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will consider a solid angle which just encompasses
a Bragg beam. We find

n, (r, t)= 1 —&(~.) ~~
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where q„ is the tangential component of the optical
wave vector. Thus we have
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where A is the area of the surface.
Note that the surface term, unlike the Bragg

terms, is peaked only for tangential directions of

q, . In comparing the integrated intensities, we

Inelastic surface scattering. Because of the dis-
continuity in the unperturbed electronic density and

the optical dielectric function, the divergence of the
primary electric field is nonzero at the surface of
a crystal if the incident wave has a component po-
larized perpendicular to the surface. If E, is the
normal component of the optical field inside the
surface at z=0, we have'
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L, is the thickness of the crystal. We can know

E(q, + 5, ~z,)/E(j„z,) exactly only if we have the
value of the microscopic dielectric tensor. How-

ever, this ratio is expected to be of order 10
10 . Thus, the elastic Bragg peak is dominant
unless E(g„~,)-10 —10' esu, The surface term
becomes important in comparison to the inelastic
Bragg term for crystals thinner than 10 -10
cm. For a solid made of crystallites of this size,
the surface term cannot be neglected. Note also
that the condition on L, is relaxed for more real-
istic (i.e. , larger) solid angles used in experi-
ments. In the above estimates, we have assumed
that q, and G are of order 10scm-sand &0 10 cm

Finally, we remark that surface (V E term at
the surface) and local field (V E term in the bulk)
corrections are negligible when one is considering
the mixing of two x-ray photons.
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A Monte Carlo calculation of the elastic constants of solid Ar at 80'K and near zero pressure
has been reported by Klein and Murphy. This calculation employed the Bobetic-Barker Ar2
pair potential and included a correction both for three-body forces and quantum effects. The
present note extends the previously calculated elastic constants to include the volume deperi-
dence at 80'K and the temperature dependence at 21.99 cms mole ~. Comparison is made,
where possible, with the scant experimental data.

Using lasers it is now possible to measure the
elastic constants of rare-gas solids either by
spontaneous~ or stimulated Brillouin scattering

(SBS). The feasibility of studying the isothermal
pressure dependence of SBS has also been demon-
strated. Moreover, with currently available
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TABLE I. Monte Carlo values for the elastic constants~ of solid Ar (in kbar) based upon the BB Ar2 pair potential and
ATM three-body force.
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8.73
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11.02-0.476

40.Ol
14.78
20.04
24. 16
0.825

48. 19
17.57
24. 22
30.09
l. 565

52. 48
12.53
21.25
31.43
4.355

Three body (ATM)

2. 13
—0.09

0
2.19
0.549

2. 92
—0.11

0
2. 99
0.750

3.25
—0.12

0
3.33
0.836

3 25
—0.12

0
3.33
0.836

Total

24. 94
8.64

ll. 77
13.21
0.073

42. 93
14.67
20. 04
27. 15
1.575

51.44
17.45
24. 22
33.42
2.401

55.73
12.41
21.25
34. 76 .

5.191

Vand T

V= 24. 43 cm mole
T =80'K

V= 22. 60 cm3 mole"i
T=80'K

V= 21.99 cm mole
T =80'K

V= 21.99 cm3 mole i

T =180'K

'Our elastic constants c;& are the same as the B&& of
D. C. Wallace [Phys. Rev. 162, 776 (1967)j and are the
usual generalized Birch coefficients appropriate to cubic
materials under isotropic stress.

"The probable errors in the adiabatic constants is + 2%,

while for Bz it is likely + 3%. For p the statistical. error
is about + 20 bar, but a further systematic error of about
+25 bar most likely arises through the quantum correction
(see Ref. 7 for details).

technology a measurement of the isochoric tempera-
ture dependence is, in principle, also possible.
This, together with the improvement of the con-
ventional equation-of-state technique as well as
isochoric studies, 6 makes it desirable to have some
predictions for the elastic properties of solid Ar
for volumes and temperatures away from the vapor-
pressure line. This is the purpose of the present
note, which therefore complements both the Monte
Carlo elastic-constant study of Klein and Murphy7
and the melting-line investigation of Barker and
Klein.

Details of the calculations are identical to that
of Klein and Murphy~ and are thus not reproduced
here. The results are collected in Table I. The
Arz pair potential used was that of Bobetic and
Barker~ (BB), and three-body force is approxi-
mated by the Axilrod- Teller-Muto (ATM) form. ~

It should be recalled that the pair potential is in
part parametrized to zero-temperature solid-state
properties. Unfortunately, it is not possible to
compare the calculated elastic constants directly
with experiment. However, from the isochoric
calculations of Table 1, we find (dp/dT)»= 27. 9 bar
K for V=21. 99 cm'mole ', which agrees well

with the work of Benson and Daniels. ThePVT
melting-line studies of Crawford and Daniels can
be compared with the present calculations, if we

correct the latter using the calculated bulk modulus
of Table 1 and the value of (dP/d T)» given above.
Thus we find for V= 22. 09 cm3mole ~ and 1'= 180.15
'K a calculated pressure p = 5029+ 20 bar, whereas
Crawford and Daniels found experimentally

p = 4999+ V bar. Independently, Baker and Klein
obtained by Monte Carlo methods p = 5036 a 10 bar
for the BBpotential with three-body forces at the

same V and T.
Meixner et al. ~ measured the pressure depen-

dence of SBS for longitudinal sound propagating in
the (110)plane at 25' to the [111]axis. The zero-
pressure sound velocity vo was found to be 1424
+ 5 m sec ~ and the pressure coefficient dlnv/dP
=0.22+0. 01 kbar ' at VV'K. The experimental"
isothermal bulk modulus at VV. V'K is 12.V+0. 6
kbar so that —(dlnv/dlnV) = 2. 7S + 0. 27 and hence~2

the mode Gruneisen parameter y= 3. 12+0.2V.
From Table I we estimate vo-1440 msec ~ at

80 'K and

y 2
3.22+0. 2V

1 dlnc&~
2 dlnV

where c&& is the appropriate elastic constant and
the error estimate is based upon a possible 2%%uo er-
ror in the individual adiabatic constants of Table I.
While the agreement with available pressure ex-
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periments is encouraging, further experiments
would be most helpful in pointing out possible in-
adequacies in the pair potential' or the approxi-
mation for the many-body forces.

Work was carried out in part under a joint study
agreement between IBM and NRC. The invaluable
assistance of R. D. Murphy and J. A. Barker was
much appreciated.
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The work of Reading and Sigel on the solution of the one-dimensional Schrodinger equation

for a particle moving in the presence of a collection of p-function potentials of arbitrary
strength and position is generalized so that any arbitrary potential V(x) can be handled. A

close connection is shown to exist between the methods described in this note and those, in-

volving Jost functions;. which have been developed for handling the radial Schrodinger equa-
tion in three dimensions.

INTRODUCTION

In a recent paper by Reading and the present
author, a method was developed for the determina-
tion of the wave functions for an electron moving
in a one-dimensional array of 5-function potentials.
In this paper the fundamental simplicity of the
technique elaborated in Ref. 1 will be demon-
strated by at first formally constructing the solu-
tion of the one-dimensional Schrodinger equation
for the general case of an arbitrary potential V(x).
The details of the 5-function potential, as will be
pointed out, need be considered only after most of
the derivation is carried out. A close connection
will be demonstrated to exist between the techniques
presented here and those, involving Jost functions,
which are used in scattering theory to obtain a (for-
mal) solution to the radial Schrodinger equation.

where k=E"~ (E is the energy) Next, .define

S(t)= J dx n(x)g(x)e'"",

where o.'(x)= (—2ik) V(x) and assume here, and in

the following, the necessary convergence. By use of

(2), Eq. (1) can be rewritten as

g(x) [E S( )] i' A +ibex

1'" d z
(

ik(x x') -Aix-~'))-&(xi) y(xi) (3)

Just as in Ref. 1, at first, S(+) can be treated as a
ParanMtex. The solution to (3), which is clearly

To start, take the integral form of the Schrodinger
equation (as in Ref. 1)

g(x)= (1/2@i) J dx' e'" "" ' V(x') g(x')+Ae'""yfte '~",


