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similar to those for linearly interacting systems,
there are notable differences that depend on the
strength of the quadratic-interaction parameter.
These are the shape and resolution of the zero-
phonon line; the temperature dependence and, to
a lesser extent, the shape of the broad band; the
occurrence of mirror symmetry of the low-tem-
perature absorption and emission spectra; and
the relation of the high-temperature absorption
and emission spectra. From the temperature

K=

dependence of the shape of broad band and the ob-
servation of zero-phonon lines, values of the
linear- and quadratic-interaction parameters can
be estimated from experimental spectra.
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Relaxation processes for the nuclei of dilute S-like local moments in metals are investi-
gated using both perturbation and dynamic-susceptibility techniques. In contrast to host nu-
clear relaxation, terms analogous to the Benoit—de Gennes~Silhouette (BGS) and Giovannin—
Heeger (GH) processes are obtained in the local case by working only to second order in Jg,.
The two methods of calculation are found, using the dynamic susceptibilities of Gétze and
Wbolfle, to agree exactly within the approximations used. Contrary to the traditional view,
the BGS process is found to consist of both real and virtual local-moment-excitation terms,
becoming a purely virtual mechanism for large Hy/T. The GH process appears as an inter-
ference effect between the first-order (Korringa) term and the virtual BGS term. A similar
relationship is believed to hold in the host-relaxation case, The local T, is found to behave
rather differently from Ty at low temperatures, with 7y and T, merging into a single isotropic
field-independent rate for sufficiently small Hy/T. The present calculations provide a quali-
tative understanding of the AgMn:55 Mn saturation results given by Okuda and Date,

1. INTRODUCTION

The relaxation of bulk metal nuclei by relative-
ly dilute local moments has by now been studied
quite extensively, both in terms of theory'™ and
experiment. °~® In this paper we investigate the
related question of relaxation processes for the
local-moment nuclei themselves in such systems,
e.g., of the **Mn nuclei in dilute CuMn or AgMn.
It will be seen that such nuclear relaxation pro-
cesses can be very rapid. Our first objective in
calculating their strength is to determine under

what conditions one might hope to apply the power-
ful methods of pulsed NMR to the observation of
these resonances.

The motivation for such experiments is similar
to that for the host-relaxation measurements,
namely, to study the fluctuation properties of dilute
moments in metals, On this basis the local-mo-
ment nuclear relaxation has the advantages of (a)
being, in general, much larger than the back-
ground Korringa rate and (b) avoiding the difficult
questions of host-hyperfine-coupling strength,
spatial averages of relaxation-rate contributions,
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and wipeout or diffusion-barrier radii.

In addition to the above points, the present work
is also motivated by some valuable insights it
provides into the nature of host-relaxation pro-
cesses. *>'* Because the hyperfine coupling with
the local-moment nucleus is given a priori and
does not have to be generated by the perturbation
terms, we find in second-order time-dependent
perturbation theory, the analogs of the Benoit-de
Gennes-Silhouette! (BGS) and Giovannini-Heeger®
(GH) processes. These processes are often
said®®® to involve real and virtual excitations of
the impurity moment, respectively. Our calcula-
tions show that this distinction is an artificial one.
The BGS process is found to consist of both real
and virtual excitations of the impurity moment,
and, in fact, to be given only by purely virtual
excitations for large H/T.

The longitudinal relaxation process is calculated
with both perturbation and dynamic-susceptibility
techniques. Using the dynamic susceptibilities
calculated recently by Gotze and Wolfle® we find
exact agreement between the two results.

We also apply the dynamic-susceptibility tech-
nique to the calculation of the transverse relaxa-
tion time T,. Because this process samples a
different part of the local-moment fluctuation spec-
trum and because these fluctuations are aniso-
tropic for large H/T, T, and T, behave in a dras-
tically different fashion. We shall see that T, will
usually be the deciding factor in determining the
observability of the resonance by transient meth-
ods.

There do not appear to be quantitative data in
the literature on the relaxation rates calculated
here. In Sec. IV we make a rough comparison
with the AgMn : ®*Mn saturation results of Okuda
and Date.!® In the final section the implications of
this work for host-relaxation processes are sum-
marized.

1. PERTURBATION THEORY OF T,

Qur initial approach is to analyze the relaxation
processes for the nucleus of an isolated local mo-
ment which occur in first- and second-order per-
turbation theory. The conduction-electron-local-
moment interaction is described by the usual s-d
exchange model. The question of interaction ef-
fects at finite concentrations is touched on briefly
in Sec. IV. No bottleneck effects are anticipated
here; however, no analysis of this question is at-
tempted.

The unperturbed Hamiltonian is taken to be

K0= EE ei,octi,ocio"'hdsz“hnlz ’ (1)
N

where the €;,= €g—hs0 are the energies of nonin-
teracting conduction electrons of spin 0. S*and I*
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are z components of spin operators for the local
atomic and nuclear moments, respectively. 7,
=g4,s4pHyand h,=yH, are the various Zeeman
splittings, and we note that %, and % are negative.
We take %=1 throughout. Consideration is re-
stricted to S-like local moments. !

For the coupling between -i, S and conduction-
electron-spin operator 5, we take

3¢ = 2

1 z_z 1 - -
.z JpiCio [S* 55+ 2(S* Sgr+S™8kg)Cirgr
‘kyo, k%07

+ Z} Aﬁ'icév [Izs§u'+%(I*S;o'*’l-s;o')]ci'c'
k,0,k’,0’
+A S, @

where the first two terms represent the s-d ex-
change and Fermi contact interactions, respec-
tively, the last being the core-polarization hyper-
fine coupling associated with d and f moments.
Note that 5= 3 ({0,+ jo,+ ko,), where the o, , are
Pauli matrices.

There are myriad effects contained in the total
Hamiltonian (1) plus (2), such as the electron-spin-
resonance (ESR) linewidths, Kondo condensation,
etc. Here we assume Kondo phenomena are un-
important and focus only on nuclear relaxation
processes; as we shall see, the results have im-
plications for the ESR linewidths as well. Con-
sidering T, first, we evaluate those processes
which change the nuclear-spin quantum number
from m to m+ 1, In addition to the usual Kor-
ringa'? process, we see from Eq. (2) that three
types of processes occur in second order, namely,
those involving J3.; and s-electron hyperfine cou-
pling, Jg.¢ and d-electron hyperfine coupling, and
those which are quadratic in the hyperfine cou-
pling. The last of these contributions is extreme-
ly small and will henceforth be neglected.

For the cross terms involving Jz.; and one of
the hyperfine operators, there are four nonvanish-
ing second-order processes giving Am =1, In
Table I, states for these processes are listed in
terms of the four quantum numbers m, m, K, and
o which characterize the eigenstates of the un-

TABLE I, Table of intermediate states for second-
order nuclear-spin transitions in which the system
quantum state goes from z = (m, mg, K, o) to either »’
=(m+1, m,, &', 0—1) [(a) and (c)] or to n' =(m +1,
mg—1, X', 0) [() and (d)]. Transitions are labeled with
hyperfine couplings which drive them,

(Conduction-electron spin) (Local-moment spin)

(a) Ams=0 (b) Amg=—1 (€) Amg=0 (d) Amg=—1
m+1/m m+1/m m+1/m m+1/m
me/mg mg/mg—1 mg—1/mg+1 mg—1/mg
o—-1/c o-1/0+1 o/o—-1 /o
EII/EII «Eu/i?l E/E E/EI
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perturbed Hamiltonian (1). Both possible inter-
mediate states are listed for each process. It
will be noted that a process with Am =~-2, Ao=1
is also allowed by these perturbation terms. How-
ever, the second-order matrix element for that
vanishes, and thus the tabulated list is complete.

The transition rate for m —~m +1 is given by
Wil =2125 P(m )

Mg

X 27 f(Ko)[1-AK,o"]|miams |2 5(e - €)

- ’
k'y0’yk,0

(3)
where P(m,) is the occupation probability of state
mg, fis the Fermi occupation function, and
MA™S is the total matrix element for transitions
from initial state # to final state n’ (see Table I).
The second-order portion of M,fé,’"s) is given by

15" 12"") (n"" 15" 1n)
E,, €—-¢€"

, (4)
n
where the sum is over all possible intermediate
states »'’. At this point we note a major differ-
ence between the conduction-electron and local-
moment hyperfine processes, namely, that for
the former there is a continuum of intermediate-

|

W(-l)

_ I =m)(I+ m+1) A2 n¥Ep) L P(m) [S(S+1) = mE+m, ]|
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state energies (due to €;» ), because neither per-
turbation is diagonal in k. It is shown in the Ap-
pendix that this leads to an essential cancellation
of most of the second-order matrix element, lead-
ing to results of the order of J/E, times the first-
order matrix element (Ey is the Fermi energy).
For this reason we omit any further discussion of
these terms.

In calculating rates we note that process (c) of
Table I interferes with the Korringa process, thus
we add the first-order matrix element 3 (m +1
X |I*1m)Agg to that of (c)., Further, in order to
continue the calculation, we assume NAj;.;=const
=A; and replace NJp.; with a suitable average val-
ue Jg;, where N is the number of atoms in the sys-
tem. A, and J,; then correspond to wave functions
normalized in one atomic volume. For the two
processes which remain under consideration,

Eq. (3) gives

W w=2m(I=m)(T+m+1) h,(1 - &™) p2(E,)

X2 P(m)[Ag+mAgdy /(=) P (5)

ms

and

m+l,m ™~

in the spherical-band approximation with n( E;) the
density of states for one spin direction in cgs units/
atom and B=(£7T)™ . Equations (5) and (6) give the
major second-order contributions to nuclear relax-
ation. The terms in J%; can be seen to be of the
order of J2,/(h, - h,? times the first-order rate;
for moderate field values this will in some instan-
ces constitute a multiplication factor of several
orders of magnitude. We note that the inverse
rates to (5) and (6) are easily shown to satisfy ther-
modynamic detailed-balance conditions when P(m,)
'is a thermal-equilibrium distribution.

With Eq. (5) we can identify three distinct T, con-
tributions, namely, the first-order (Korringa) rate
« A%, the second-order (so) contribution «J2,, and
a cross term * A A, J,. In the (usual) limit Br,
<« 1 the cross-relaxation contribution becomes

1/Ty(cross) = 2nkTn?(Ep) Ay Agdyq (S*) / (B = hy).
(7)
This is seen to be the local-moment analog of the
GH process® for host nuclei. Both 1/7;(cross) and
the GH process involve virtual excitation of the
impurity moment (Am,=0). Furthermore, if we
identify A, with the transferred hyperfine coupling
to a host nucleus xA4,J,,, then the analogy con-
cerning dependence on A,, J,,;, T, and H, is com-

(hn _ hd )( 1- e'B(hn"'d))

[

plete. We note also that such a cross term, as
in the case of the GH term, is not necessarily posi-
tive.

Combining the second-order part of (5) with (6)
we find in the further approximation |4, /h,l <1,
the total second-order rate contribution

1 pkTA2J% W% (ER) (
= s S(s+1
Ty(so0) n’ (s+1)

. (S?%)h,B
~(S% coth(Bhr,/2)+ WBIZT—_I]) - (8)

In discussing Eq. (8), it must be remarked that
there are several ranges in the value of the quanti-
ty H,/T which must be distinguished. First, we
note that the whole second-order perturbation
treatment is only valid in the limit | 4,751 > 1,
where 1/T% is the width of the local-moment ESR
line. With 1/7%=nJ2,%%(Ep) kT, this condition
becomes

kB> I 2,0 (ER) , (9)

where the right-hand side is generally much less
than unity, Only in this limit is m, a good quan-
tum number. For smaller values of 7,8 we shall
see in Sec. III that T, (so) has a different functional
form.
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Further,in Eq.(8) the quantity in large parentheses
changes its value in the neighborhood of 2,8~ 1, ap-
proaching £5(S+1) for #,8< 1 and S? for #,8> 1.
Apart from this transition region, then, within con-
dition (9) 1/7(so) varies basically as T/Hz.

We note two further points of interest concern-
ing T,(so) as given by Eq. (8). First, this relaxa-
tion process is generated entirely by local-moment
fluctuations and second, it results from a com-
bination of real [ Am,=+1, Eq. (6)] and virtual
[am,=0, Eq. (5)] local-moment excitations. The
two types of excitation make equal-rate contribu-
tions at high temperatures; at low temperatures
1/T,(so) is generated entively by virtual excita-
tions.

1II. DYNAMIC-SUSCEPTIBILITY APPROACH
A. Longitudinal Relaxation

It is of interest to derive 1/7,(so) by means of
the dynamic-susceptibility formalism to see that
both methods give essentially the same result.
More importantly, this scheme will make it clear
that 1/7,(so) is the precise analog of the BGS
mechanism for host nuclear relaxation. It is fre-
quently stated that the BGS process results from
real excitation of the impurity moment.*%® The
present work shows, however, that real excita-
tions are only partially involved at high tempera-
tures and that BGS relaxation at low temperatures
is generated entirely by virtual spin flips.

To proceed with our derivation, the longitudinal
relaxation rate due to coupling with a spin § is
given byt

1/Ty=3A2 [~ [(5,8,(1))+(8,5,(1))]e?enar,

) (10)
where the angular brackets denote a thermodynamic
average. By the fluctuation-dissipation theorem,
Eq. (10) may be rewritten

2
T Py Dl ) ()], 4D

where Y,, and x,, are components of the local-mo-
ment dynamic-susceptibility tensor. We take both
of these quantities to be equal to the transverse
local-moment susceptibility derived by Gotze and
Wolfle;

Im xp(w) = N (W {(w= "2+ [N (w)/X2 B},

(12)
with

N (w)= i [gupdon(Ep) F{2 (ng>+ w(S*) (w=n")

x[coth(3 B(w—n"))+coth (3 82)]} , (13)

where 7’ is the local-moment spin-resonance fre-
quency including possible conduction-electron-shift
effects, and x% =guy (S*)/H, With N''(w) eval-

uated at w=4’, (12) and (13) give the spin-reso-
nance line shape, correctly modified for relaxa-
tion to the instantaneous field,'® with 1/T%=N"'(r’)/
x%. The resulting linewidth expression coincides
with that given by Orbach and Spencer!® when
specialized to their case of an effective spin S =3,

For the present application we identify k' with
hy from Sec. II and take N''(w)2N"'(0)= x2 / 74(0).
1/T4(0) is the effective spin-resonance linewidth at
zero frequency and differs slightly from 1/7§.
With w,8< 1, Eq. (11) then becomes

_ 2 1 >2] -1
[(h,, hg) +(TT§ ) .

(14)
In the perturbation limit (9), (14) becomes (neglect-
ing h,)

1 _2A%kTx{
Ty(so) ~guz T5(0)

1 mARRTI % nP(Ep)
T,(s0) ™ ’ W ’ - <S(S+1)
~(S%) coth(Bn,/2)+ 2<[Sczo>s}tl1d(ﬁﬁhd) -1] ) ’

(15)
Equation (15) is seen to be the same as the pertur-
bation expression (8),

It is useful to point out a detailed physical con-
nection between corresponding terms in Eqs. (8)
and (15). The firsttwo (large parentheses) terms in
(8) arise from the Am,=0 transition rate (5),
whereas in (15) they can be traced to the Am =1
contribution to 1/7%. ® On the other hand, the final
term in (8) is given by the Am, =+ 1 transition rate
(6), and the corresponding term in (15) can be
seen to arise from the z-axis (am,=0) fluctuation
part of 1/7%.°

This criss-crossed correspondence, surprising
at first, turns out to be just what one expects if the
second-order Ty process is viewed as two succes-
sive steps. In each case we may consider a mutual
nuclear-atomic spin flip to be one step, changing
mg by one unit, To obtain Am,=0 over all, this is
accompanied by a cancelling atomic flip with the
conduction electrons. The latter process gives
the Am, =+ 1thermodynamic character to the virtual
transition (5). Likewise, in the real (Am,=+1)
process (6), the nuclear flip must be accompanied
by a Am, =0 conduction-electron scattering process.
It is gratifying that two rather different approaches
to the problem, i.e., here and in Ref. 9 yield the
same result. In this sense, Eq. (8) can be said to
corroborate the susceptibility (12) given by Gotze
and Wdlfle. °

The connection between 1/7T,(so) and the BGS T,
mechanism for host nuclei is apparent from Eq.
(11). There, if we replace A, with a transferred-
hyperfine-coupling coefficient A, Rex*(R;, w,), the
same expression results as identified in Ref. 4 as
the BGS relaxation rate. Here x°(R;, w,) is the
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conduction-electron transfer susceptibility. It is
obvious that the BGS rate expression could also be
derived by the perturbation technique, leading to the
conclusion stated earlier regarding the importance
of virtual processes.

In the case of moment nuclei studied here, we
see that the BGS and GH relaxation processes are
very intimately connected. This is especially true
at low temperatures, with both processes as well
as the Korringa rate given by Eq. (5) alone.

B. Transverse Relaxation

It is necessary to make a separate investigation
of the local-moment nuclear 7, process, both be-
cause the fluctuations are highly anisotropic at low
temperature and because T, and T, sample different
parts of the frequency spectrum. The total trans-
verse relaxation rate is given by'*

1 4A%sinh®(Bn,/2){ (S+3)?csch®[ (S+1)pn,] -4 csch?( fn,/2)}2

R. E. WALSTEDT AND A. NARATH 6

1/T2= 1/(2T1)+%A3[ j;: <Sz Sz(—r)> e'iw‘rd,r]

w=0

(186)
where we shall refer to the z-axis fluctuation term

as 1/T,,. Again we use the fluctuation-dissipation
theorem to relate 1/7T,, to the dynamic longitudinal
susceptibility, taking the latter quantity from the
work of Gétze and Wlfle, ® x“(w)=x5 /(1 - iwT$),
where Xg =gupd{S*)/0H, The resultis

2
11, - ARTTE 85
2z

&ghp 8H, ’
with (17)
1/T¢= ngzpf, stanz( Ep)Bhe(S%)
17 4sinh®( Br,/2)x E

Evaluating (17) at high temperatures, we find 1/ Ts,
proportional to 7™! and field independent. At low
temperatures 7§ approaches a constant value and
9(S*)/ 8H, vanishes exponentially. For arbitrary
field and temperature, (17) becomes

T2. Thedeqn*( Ep){ (S+ 5)coth[ (S+3) Bhg] — 3 coth( pr,/2)}

T,, senses the fluctuation density at zero frequency
and, therefore, in contrast with Ty as given by (15),
goes inversely as the square of J,,.

At sufficiently high temperatures and low fields,
i.e., the opposite limit from condition (9), the lo-
cal-moment linewidth becomes large compared with
all Zeeman splittings. It follows that the nuclear
relaxation must be isotropic and field independent
in this limit. That this is so may be seen from
Eq. (14), which, with 2,7§< 1 and the high-tem-
perature correspondences x§ =xa and T$=T§, be-
comes twice T;: [ Eq. (17)]. Equation (16) then
gives T,=T, as required.

" IV. APPLICATIONS

By way of illustration, calculated values of
1/Ty(so) [Eq. (8)] and 1/7T,, [Eq. (18)] are plotted
in Figs. 1 and 2, respectively, for the case of
dilute CxMn, where we take A,=44x10*cm™, " ¢
=2, Jy~1eV,"® and n(E;)=0.16 eV'atom™. The
calculations have been carried out for a range of
likely experimental values of Hy and 7. For the
parameters given, the cross term [Eq. (7)] is neg
ligible throughout. It is assumed that the Mn-im-
purity moment is characterized by S=32. For this
spin value the asymptotic gr,<<1 and Br,> 1 val-
ues inthe large parentheses in Eq. (8)are5.83 and
6.25, respectively, yielding a nearly temperature-
independent coefficient of T/HZ in the plot of Tj2.
The dashed lines show the deviation of T{* at low
fields and high temperatures [Eq. (14)] from the
simple perturbation result.

In assessing the transverse relaxation rates one

(18)

[

must bear in mind that half the rates in Fig. 1 must
be added to 1/T,, to give the total rate [Eq. (16)].
Although there is some uncertainty about the true
value of Jg, for this case, it is clear from the plot-
ted results that the region of experimental interest
for spin-echo technique is (a) limited to low tem-
peratures and high fields, specifically to H,>40

kG and T <2°K for the case shown; and (b) de-
termined primarily by T,, and therefore more con-
stricted for smaller values of J,.

For alloys with a finite concentration there will
obviously be important modifications to the re-
laxation rates calculated here due to Ruderman-—
Kittel-Yosida (RKY) exchange couplings among the
impurities.” In the limit of a dense ferromagnet
1/Ty(so) goes over to the mechanism discussed by
Weger, *° which is severely limited by require-
ments of ferromagnon k conservation.

Very little experimental data is available on the
relaxation rates calculated here. One possible
application is to the case of ~1-at.% Mn in Cu or
Ag at helium temperature studied by Okuda and
Date' using an electron-nuclear-double-tensor
(ENDOR) technique. It was found that the ESR line
of the Mn in AgMn could be caused to shift slightly
by saturating the **Mn polarization with rf power.
In this way the **Mn NMR line was located at ~ 250
MHz, in good agreement with the nuclear-orienta-
tion work of Cameron et al. '’

The precise conditions of saturation are not dis-
cussed in Ref. 10; however, we may make a crude
estimate of T, from the coil geometry and power
level stated. Assuming the absence of any kind of
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FIG. 1. Second-order longi-
tudinal relaxation rate for a local-
moment nucleus plotted against
temperature for several applied
field values, using hyperfine,
exchange, and local-moment
parameters given in the text. The
transition region for gugH,~%kT
is very nearly invisible for S
=3, Dashed lines show approach
to field-independent Ty o< T at
high temperatures.
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resonator (none is mentioned), we find yH,~1/T,
~10° sec™!. This is faster by a factor ~10° than a
typical s-electron relaxation process, confirming
at least that a strong contribution from local-mo-
ment fluctuations is present.

Although we cannot make a quantitative corre-
spondence with the single-impurity calculations
of this paper, comparison of the above T, estimate
with Fig. 1 suggests that at 7=1°K the large RKY
exchange couplings are severely inhibiting the
second-order 7y process. Regarding the magnetic
states in these alloys as essentially local in char-
acter, 2 RKY couplings may be viewed in a mo-
lecular-field picture to correspond roughly to H,
~T,/k~10° G, where T, is the “ordering” tem-
perature. With this assumption, and noting further
a possible rf enhancement of ~2, we find consis-
tency with the T; estimate to within an order of
magnitude.

V. SUMMARY AND DISCUSSION

A perturbation calculation of relaxation process-
es for local-moment nuclei yields a BGS-like! term
in second order and a GH-like® term as a cross
term between the BGS and Korringa'? matrix ele-

_ments. The similarity to the original GH ® term
is inevitable because of nearly identical starting

Hamiltonians. Contrary to the traditional view,

the BGS-like term consists of both local-moment
spin-flip and non-spin-flip (real and virtual) pro-
cesses, a conclusion which presumably applies to
relaxation of host nuclei as well. For guzH,/kT

> 1, the real process “freezes” out, and all nuclear
relaxation takes place through virtual excitations

of the local moment.

The above picture is corroborated by a dynamic-
susceptibility calculation of the second-order re-
laxation. In the (high-field) region where the two
calculations are comparable, the real and virtual
terms in 1/74(so) are found to correspond, in-
terestingly, with Am =+1 terms in the local-mo-
ment dynamic susceptibility, ° respectively. This
is easily understood in terms of a two-step pro-
cess, with Am =+1 in the first step to flip to nu-
cleus; the contributing dynamic-susceptibility term
is characterized by whatever additional change in
mg is brought about in a concomitant conduction-
electron scattering process. Thus, the low-tem-
perature virtual excitations of the previous para-
graph (such as the GH process) behave thermody -
namically like spin-flip conduction-electron scat-
tering.

Viewed another way, the perturbation and dynam-
ic susceptibility treatments of the nuclear T, pro-



4124 R. E. WALSTEDT AND A. NARATH 6
T T T T T TTTT T T T T TTTT7 T T 11
|07 - ]
o N
. 10kG i
20kG
6 FIG. 2. Contribution to trans-
10” 40kG 3 verse relaxation rate from z-axis
o r 7 local-moment fluctuations (1/7y,)
o - - plotted against temperature for
$ o -1 several applied field values, using
o L 80kG -1 parameters given in the text,
N [ -
N
}_
~ — -
10° | -
IO4 1 1 Y A L1111 1 P11 1l
0.1 | o 10 100
T (°K)
cess may be combined to check the local-moment ACKNOWLEDGMENT

ESR linewidth given by Gdtze and Wofle.® 1t is
especially interesting that the frequency dependence
of this quantity [Eq. (13)] is corroborated by the
perturbation calculation.

The present treatment demonstrates in a funda-
mental way the evidently close connection between
the local GH and BGS relaxation processes. This
is thought to be the case for host nuclei as well,
as can be seen, for example, by extending the GH®
analysis to next-higher order. The development of
Sec. II is essentially equivalent to such an exten-
sion.

Finally, our results suggest that the direct obser-
vation of **Mn NMR in Cx«Mn and AgMn, as well as
other systems, should be feasible at sufficiently
high fields and low temperatures. In the ENDOR
work of Okuda and Date, ¥ it is suggested that the
large internal RKY fields allowed the *Mn NMR in
AgMn, o to be saturated at modest power levels.
Work is currently underway to observe the Mn
NMR directly in these systems.

The authors wish to thank Dr, P, Wolfle for valu-
able suggestions concerning the use of his suscepti-
bility results (Ref. 9).

APPENDIX

To illustrate our point concerning the second-or-
der matrix elements of conduction-electron hyper-
fine processes in Table I, we consider process (a)
explicitly:

M@ =tm(m+1|I*|m)

< T <A~l§,§«J-l”E _ JpgeApe ) . @
€3 — €gn €3 — €¢u

P

On converting the sum on kK’ to an integral, the
first term in large parentheses becomes

tmg(m+ 11| m)

de 1 AdSyn
X L PP S
/ﬂ-([ (27)° [ Vguel Aviedioi ,  (42)
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where the [ dS, is taken over the surface of constant
energy ¢ in k'’ space and is of order n(€)A,J,. We
denote this integral U(E', E, €) and assume it to be a
a well -behaved function of € for k and k' values of
interest. In performing [ de in (A2), it is shown

by Schiff?! that the path of integration should pass
under singularities on the real axis. The final re-
sult for the first term in (A1) then becomes

e 2

(i -¢)

4125

+ inU(K', K, e;}) . (A3)

Barring irregular behavior of U, the quantity in
large parentheses in (A3) is of order A,J,,/€F as
was to be shown,

The above argument can be carried through in a
similar fashion for process (b) of Table I as well,
leading to the conclusion that terms (a) and (b) both
produce relatively small corrections to the Kor-
ringa process.
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A study of the forbidden hyperfine transitions up to Am =+5 within the central fine-structure
component of the EPR spectrum of Mn?* in calciteis reported. The line positions are interpreted
with spin-Hamiltonian parameters previously determined and with a quadrupole-interaction
parameter of 0.5+0.1 G. Two approaches were used for calculating line intensities; per-
turbation theory and the effective-electron—magnetic field method. Good agreement with ex-
periment was obtained.

INTRODUCTION tions have dealt with AM=x1, Am=z1 transitions,
while transitions of larger values of Am have sel-

Forbidden hyperfine transitions (AM=x1, Am dom been considered. Important requirements for

#0) have been observed in the electron-paramag-
netic-resonance (EPR) spectra of Mn® in a series
of crystals. The great majority of these investiga-

the occurrence of forbidden transitions in the spec-
trum of the Mn?*(®S) ion are that (i) the fine-struc-
ture parameter be large enough, and (ii) the lines



