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where

g, (k, r, r') = (i/2k) (- 1)'
[ to, (kr) tv, (- kr')

—to, (- kr) to, (kr')] .

Now just as in the one-dimensional case C, is
treated as a parameter. Using the relationship
between u( e) and tv, (+z) and the linearity of (18),
we get [in analogy to (4)]

y, (r) = t (- 1)"f,(- k, r )(C, + —,'A, ) + i (—,'A, )f, (k, r),
(19)

with

f, (k, r) = tv, (kr) —f dr' g, (k, r, r')V(r') f, (k, r')
(20)

[Compare with Eq. (S. 8), Ref. 4]. Note that this
equation is easily iterated in the same way as (5).
Now combine (17) and (19) to find

C, = —,'A, [f, (k)/f, (- k) -1]=—,'A, [Sg(k) —1], (21)

where the Jost function f, (k) is given by

f, (k)= 1y (1/k) f drf, (k, r)V(r)u, (kr) (22)

and S,(k) is the S-matrix element for V(r) [see Eqs.
(4. 4) and (4. 5) of Ref. 4]. We finally obtain (see
again Ref. 4)

P (r)=kryo (r)=i(-'Al)
k [fl( k-)f~(k r)

This analysis has shown the intimate connection
between the techniques developed in Ref. 1 and the
"Jost-function method" as used in scattering theory.
It is possible that the detailed knowledge, already
developed, ' of the Jost functions (especially 1= 0)
can be applied toward an understanding of the ran-
dom-potential problem in one dimension. Further
comment is inappropriate for a paper of this sort.
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Thorpe and Weaire have discovered a simple relationship between the density of states of a
model Hamiltonian for a tetrahedrally bonded amorphous solid and the density of states of a
much simpler Hamiltonian. Here is given a simple derivation of that result. . The case of a
compound semiconductor is also discussed.

I. INTRODUCTION
Weaire' has proposed a certain tight-binding

Hamiltonian to discuss a tetrahedrally bonded solid
which is "topologically disordered"-that is, a
solid for which every bond and site interaction is
the same, and for which every site has exactly four
neighbors bonded to it, but which lacks long-range
order in the network structure.

Thorpe and Weaire' recently showed that there
is a simple relationship between the density of
states of this Hamiltonian and that of a much sim-
pler one. Their derivation involved the resumma-
tion of the diagrams of the Green's-function per-
turbation theory. It will be shown here how their
result can be derived from the properties of the op-
erators that appear in the Weaire Hamiltonian.
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II. DEFINITIONS

At each site i of the network there are four or-
bital states lP, &) (j=1, . . . , 4). It is assumed
that every state of the system can be expressed as
a linear combination of the P;&. I et us now define
the operator

(1)

which is an interaction of the bonds common to the
site i;

A=+, A,

and

Then we have found the spectrum of the operator
8 —4VgH:

(H —4V(H) 4, = (V)V2e+ Vq) C, . (10)

The spectrum E of H itself is related to that of
(H2 —4V, H) in the obvious way so that we may write

4V1E V1 V26+ V2

which is equivalent to the first line of Eq. (17) of
Ref. 3.

The operator ATA, which Thorpe and Weaire
call the "one-band Hamiltonian, " is a much simpler
operator than H itself; it can be written in terms
of the orbitals li) as

where the sum ranges over all nearest-neighbor
pairs ii ', and I Q, &) ( I Q, .&)) is the bond on i(i')
which points towards i'(i) Th. e operator T inter-
changes the coefficients of these orbitals. The
operators A, are normalized so that they are all
projections, and the only eigenfunction with non-
vanishing eigenvalue is

2 'j (4)

The operator A is also a projection; it discards the
part of any function which is linearly independent
of the li). The operator T also has an interesting
property: It is its own inverse:

A

T2

because to interchange twice is to have no effect.
In terms of these operators, Weaire's Hamiltonian
ls

H= 4 VgA+ VpT

apart from an additive term —V& which mill be ig-
nored throughout what follows. In the physically
relevant cases V& and V2 are negative.

III. SIMPLIFICATION OF HAMILTONIAN

From the definition of H and the properties of A
and T it follows that

H —4V, HA —4V, AH= V2I 16 V, A . -(7)

The right-hand side commutes with A, and con-
sequently, the left-hand side and A can be simul-
taneously diagonalized. Let us restrict our atten-
tion to the subspace of eigenfunctions of A with
unit eigenvalue: Multiply the above equation by A

from the right-hand side. Further, substitute for
the rightmost H from its definition and get

(H —4V, H)A —4V, V2ATA = V2A . (8)

The term ATA commutes with A and thus can be
diagonalized within the proper subspace of A; let
the eigenfunction with eigenvalue 4& be 4, ;

ATA C, =-, e4, , AC, =4, —.

ATA= — E
( && (,4 «, »

where the sum ranges over all nearest-neighbor
pairs i and i'. Thus we need consider only one
function per site.

The functions 4, are not eigenfunctions of H, but
the eigenfunctions 4 of H can be constructed from
them; explicitly they are 4'= (2V, + Q+ VIT)C, with
eigenvalue E = 2V, + Q and @= (2V, —Q+ V2T)C, with
eigenvalue F. = 2V, —Q, where Q = (4 V, + V2+ V, Var)'

The remaining structure of the spectrum of H

(according to Thorpe and Weaire) is a pair of 5

functions at E = + V2. The existence of a large
number of localized states (associated with closed
rings of sites) having these eigenvalues can be
demonstrated; the corresponding wave functions
all lie within the null space of A. This feature
seems to depend on more specific properties of the
Hamiltonian than just A =A and T =I.

IV. COMPOUND SEMICONDUCTORS

Let us imagine that the network can be broken
into two sets X and Y of sites, such that the P
neighbors of each X site are all Y sites, and the

q neighbors of each Y site are all X sites. Let X
be the projection operator which separates out all
orbitals on the X sites, and similarly for Y. W'e
can then define a model semiconducting compound
with the Hamiltonian

H =aAX+bAY+xX+y Y+ tT,
where a, b, x, y, and t are arbitrary real coeffi-
cients. Thorpe and Weaire propose a special
case of this with a=b=4V&, x= Vo= —y, and t= V~.

In addition to the properties of the various opera-
tors already noted, we can add that A commutes
with X and Y, and that the only matrix elements
of T are between the two sets of sites, so that
XTX= YTY = 0 and XT= TY .

Let us assume we know a solution to the "one-
band" problem encountered above, and note that

gA TA TO', =A TA TX4, = ~q e P4, ,
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and in fact, construction of the equation Hg=Eg
and equating the coefficients of &f&, TP, AT/, and

TAT/ shows that E is a solution of

[(E-x)(E-y-b)-c ][(E-y)(E-x-~)-c ]

=re1 2 2 (16)

o.'= c(E —x),
P= a(E -y) o'/[(E —y)(E —x —a) —c ],
~= [cl(E y)]-P .

,17)

FIG. 1. Density of states for the compound semicon-
ductor. It was assumed that the one-band Hamiltonian
has a flat density of states in the range —4&z &4; the
parameters of Eq. (16) were chosen to be g = 0.1 = -y,
a=b =t =-1.

so that/ =XC, is a function defined just on the X
sublattice which is an eigenfunction of A with

A ~ ~ A
~ 1 2eigenvalue 1 and of STAT with eigenvalue I'6 & .

Now with good reason we can suspect that there
are eigenfunctions of 0 of the form

g= P+ QTQ+ PAT/+ yTATQ,

Since (16) is a quartic equation, there are four
solutions for E, so that, in general, there will be
four bands. Figure 1 shows a typical case, in
which it was assumed that & ranges from —4 to+ 4
with a flat density of states. The square-root
singularity at the band edge will occur whenever
the density of states of the one-band Hamiltonian
is constant near e= 0 (as occurs for the Bethe
lattice, but not the diamond cubic structure').
Also shown are the 5 functions which presumably
occur for E such that

(E —x)(E —y) = c

Neaire and Thorpe inform me that they have
achieved similar results by another method.
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A new proof is given for the existence of a band gap in the Heine-Thorpe-Weaire model of an
amorphous semiconductor.

In a recent series of articles, Heine, Weaire,
and Thorpe ~ (HWT) have examined the properties
of a simple tight-binding model for amorphous
semiconductors. The model is specified by as-
suming that there are four equivalent orbitals as-
sociated with each site and that these orbitals form
bonds with each of the nearest neighbors. The

spatial arrangement of the atoms is disordered,
but it is assumed that each atom still has four near-
est neighbors. The one-electron Hamiltonian is
then

ff=~I. ) f &.~ I.z I-) p, & l I

= ff,.ff, . -
n

fAf


