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The Fong—Cohen empirical pseudopotentials for Cu and Nb are shown to be close approxi-
mations to a member of a family of pseudopotentials which also includes Harrison’s first-
principles pseudopotentials for transition metals. The lack of energy dependence in the Fong—
Cohen potential is discussed and partly explained.

Fong and Cohen (FC) have recently succeeded in
fitting the energy bands of copper® and niobium?
using an empirical pseudopotential. Kleinman®
has recently discussed this work from the point
of view of the cancellation theorem, * and empha-
sized that the lack of energy dependence of the FC
parameters is surprising. Kleinman’s explanation
for FC’s success involves a compensating correc-
tion to the local part of the potential.

In this comment, an alternate point of view is
formulated along the lines of the Austin—-Heine—
Sham (AHS) “generalized” theory of pseudopoten-
tials.® It is argued that the energy independence of
the FC parameters can be expected because of the
exponential damping of the form factors. As a
by-product, a new class of pseudopotentials is
found which includes Harrison’s® first-principles
pseudopotentials, making explicit the connection
between the work of Fong and Cohen and that of
Harrison. The derivation of these new pseudo-
potentials is done in two stages, one parallel to
the Phillips~Kleinman’ (PK) method, and one
parallel to AHS.

Following Harrison® in parallel with PK, let us
add to the real wave function 3 some fraction @, of
core wave function 3, and some fraction ¢, of d
wave function g, in the hope that the resulting
pseudo-wave-function ¢ will have a rapidly con-
vergent plane-wave expansion:

b = P +20 agby + 2 agly - 1)

|o»

The d wave functions i, (unlike 3,) are not eigen-
functions of the crystal Hamiltonian H. For con-
venience, we choose them to be orthogonal to y,,
but we cannot choose them to be orthogonal to .
The function i, is an arbitrary function of d sym-
metry which is chosen to remove the d-wave

part of ¥ which otherwise would cause convergence
difficulties.

It is now convenient to write ) as some operator
acting on ¢. If all the coefficients @4 were zero,
the usual Pick—Sarma® operator 1 — P, would do
the job, where

P, =20, |0, )0. | @)

is a projection operator onto the core subspace.
The presence of nonzero ¢,’s makes the operator
more complicated:

(1-P,-PRQ)P =19 . (3)
In this formula P, is the d-wave analog of P,,
Py = Ea |¢d>(zl)ai . 4)

The operator @ is defined as any operator such
that P,Q gives zero when acting on y but leaves ¥,
unaltered. In addition, P,Q must give zero when
operating on .. If @ were taken to be the identity
operator, Eq. (3) would not be correct because
1 - P, (unlike 1 - P,) subtracts off part of . The
Schrodinger equation for 3 is

(T+V)y =3Cp = Eyp. (5)
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This equation is transformed into the pseudo-
Schrodinger equation by using Eq. (3):

(T+V,)¢ =E¢, (8)
V, = V+(E-3) (P, +P,Q). (7)

The result is a new class of pseudopotentials. As
an example, we can recover Harrison’s form® by
making the choice

’ Ed=<¢d'3cl¢d>- (8)

I—-FE
«—E

Q=Qy= E
This form for the operator @ is highly energy de-
pendent, having a resonance which would probably
be chosen to occur near the energy of the 4 bands.
Less strongly energy-dependent forms could pre-
sumably be found.

The preceding discussion was a generalization
of the PK method. Let us now generalize the AHS
method in an analogous way. Consider the new
pseudo-Schrddinger equation:

E'¢ =50,
= (T+V+0, |0 Fo| + 54 R|9g) (Fal)o @)

In the case R=0, this is just the AHS Hamiltonian,
which can be shown to have the same valence spec-
trum as the real Hamiltonian, 7+ V. Such a
Hamiltonian also has spurious solutions belonging
to the space of core functions, but presumably such
spurious solutions are inaccessible to a computer
program which diagonalizes (9) in a truncated
plane-wave basis set.

When the operator R is not equal to zero, the
pseudo-Hamiltonian has more complicated spec-
trum. Take the matrix element of (9) with the real
wave function y on the left. The result is

(B -E) (9| ¢)=20 W |Rlv) (Fs| 0y .  (10)

The aim is to find a class of operators R such that
the valence spectra E’ correspond to the valence
spectra E of the real Hamiltonian. A sufficient
condition is to require the right-hand side of Eq.
(10) to vanish, for then we must have either E=E’
or ¢ orthogonal to i). The latter condition implies
that ¢ belongs to the space of core functions, and
does not converge rapidly enough in plane waves to
be a bothersome possibility. A new and very large
family of pseudopotentials is then given by

V, = V2o |9, 0(F, |+ 24 Rl 9, )(F,| , (11)

where (F,| is arbitrary, and R and (F,| are con-
strained only by the condition that the right-hand
side of Eq. (10) should vanish.

Numerous examples of such pseudopotentials can
be found. For example, if f(x) is a function with

the constraint £(0)=0, then a possible form for
R is

R=f(g(e)-g(E)), (12)
where the function g is arbitrary. This causes the
right-hand side of (10) to vanish. It is also pos-

sible to define a pseudo-Hamiltonian self-consis-
tently

3, = T+V+24, |4, (F, |

+25, Flg6e,) —g(E)) |9,) (Fy |, (13)

where the pseudo-Hamiltonian occurs as the argu-
ment of g.

Harrison’s pseudopotential is now recovered if
we take

RHZZ'(:;:E}; ’ (14)
(Fy lg= (| (E=10) . (15)

Fong and Cohen’s pseudopotential cannot be found
exactly, but a near approximation is found by
taking

Rpc=1-exp[- B(SC}’z— EY2)) ,

224 |94 (Fyl 5 = Alr) Py expl- B(3Cy/2~ EV2R ],

(16)
where A(r) is the radial step function used by FC,
P, is the =2 projection operator, and g is the
damping parameter of FC. The aim of the em-
pirical method is to have a small secular equation
of plane waves, which has mostly plane-wave-type
solutions with a parabolic type of dispersion curve,
except for the lowest energy solutions which are
hybridized d functions with fairly flat bands. The
secular equation is dominated by the kinetic energy
T, so taking 3¢, =T is a good first approximation.
If this is done in Eq. (16), as well as setting E
equal to a constant corresponding to the kinetic
energy of the plane waves which hybridize, then
Fong and Cohen’s energy-independent, damped,
nonlocal form is found.

The validity of these approximations over the
width of the d band is hard to assess because nu-
merous plane waves mix to form the hybridized
valence bands in Fong and Cohen’s calculations.
Thus it would be unwarranted to claim that this
paper “explains” the success of the Fong—~Cohen
method. However, this paper does provide a new
“language” which interrelates various previously
separate trains of thought on transition-metal
pseudopotentials.

I thank C. Y. Fong and M. L. Cohen for helpful
discussions.
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The energy bands of Ar are investigated in the Hartree—Fock approximation. We have
used localized orbitals self-consistent for the crystal (accurate to first order in the inter—
atomic overlap) and the mixed-basis method. The results are compared with previous
orthogonalized-plane-wave Hartree—Fock calculations by Lipari and Fowler and augmented-

plane-wave calculations by Dagens and Perrot and the agreement is good.

A great deal of effort has been devoted in the
past to the calculation of the first-principles
energy bands for insulating crystals. '™ The role
of electronic correlation has been extensively in-
vestigated, together with a better understanding of
the limits of the Hartree—Fock approximation.

The author, * in collaboration with Kunz? and Fowler®
has carried out an extensive investigation of both
rare gases'?® and alkali-halide crystals.? The
former calculations® differ from the latter? in

that in the former we used the orthogonalized-plane-
wave (OPW) method together with free-atom wave
functions and eigenvalues for the core states,
whereas in the latter the mixed-basis (MB) method
and localized orbitals® were used. Due to these
differences, it is hard to compare the two sets of
calculations. In particular, it would be interesting
to see how much the results will be modified when
localized orbitals and the mixed-basis method are
used for the rare-gas crystals also. Very re-
cently, Dagens and Perrot® have investigated the
Hartree—Fock energy bands of argon, using a

method closely related to the classical augumented-
plane-wave (APW) method, which treats in a nearly
exact way the Hartree—Fock exchange. Their in-
vestigation, while confirming our previous main
conclusion, 3 finds a smaller separation between
the s and d conduction bands with a slightly larger
energy gap. Recently, localized orbitals for Ar
have been obtained.” It seems, therefore, very
useful to use these orbitals for an investigation of
the energy bands of Ar, since such an investigation
could answer some of the above questions.

Since the methods of calculation have been de-
scribed extensively elsewhere,? we will not discuss
them here. Very briefly, one first obtains the
self-consistent charge density for the crystal,
using local orbitals. One then uses the MB method
to solve the Hartree—Fock equations.

All the calculations were performed using the
Sigma 7 Computer in the Xerox Rochester Techni-
cal Computer Center in Webster, New York. The
local-orbital core states included in the MB method
were the 1s, 2s, and 2p states. In Table I we

TABLE L. The parameters for Ar are given. See Ref. 7 for the definitions of parameters A;;, Z;;, Cyy, and €4
€15,15=237.62, €159,=0.0, €,0,=19.145, €5, =24.679, €,9,=0.0, €, 5,=1.1853, €5 5,=2.5616, € 3,=19x10"7,

52,,31, =21x 10-7.

j Ay Zy; Ay Zy; Cioy Caos Caos Co1y Csiy

1 0 20,750 0 16,220 0,876 582 0.230465 0,074 527 0.026 770 0.005201
2 1 14.900 0 8.230 0.444910 0,220711 0,091 844 0.900 836 0.246 130
3 2 16.500 0 5,000 -0,183197 -0,086199 - 0,026 546 0.388417 0.098199
4 2 10,500 2 8.000 -0.008064 -0.179010 0.000947 0.192 066 0.073 941
5 1 6.206 1 2.970 0, 005543 —-0.926 627 -0,479 853 0,004 425 0,814 811
6 2 3.166 2 2.211 —-0,001087 —0,007752 0,712572 -0,000737 0.399386
7 2 1.993 1 1,370 0,000473 0,000699 0,497281 0.000340 -0,317584




