the presence of the two inequiva-
lent positions, it is recommendable to perform
the 8-dependence measurements of the forbidden
doublet in a p plane for which the last term in
Eq. (2) vanishes.

The most convenient method to measure the Q
parameter using the forbidden hyperfine transi-
tions is to make the difference between the two
outer forbidden-doublet splittings of the same
order:

67 AB A A+K p D
/&. =ALII,(A,„)—hK, (A „)= —

3 —2Q 3 3 cos)p-1 +4, B) 3 (3 cos)p-1) k(A ~-Q„).min

(3)

This difference has the maximum value, when

k(A,„-& „) reaches its maximum allowed value,
i.e. , for the transition with k = 2 and 3, when

k(Q,„-Q, g =6. Because the k= 3 forbidden hyper-
fine transitions are very weak, the most suitable
forbidden transitions for the evaluation of thequad-

rupole interaction parameter are those corre-
sponding to 4= 2. With this method we have esti-
mated Q = 0. 5 + 0. 1 G for Mn)' in calcite. We were
not abl. e to observe the 2p dependence of the for-
bidden hyperfine transitions, predicted by the term
Q [I)+I)] in the spin Hamiltonian of Eq. (3),
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Ref. V.
The transition probabilities for the allowed and

forbidden hyperfine transitions were computed with
the perturbation method and with the more accurate

method of the effective electron magnetic field.
The expressions for the transition probabilities,

obtained by using the eigenfunctions computed with
the perturbation method, are

F'I 2, m)
I

—2, m)~9 1-128 z R a ——m —4 sin 2p
1 1 AB 2 1 35 2 D

Ã' H' 4 H'

Ha 4
m n sin~P+~+ z sin2P (3 cos2P —1) (4)

A. 2B
2 1 35 2Fl 24m) I &)m —1) 0):576 H4 R Hz 4

—m +m 1 —64 H4 H2H]' (5)

I AB R I'35 2 35)'l ——', m-))
l

—', nn+)) m4~ n, l

-mn-m —-In+I), (6)

where

R=D sin2p- Q(a —F) sin2p(3 —7 cos p)

according to the relation

Im(M)) =~d-"-) (~) lm'(M')) (8)

(M)) . (7)

The nuclear eigenfunctions Im(M)), determined
by an effective field H«ocrresp noidgnto the IM)
electronic state, can be expressed as linear com-
binations of functions determined by another field
H ff' corresponding to the IM') electronic state,

—~~~)))2 a(4 cos~p-5 cos P-1) cos3)I) ~

It must be noted that Eqs. (4)- (6) are valid only
for small values of the fine-structure parameter
D (under 100 G). For larger values of this param-
eter, higher-order terms must be taken into ac-
count in the expression for the transition probabil-
ities.

In the method of the effective electron magnetic
field, it is assumed that the quantization axis for
the nuclear spin is determined by the accurate
effective magnetic field at the nucleus created by
the electrons. The interaction is thus regarded as
being equivalent to a Zeeman-type interaction. The
calculation of the effective magnetic field is ac-
complished by averaging the hyperfine interaction
over the electron wave functions, which are the
eigenstates of the electronic Zeeman and fine-
structure terms in the spin Hamiltonian. ' ' This
effective field depends on the quantum number M.
As a consequence, the eigenfunctions of the nuclear
spin in this effective magnetic field will depend on
M. The eigenfunctions of the system may be writ-
ten as products of the pure "electronic" eigenfunc-
tions IM) and the nuclear eigenfunctions Im(M)):

where d'~'. (~) are matrix elements of the irreduci-
ble representation of the rotation group, and ~ is
the rotation which carries the direction H,«over
into H ff We will express this rotation by

cos(H f f H ff ) in the plane determined by the
two magnetic fields.

A microwave magnetic field perpendicular to
the external magnetic field will induce transitions
between the states Im(M)) and the probability is
proportional to

I(Mm(M)
I
s,+s IM'm'(M')) I'

=
I

&M
I
s.+s IM') I'1 &m(M) lm'(M'))

I

'
= l(Mls +s IM')I Id ', (p)l . (9) .

For the central fine-structure component the
first factor in this product is, in the H approxi-
mation,

g)2 D2
l

(-'
l
4, +4

l

——')
l

= 9() —4 —n nin 4l! ——4 sin 4

4 D'
+

3 H2 (3cos P —1)sin2pl, (10)

where we neglected the contribution of the fourth-
order fine-structure parameter, which is small.
The expression l(M IS.+'S IM') I

' is the same for
all the allowed and forbidden hyperfine transitions
of a given M-M' fine-structure transition and
shows a weak angular dependence.

The expression for the angle between the effective
magnetic fields H,'f,2 and H,,f is given by

cos(H ff H ff ) 1 —8 ~ 4 —sin2p ———[(a —F ) sin2p(3 —7 cos pl + 2 M2a(4 cos p
A'+B'- Z'

4
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—5 cos P+1)cos3p]
~

—400 2 z cos P sin P sin 3q
2

a'A'
2 . 4

Although p, shows a relatively weak orientation de-
pendence, the fact that the functions Id„'„'.(p) I

depend strongly on p, leads to a pronounced angular
dependence of the transition probability. For the
same reason, we included in Eq. (11) the effect of
the fourth-order terms in the fine structure. In
our case the effect of these terms is relatively
small and p shows mainly a sin 2P dependence.
In other cases, e.g. , Mn

' in CdCQ3' where
D = 1.4 G and Il = 8. V5 G, and Mn ' in ZnCO3~ where
D = 41.4 G and a -I' = 11.4 G, the effect of the
fourth-order parameters in Eq. (11) can lead to an
angular dependence of p different from sin 2P.

The expressions of the Id„', '(p)12 functions,
useful in our calculation, are given in Table I.
The other d„"~3'(t)) can be computed from these
with the help of symmetry relations. '

Using this method, the ratio of the various for-
bidden transitions intensities to the allowed tran-
sition intensity is

aIm-1, m')- IM, m) Id'„".(u)l'
P IM —1, m")—IM, m") Id„'"„"(p)I

The method of the effective electron magnetic
field permits an accurate theoretical treatment of
the EPR line intensity, without any limitation con-
cerning the values of the fine-structure param-
eters. We note that in our derivation of c s(oH, ff,
H, f~, ) in Eq. (11) we used the electronic wave
functions computed with the help of first-order
perturbation theory. In the case of very large D
parameters, either a higher approximation of the
perturbation theory or a computation of the wave
function by the diagonalization of the 6&& 6 matrix
of the electronic Zeeman and fine-structure terms
would be required. It must also be noted that a
series expansion of the expressions for the transi-
tions probabilities obtained by the effective field
method leads to the same expressions as obtained
by perturbation theory, provided that an appropriate
approximation is taken into account.

Table 0 contains a comparison of the experi-
mental and computed line intensities for some of
the transitions observed in the central fine-struc-
ture component of Mn ' in calcite. We note that

I

the ratio of the forbidden transitions intensities
to the allowed transitions intensities does not agree
well with the predictions of Bleaney and Rubins's
formula.

CONCLUSION

We have observed the forbidden hyperfine tran-
sitions up to 4m =+ 5 in the central fine component
of the EPR spectrum of Mn ' in calcite. The very
low intensity of the high-order transitions explains
why these transitions were not observed previously.
We have obtained expressions for the line inten-
sities which describe very well the experimental
data.

The appearance of an additional splitting of the
allowed and forbidden transitions in the central
fine-structure component shows that in the calcula-
tion of the line positions, terms of order H must
be taken into account.

APPENDIX

The spin Hamiltonian (1) has been deduced as
follows. We started with the spin Hamiltonian
given by Bleaney and Trenam for the S,~2 ions in
axially distorted crystalline fields'6:

K =g„geH, S,+g,P~(HP„+ H, S,) + AS, I,

+&(S„I„+S,I,) + 3DOoq ++~SOE04+ ~q~a [04+ 504]

+q[f', ,'f(I+1)]-y—P—,H I . (A1)

The primed O„operators refer to the ggf axes,
directed along the cube edges, and those without
prime superscript refer to the xyz axes, with z
directed along the distortion axis (in our case, one
of the (111)directions in the $gf reference frame)

The primed operators are rewritten in the (xyg)
frame and then the spin Hamiltonian is rewritten
in a reference system, in which the electron Zee-
man term, which in our case is much larger than
the other terms, becomes diagonal.

By performing an Eulerian rotation (nPy) of the
reference frame, the spin operators 0„ transform
into a linear combination of spin operators 0„
written in the new reference frame. Thus we have

m m0„- "odo"„'(p)cosmn00+ Z „" ([d„'".'„(p)cos(m'y+mn)+(-1) d„'",.'„(p)cos(m'y —mn)]0„"n g0 Om
m'& Q~n

—[d„'",' (P) sin(m'y+mn)+ (- 1)"d'".' (P) sin(m'y —mn)]0„" ~$, (A2)

Em0~*- o- d ~'(p) sinmn 00+ Q „".([d„'",'„(p)cos(m'y+m n) —(- 1)"d„'".' „(P)cos(m'Y —mn)]0„*
n m'&0 n

+ [d„.'„(P)sin(m'y+mn) —(- 1)"d'"' (P) cos(m'y —mn)]0„" ], (A3)
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m )
d(5/g )

(p) ]
2

TABLE I. Expressions of some t d~~ (p) ( useful in
the calculation of the transition probabilities.

TABLE H. Intensities of the various hyperfine transi-
tions in the central fine-structure component at an orien-
tation 0 =45'. The theoretical values have been obtained
by the effective-field method. The intensity of the allowed
hyperfine transitions at 8=0' was taken as equal to one.

3
2

5
2

1
2

1
2

» (1+V)'

32 (1+v)'(1 -v)'
~«(1+@)' (1 -V)'

~&6 (1+@)'(1 -V)'

32 (1 —P)' (1 +P)

» (1-p)

» (5p-3)' (1+@)'

2 (1-I) (1+v) (5v-1)

,—, 0+p) (1 —p)' (5m+&)'

—' (5@+3)' (1-J(f)'

—,
' (5~& -2I -1)'(1+~)

8 (5~&+2~-1)2 (1-p,)

Type of transition

Lhdlf =+ 1, bm = 0

~=+1, &m =+1

~=+1, &m =~2

leaf = + 1, b m = + 3

Aha =+1, b,m =+4

leaf =+1 b,m =+5

m

3
2
1
2
1
2

1
2
3
2

3
2

0. 80
0. 57
0.41

0. 21
0.26
0.29

20x10
39x10 3

10x10
19x10

35x10 9

about
35 x 10"

0. 7(i6
0. f69
0. 358

0. 200
0. 271
0, 296

22. 1x 10
37. 1x10 3

12x10
18.Gx 10

32x10"

34.5x10"

In tens ity
Experimenta] Theoretical

where E„are numerical coefficients connected with
the numerical factors of the Legendre polynomials:

4vV, 9
3 ' v5 3 ' &10 3

4 vm q 10 vw

M35 3 ' ~V0 3

The spin operators 0 „are given in several
places (e.g. , in Ref. 9 and 1V). We reproduce
here only the less common operators 04* and 04 .p +

O', *-=—&-'([VS,' —3S(S+ 1)S,—S.l(S.—S )

y (S, —S ) [VSS —3S(S + 1)S,—S,]j

04*———i—([VS, —S(S+1) —5](S,—Sa)

y (Sa —S a) [VSa —S(S + 1) —5]].
Qf these two, 04* is particularly useful in the
computation of the transition probabilities for the
hyperfine components of the ~M =+ I fine transi-
tions.

The d'".' (P) used here are the same as defined

by Rose' and relation (A2) given here is the same
as relation (10) given in our paper, after taking
into account that the d "~„(P)used here are related
to those used in Ref. 9 by a factor of (- 1)

The nuclear spin operators are then transcribed
in a new coordinate system, in which the part of
the hyperfine interaction which contains 8, becomes
also diagonal in I.

In the case of the calcite crystal which has two
magnetic complexes in the unit cell, related to
each other by a rotation through & in the azimuthal
plane, the spin Hamiltonian of Eq. (1) can be re-
written in a "crystal" system by performing a ro-
tation —,

' & in the aximuthal plane for one complex,
and (- —,'&) for the other

Note added in manuscxiPt. After this work was
performed, a rather simple treatment of the tran-
sition probabilities for the forbidden transitions
4M=+I, 4m=+1 and ~M=+2, ~m=0 inparallel
and perpendicular configurations was published. ~

We note that a study of the transition probabilities
for the allowed and forbidden transitions for Mn~'

in calcite in variable field configurations was given
by us (see Ref. 19).

Based on work performed under the auspices of the
U. S. Atomic Energy Commission and of the Romanian
Committee for Nuclear Energy.
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Higher-order corrections to the stopping power proportional to g 3 are evaluated. Both close
and distant collisions are considered. The energy-loss formula can be written dE/dx =g~I

+@3(J,+8„), where I is the customary lowest-order energy loss and J~ and 4& are the close-
and distant-collision parts of the g3 term, respectively. The close-collision contribution J~
is a relativistic effect, first estimated in unpublished work by Fermi. It has the simple form
J'~ =7(~C/2p, where C is the standard constant multiplying P times the Bethe —Bloch logarithm
in I and ~ is the fine-structure constant. At high energies J~ gives a constant-8 contribution
to the energy loss and causes a range difference ~ roughly proportional to the range R for
stopping particles of the same mass and energy, but opposite charge. For 2 &P/Pic &20, dA/
R changes by less than + 6% and depends only slightly on the stopping material, varying from
1.9&& 10 3 for carbon to 2. 5& 10 3 for lead for & =+ 1. The distant-collision effect is important
only at low velocities. The calculation of this contribution is patterned after a recent work of
Ashley, Ritchie, and Brandt, but differs from it in detail. Using a statistical model for the
atom it is found that at low velocities the relative ~ contribution can be written J&/I=F(V)/
(g), where g is the atomic number of the stopping medium and F(V) is a universal func-
tion of the reduced velocity variable V=137yp/(Z) . In the region where Jd/I is appreciable
(1 & V&10), F(V) varies as V" with n —'-2. 0-2.5. These results on the 8 effect at low veloci-
ties are in good agreement with available data on comparison of the energy loss of helium ions
and protons of the same velocities. Range differences are calculated for carbon, copper. ,

lead, and emulsion absorbers, including the effects of both close and distant collisions. The
results are in rough agreement with data on slow-stopping pions and Z hyperons in emulsions
and in good agreement with very recent measurements of fast positive and negative muons.
The upper limit of the range of validity of the results is examined in some detail. It is found

that the approximations begin to fail for dynamic reasons above y= 20 for muons, and presum-
ably also for other heavy particles.

I. INTRODUCTION

For a heavy particle of charge ze and velocity
v = Pc passing through a medium of atomic number

Z, the standard expression for energy loss in
MeVcm /g is'

dx P"
=s I=C ~ L(P, 8),

where

4
4mÃoe Z 3

Z
mc2 A

and L(P, Z ) is given at velocities well above the
orbital velocities of the atomic electrons by

I.(P, s)=ln( )
—l3

The parameter Io characterizes the medium;
empirically it varies somewhat over the Periodic


