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S(x)= ~ab = 2v(ft, a,)"'x .
Then E(k) for large k varies as k ~ and !E(k)I2 as
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asymptotic dependence can change, consequently,
the scattered intensity for large k in one, two,
and three dimensions varies, respectively, as
k ~, k 3, and k for contours and surfaces with-
out singularities.
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The usual model for singlet-exciton motion and trapping in molecular crystals is general. —

ized to arbitrary finite trapping regions about each activator and to more than nearest-neigh-
bor steps by the random walker. The properties of extended trapping regions, which simulate
activator-induced host traps, are obtained rigorously by applying general results for three-
dimensional random walks. The capacity C(A) of the extended trapping region is shown, by
explicit calculations for a simple cubic lattice, to depend on the size and shape of the trap-
ping region and on the anisotropy and step distribution of the random walker. The capacity
controls the competition between singlet-exciton absorption (trapping and subsequent trap
fluorescence) and emission (host fluorescence) observed in doped organic crystals. The
model accounts qualitatively for the "anomalous" time dependence of the energy-transfer
rate in tetracene-doped anthracene and in anthracene- or tetracene-doped naphthalene. The
model also accounts for the reported variations in the apparent exciton hopping time, which
provide strong evidence for the hypothesis of extended trapping regions.

I. INTRODUCTION

Both exciton diffusion'~ and long-range resonant
transfer~' (LRRT) describe the motion of singlet
excitations in molecular crystals. LRRT has been
thoroughly documented for energy transfer between
immobile excitations on impurities embedded in
the crystal. Simpson' demonstrated singlet-ex-
citon diffusion in anthracene and Trlifaja related
theoretically the diffusion constant to the efficient
LRRT between adjacent host sites. In the foll.owing,
we reserve "diffusion" for nearest-neighbor ran-

dom walking by whatever mechanism of the singlet
excitation.

Powell and Kepler6-" (PK) recently observed
the time evolution of both sensitizer (host) and ac-
tivator (trap) fluorescence in doped organic crys-
tal. s. Singlet-exciton motion in either crystalline
anthracene or naphthalene, the two hosts studied
by PK, is generally thought to be diffusional at
room temperature, where the shallow host traps
which are observed at l.ow temperature are ther-
mally detrapped. The PK data nevertheless de-
cisively rule out the usual formulation of exciton
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diffusion and require a fundamental reexamination
of singlet-exciton motion in organic crystals at
room temperature. Proposals for explaining the
time-resolved fluorescence-spectroscopy results
have ranged from radiative reabsorption'~ to the
usual model for random walks, "to LRRT to the
traps, to either shallow or deep-host traps,
and to thermal detrapping from host traps. " As
shown recently, ' g/l these proposals can be ruled
out by considering the wealth of experimental data
collected by PK. " For example, the postulate"
of uncontrollable shallow host traps and thermal
detrapping fits the observed time dependence for
the rate of energy transfer. But random host traps
are implausible' in view of the similar observed
results in differently prepared crystals' with
widely different structural and chemical purity.

It is not our purpose here to review the extensive
theoretical literature on exciton migration and en-
ergy transfer in organic solids. " Even the most
successful models, such as exciton diffusion or
LRRT between fixed impurities, are extensively
parametrized theories which are at best consistent
with a variety of experimental data. Unambiguous
experimental checks have been rare. The PK ex-
periments, for example, provide a clear-cut re-
3ection for the usual formulation of exciton dif-
fusion and trapping and even of the theoretical mod-
ifications' -" proposed to account for the time-re-
solved fluorescence spectroscopy results.

Since singlet-exciton diffusion in anthracene and
naphthalene is consistent with many experimental
observations at room temperature, we focus on

random-walk model. s for singlet-exciton motion
and trapping. Rudemo" has discussed rigorously
the mathematically simplest model for exciton
trapping, when trapping occurs on the first visit
by the random walker to an activator site. In this
approximation, all activators trap in the same
fashion. As shown in Sec. IIIB, however, pre-
viously reported fluorescence quenching experi-
ments'9 clearly indicate that diff erent activators
in naphthalene quench quite differently. It is
therefore not surprising that the direct applica-
tion" of this random-walk model for trapping
fails to a,ccount for the PK data. Another simpli-
fication usually adopted is that the LRRT distribu-
tion of step lengths can be approximated by nearest-
neighbor steps. The exciton-diffusion constant~

is, in fact, dominated by the rapid nearest-neigh-
bor steps. But the PK data involve energy trans-
fer to randomly distributed isolated activator mo1.—

ecules. As shown below, occasional long steps are
then by no means negligible. The usual model for
exciton trapping and motion thus contains serious
oversimplifications in the interests of mathemati-
cal simplicity.

Recent developments in the theory of random

walks by Spitzer, ', Hudemo, ' and Montroll and
Weiss permit a more realistic model for exciton
trapping and motion. We develop here a general-
ized random-walk model for exciton trapping and
motion and apply it to the time-resolved fluores-
cence spectroscopy results of Powell and Kep-

r 6-11

The generalized random-walk model is introduced
in Sec. II. To simulate activator-induced host
traps3' which can interrupt briefly the random walk
and lead to LRRT to the activator, we introduce
an arbitrary finite trapping region about each ac-
tivator and define trapping to occur on the first
visit to an activator site or to one of the activator-
induced host traps. The emission (host fluores-
cence) probability obtained by Budemo" is gen-
eralized to extended trapping regions. In Sec. II B
we introduce a simple cubic lattice and use the
Green's functions tabulated by Maradudin et al.
to obtain numerical results for nearest-neighbor
random walks with axial anisotropy and different
extended trapping regions. The effects on long
steps are discussed in Sec. IIC, together with
numerical results for a simple cubic lattice.

The connection between the generalized model
and the PK data is discussed in Sec. III. The rate
of energy transfer k(t) is obtained numerically in
Sec. IIIA from previously published PK data for
several tetracene-doped anthracene crysta1. s and
for anthracene- or tetracene-doped naphthalene

. crystals. Experimental evidence for extended
trapping regions in naphthalene is presented in
Sec. III B from fluorescence-quenching data. It
is shown that the generalized random-walk model
is consistent with the PK data, but only qualitative
comparisons are offered for the monoclinic an-
thracene and naphthalene crystals, since the quan-
titative results in Sec. II are based on a cubic l.at-
tice.

We thus show that the generalized model is con-
sistent with the PK data, but not that random walks
provide the only model for singlet-exciton energy
transfer at room temperature in doped organic
crystals. Nevertheless, in our opinion excitonic
random walks provide the most complete and con-
sistent model for high-temperature energy trans-
fer. The present work demonstrates that the fail-
ure of the usual formulation of exciton diffusion is
due to serious oversimplifications of the trapping
mechanism and of the exciton motion. Time-re-
solved fluorescence spectroscopy results may thus
provide experimental information about the mech-
anism of singlet-exciton trapping.

II. GENERALIZED MODEL

Neither direct trap excitation nor trap saturation
is important in the PK experiment, " since there
are very few activators and even fewer excitons.
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We therefore focus on the properties of a single
singlet exciton. The activators (traps) are as-
sumed to be randomly distributed substitutional
impurities with density nr in the sensitizer (host)
lattice. The lattice points JR„j or an infinite host
crystal then define the location of both activators
and sensitizers. The random walk of an exciton
on the host lattice can terminate with either emis-
sion (host fluorescence) or with absorption (trap-
ping and subsequent trap fluorescence). A con-
stant emission probability y«1 is assumed before
each step to describe host fluorescence.

The first step in constructing a mathematical.
model for the competition between emission and
absorption is to define the random walk on the host
lattice. The transition probabilities P(a) 0 for
single steps of a=A, —5& specify the random walk.
We consider only symmetric random walks with
P(- a) = P(a). The normalization condition

Q~P(a) = 1 (I)

expresses the conservation of the singlet exciton.
In an infinite periodic lattice with a single site per
unit cell, the Green's function~~'~ G(a)

e&K $g
(2~)'. „„1—~(r) (2)

corresponds to the expected number of visits to the
lattice point a by a random walker starting at the
origin. The structure function~~ X(r) is defined by

&(r) =ZIP(s)e' '" . (3)

X(r) is real for symmetric random walks and re-
duces to Eq. (1) for r = 0. Montroll~' has discussed
the Green's function for periodic lattices with two
molecules per unit cell, but this generalization will
will not be used here.

The second step in constructing a model is to
define the trapping mechanism. The simple defi-
nition of trapping on the first visit to an activator
site is, as already discussed, inadequate. The
definition of trapping adopted in this paper is that
the random walk terminates by absorption on the
first visit to an arbitrary finite set of A. + 1 lattice
points, called the extended trapping region, which
contain the activator site and A host sites related
to the activator by the translations 5(A). The
random walker then sees a randomly distributed
set of identical trapping clusters. The require-
ment acr(A+ l)«1 ensures both long random walks
on the average before absorption and negligible
overlap between adjacent clusters„The lattice
vectors 5(A) defining the extended trapping region
are otherwise arbitrary.

A. Extended Trapping Regions

We begin by neglecting emission (y= 0) and ap-
plying Spitzer's ' general analysis of three-dimen-

sional random walks to absorption by extended
trapping regions. A freshly created exciton at
B„at /= 0 is immediately trapped if 5„or 5„—5(A)
is an activator site. The initial trapping probabil-
ity is thus nr(A+ 1), since each lattice point has
an a Priori probability n~ of being an activator
site. The exciton is trapped after each step, say
to 5&, if 5& or 0& —5(A) is an activator. Instead
of extended trapping regions about each activator,
we can therefore think of the exciton sampling, on
each step, 2+1 lattice points related to the ex-
tended trapping region by an inversion.

We define the random variable C„(A) to be the
total number of distinct lattice points sampled up
to and including the nth step. Since the random
walk terminates by absorption the first time that
5& or 5& —5(A) is an activator, all random walks
containing at least n+ 1 steps will sweep out C„(A)
lattice points which contain no traps at all. The
probability of absorption on the nth step is

P„=nr [C„(A) —C„,(A) ] (4)

and is simply n~ times the number of lattice points
sampled for the first time on the nth step.

It is important to realize that C„(A) depends on
the size and shape of the extended trapping region,
but not on the trap density. In particular, C„(A)
is well defined even for n~ = 0, when as indicated
in Eq. (4) there is no absorption at all. Physically,
we might associate different extended trapping re-
gions with different activators. The random vari-
able C„(A) then does not depend on the activator
density, provided only that nr(A+ 1)«1.

Spitzer ' shows that the limit

lim C„(A)/n = C(A.) (5)
00

exists with certainty and defines the capacity C(A)
of the finite subset which is here associated with
the extended trapping region. Equation (5) holds
for arbitrary three-dimensional transition prob-
abilities P(a) with finite second moment and arbi-
trary finite extended trapping regions. Although
numerical estimates of C(A) will require specific
random walks on specific lattices, the existence
of the capacity is a general result for three-dimen-
sional random walks. C(A) can be related2' to the
Green's functions Gg„ ff,) which gives the ex-
pected number of visits to 5& for a random walker
starting at 5,. The evaluation of Gg„A,)
= G(l R; —R, I ) for a periodic lattice with a single
site per unit cell reduces to evaluating the integral
in Eq. (2). The (A+1)&(A+ I) matrix G(5„5,),
with i and j ranging over the 2+ 1 sites of the ex-
tended trapping region, is readily constructed
once the Green's functions are known. The capac-
ity C(A) is given by the sum of the elements of the
inverse matrix G '(5„5&).~'

Spitzer~' also found in general how C„(A)/n ap-
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proaches C(A) for an isotropic random walk with

o'= o,' =Zz (a, )'P(a), j=x,y, z (6)

(8)

in the limit of small emission probability per step,
or y«1, and long random walks on the average
before absorption, or nr C(A) & nr(A+ 1)«1. The
ratio y/nr is arbitrary, however, and Q(A, y, nr)
is also a general result for three-dimensional
random walks with finite extended trapping regions.
The physical interpretation of Q(A, y, nr) is stra, ight-
forward: Q(A, y, nr) describes the competition be-
tween host fluorescence with probability y per
step, and trapping with probability nr C(A) per step
after many steps for terminating a very long ran-
dom walk.

B. Capacities for Cubic Lattices

To illustrate the properties of extended trapping
regions, we consider the familiar special case of
a simple cubic lattice with one site per unit cell
and nearest-neighbor steps with structure function

1
Q(z, y, z; n) = (cosx+ cosy+ n cosz) . (9)2+ &

The subscript "0"will be reserved for quantities
based on nearest-neighbor transition probabil-
ities. The structure function Ao indicates that unit
steps along the g or y axes have probabilities
[2(2+ n) j ', while unit steps along the z axis occur
with probability n[2(2+ n)] '. Thus, n= 1 corre-
sponds to isotropic random walk, while cv& 1 rep-
resents preferential motion along the z axis and

and P (a) =P(l al). The asymptotic result is

2C(A)
C(A) —C„,(A)=C(A)(1+( ~), ~, ,~~

. . .)
(7)

with corrections of order n-'. This result holds
in general for isotropic three-dimensional random
walks and finite extended trapping regions. In
particular, the only requirement on the distribu-
tion of step lengths is that the second moment
o„+o. + o, be finite, Montroll and Weiss have
obtained the anisotropic analog to Eq. (7) for the
special case A =0 when absorption requires an
actual visit to a trapping site; their result is to
replace (oz)3/z by a„o„o,. Anisotropy thus increases
the second term in Eq. (7).

We finally consider emission (host fluorescence)
for terminating the random walk by letting y«1
be finite. The existence of the limit C„(A)/n suf-
fices to generalize Hudemo's" formula for the
emission probability in the special case A = Q. The
emission probability for a random walk with ex-
tended trapping regions is '

(2+ n) cosaxcosby cosczdxdy dz
m „„' (2+ n) —cosx —cosy —ncosz ' (10)

Maradudin et al. have tabulated the integrals

1
~ ~

cosaxcosbycosczdxdydz
l (2+ n) P- cosx- cosy —ncosz

(11)
for a + b + c & 15, n=1, 2, 4, 8, 16, and (8

' = p, = 0. 00
(0. 01)1.00. Direct comparison shows that

G (a; n) = (2+ n)I(a; n; 1) .
For )8 = 1 and Rz» 1, the asymptotic formula2'

1 1 5(a'+ b'+ c~/oZ)
I(a, b, c;n;1)- + +16 M R

(12)

(((a'+ ('+ c'/a') (a+ (/a))
R

+, + ~ ~ (13)

holds to order R ', as shown by Duffin ' for a= 1.
Here we define

R =az+ bz+ c /n, (14)

which reduces to a a for n= 1. The Green's func-
tion for axially anisotropic nearest-neighbor transi-
tion probabilities are therefore known.

We begin by computing the capacities Co(A) for
some representative trapping regions. The volume
dependence of the trapping region is shown by con-
sidering A=0, 6, and 26.and spherical trapping re-
gions; for A =6, the extended trapping region then
includes the 6 nearest neighbors, while for A= 26,
the 26 neighbors less than two lattice spacings
away are considered. The shape dependence of
the extended trapping region is illustrated by A =6
and 26, with —,'A sites of the trapping region along
the x or z axis on either side of the activator; a
highly anisotropic, linear, symmetric trapping re-
gion is thus defined. Finally, the anisotropy of
the random walk is illustrated by considering iso-
tropic (n= 1) and anisotropic (n= 8) transition prob-
abilities in Q. In each case, we construct the
(A+1) x (A+1) matrix of Green's functions G(R;, R,),
with z and j ranging over the extended trapping
region, by either looking up Go(a; n) = (2+ n)I(a; n; 1)
or using Eq. (13) for a &15. The matrices are
then inverted numerically and the sum of the ele-
ments of the inverse matrix is the capacity Co(A).
The results are given in Table I.

reduces to a one-dimensional random walk in the
limit &-~.

The Green's functions Go(a, ; n) for nearest-neigh-
bor random walk are obtained by substituting Xo

into Eq. (2) and using the fact that &(r) is real and

symmetric for symmetric random walks

Go(a, b, c; n)
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TABLE I. Capacities of extended trapping regions for
nearest-neighbor random walk on a simple cubic lattice.

Extended trapping region
Volume

A+1 Shape

point

Random walk
Isotropic Anisotropic
(n =1) (0 =8)

0.659 463~&" 0.459 329

spherical 1.936 52
linear g or y) 2. 26301
linear Q) 2. 263 01

1.337 10
1.749 46
1.030 30

27
spherical 3.155 99
linear g or y) 6.21292
linear (z) 6.21292

2.066 93
4.941 79
2.452 06

Reference 24; (;(0) =G (0; 1). Weference 28.

Only nearest-neighbor transitions are included
in XoQr in Eq. (9). Longer steps, especially those
that exceed the dimensions of the extended trapping
region, strongly influence the rate of sampling
sites for the first time. Consider, for example,
only steps of three lattice spacings along the x, y,

Table I shows that Co(A) for nearest-neighbor
walks varies markedly with the volume A+ 1 of the
extended trapping region as well as with the shape
of the trapping region and the anisotropy of the
random walk. The initial absorption probability
for a freshly created exciton is nr(A+1). The
n - ~ asymptotic absorption probability nr Co(A) is
obtained by substituting Eq. (7) into Eq. (4). The
ratio Co(A)/(A+ 1) thus describes the asymptotic
to initial trapping probability per step. The rapid
decrease of Co(A)/(A+ 1) with increasing A is il-
lustrated in Table I by the isotropic (o'= 1}walk
and spherical extended trapping regions: Co(0)
=0.660, the well-known result"'" "for trapping
on the first visit to a trapping site; Co(6)/7 = 0. 277
and Co(26) /27 = 0. 117. Physically, extended trap-
ping regions permit the random walker to sample
more sites initially, but greatly increasing the re-
sampling for nearest-neighbor steps. Resampled
sites cannot be activators, since the walk would

then have been previously terminated and thus can-
not lead to trapping as already shown in Eq. (4).
The decrease of Co(A)/(A+ 1) with increasing an-
isotropy + of the random walk is also expected,
since the l.imits +-0 or a- ~ lead to symmetric
random walks in two and one dimensions, respec-
tively, and such walks are recurrent with C(0) -0.
It should be noted that significant changes in Co(A}
are possible, as shown in Table I, for less than an
order of magnitude of axial anisotropy (a=8), es-
pecially when the trapping region is also anisotrop-
ic.

C. LRRT Distribution of Steps

and z axes. The random walker is then confined
to a superlattice with 27 points of the original lat-
tice per site. If the spherical extended trapping
region consisting of the 26 neighbors less tha, n two
lattice spacings away is chosen, then the walker
samples either all 27 sites for the first time or
resamples them all. The ratio C(26)/27 reduces
to 0.660; the simple cubic result for the super-
lattice. Steps of length three thus reduce the re-
sampling by 0. 660/0. 117-6. Indeed, if we con-
sider steps with probability N ' to aEl lattice points,
the N- ~ limit leads to G(0) -1 and G(a) -0 for
a c0. The exciton never returns to a previousl. y
sampled site and C (A) = A+ 1. Long steps thus
increase C(A), but also increase o z in Eq. (6) and
thus do not necessarily increase the coefficient of
the n "z term in Eq. (7) describing the approach
of C„(A) to C(A).

The LRRT 3'4 model for energy transfer leads to
a rate dependence of x 6 for steps of length x. We
suppress the angular dependence of the transition
probabilities and adopt an isotropic (n= 1) distribu-
tion of step lengths P(a) = P(l al) = (6 pa 6) '. The
constant P is given by

P= 1+6 Qga, (al &1 (i6)

where the sum is over the points of a simple cubic
lattice. The structure function X(r) in Eq. (3) then
becomes

~(r) = p-'[X, (r)+~, (r)], (16)

where A (r) is the nearest-neighbor function in Eq.
(9) and Z, (r) is

&, (r) =~6+a e"', i al &1 . (iV)

The exciton-diffusion constant D for an isotropic
random walk with an average time v between steps
is given by

where oz is defined in Eq. (6) and, for an LRRT
distribution of step lengths, is

az = (1/18P) Qa (i9)

The totally isotropic random walk adopted here
provides a mathematically convenient, but still
oversimpl. ified, model for investigating the effects
of steps longer than one lattice spacing.

By truncating Eqs. (15) and (IV) at la) =p, we
obtain P~ and A, '~'(r) for an LRRT distribution of
steps up to length p and no steps longer than P.
The p= 1 result reduces to nearest-neighbor steps
only, and as required to P, = 1. The Green's func-
tion for LRRT steps up to length P are

&» } 3P, ~

~

cosaxcosbycosczdxdydz
P, —3Z, (r) —3X,&»(r)

0 (20)
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TABLE II. Capacities for LHRT distribution of step
lengths for isotropic random walk on a simple cubic
lattice.

3g2 c
P C(0) =G i(0) C(26) '

1.000 0000 l.000 000

1.365 5264 1.451 285

~14 l.388 8042 l.599 606

+27 1.395 5911 l.690 426

1.400 3000 1.782 26

0.659 462 3.155 99

0.763 11 4. 380 8

0.784 62 4. 962 7

0.791 12 5. 160 5

0.795 46 5. 296 8

~Length of longest step (in lattice spacings).
"See Eq. (15).
'Second moment; see Eqs. (6) and (19).
Spherical extended trapping region of 27 points.

'Nearest-neighbor steps only.
fThe probabilities for ail steps longer than ~27 are

lumped into the (2, 3,4) step.

jt is important to preserve the normalization con-
dition &o(0)+ A., '~'(0) = 1 for whatever p is chosen,
since G'~'(K) has an integrable singularity at the
origin. Gt~'(a) can readily be evaluated numeri-
cally by Gauss-Legendre integration. ' To check
convergence, especially in view of the singularity
at the origin, the ten Green's functions Go(a) with
0&a, b, c&2 and o.'=1 were evaluated using (28)a
and (64)a points in the triple integral. The former
agreed to four significant figures when compared
against the previous numerical results~4 for a
nearest-neighbor random walk; the latter were
accurate to almost five significant figures. The
more rapid (28)s pointintegration wasused through-
out, with occasional checks using (64)s points, and
the numerical. results below are accurate to
+ 0.0005.

In Table II we list values for C(0)=G '(0), C(A)
for a spherical trapping region of 27 points, and
os for isotropic LRRT steps up to p= W6, v 14, and

M27, respectively. In addition, we estimate
P= 1.4003 by integrating Eq. (15) for 1 at & M28 and
using the computed value of the sum for 1 & I al
& M27. A/I steps longer than &27 were lumped into
the steps (2, 3, 4) of length M29. As can be seen in
Table II, C(A) increases by about a factor of 2
when the spherical trapping region of 27 points is
used. By contrast, the change in C(0) =G '(0) is
small. For an anisotropic random walk, when

Co(0) is much less than the isotropic value of
0. 660, long steps can provide a greater increase.
Of course the restrictions' C(A) &A+1 holds for
any random walk and provides an upper bound for
C(A).

Tables I and II thus show that the capacity C(A)
depends on the shape and size of the extended
trapping region, - on the anisotropy of the random
walk, and on the distribution of step lengths. The

The small activator density n~ and even smaller
singlet exciton density used in the PK experiments "
permit neglecting exciton-exciton interactions and
trap saturation. The average behavior of a singlet
exciton is given by the random variable C„(A) for
sampling lattice points for the first time. The
probability for trapping on the nth step, p„ in Eq.
(4), is readily transformed to a rate of energy
transfer k(t) by introducing a mean time r between
steps. Then t=nv and from Eq. (7),

2C(A)k(t)= BrC(A)T 1+ i a a(a + ' ' '
(2vo t (21)

for t» r (i. e. , for n» 1), with corrections of order
t '. The asymptotic form of k(t) does not depend on
the transition probabilities defining the three-di-
mensional host lattice; it does not depend on the
distribution of step lengths and it does not depend
on the volume or shape of the extended trapping
region. The assumption of constant time intervals
v' between steps is justified~~ after many steps.
The detailed nature of the transition probabilities
of the lattice geometry and of the extended trapping
region enter through the parameters C(A) and os
whose evaluation was discussed in Sec. II for a
simple cubic lattice. The rate of energy transfer
k(t) is now obtained numerically from PK data.
An understanding of the time dependence of k(t) is
the principal challenge of the time-resolved fluores-
cence spectroscopy results.

The dependence of the sensitizer emission prob-
ability Q(A, y, nr) in Eq. (8) on the activator con-
centration nz provides another comparison with ex-

combination of a large, anisotropic trapping region
and an anisotropic random walk with an LRRT dis-
tribution of step lengths can easily produce more
than an order of magnitude change between C(A)
and C(0) = G '(0), the result for trapping on the
first visit to an activator site.

We have therefore shown that the capacity C(A)
can readily be computed for arbitrary finite trap-
ping regions and that the Green's functions G(a)
for a simple cubic Lattice can also be computed
even for an LRRT distribution of step lengths. It
should be mentioned that the generalization of
Rudemo's' result for the host fluorescence to ex-
tended trapping regions Q(A, y, nr) in Eq. (8) is the
only rigorous result for a general transient random
walk with both emission and absorption. The ap-
proach of C„(A) to C(A) given Eq. (7) is derived
for an isotropic random walk in the absence of
emission. The analysis of extended trapping re-
gions and of emission for a random walker on a
simple cubic lattice will now be used to discuss
qualitatively the PK results in doped anthracene
and naphthalene crystals.

III. ANTHRACENE AND NAPHTHALENE
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periment. Q(A, y, nr) is a direct measure of the
quenching of the total sensitizer (host) fluorescence
I,(nr) with increasing nr .Rearranging Eq. (S),
we obtain

I, (0)/I, (nr) = Q '(A, y, nr) =1+nr C(A)/y (22)

k( ) =n, C(A)r (24)

also provides an estimate for C(A)r-'.
The numerical results in Sec. II were obtained

for a simple cubic lattice and the second term in

Eq. (21) is based on an isotropic random walk in

the absence of emission. We therefore do not at-
tempt a quantitative fit of k(t), k(~), and I,(0)/I, (nr)
data for doped anthracene and naphthalene crystals.
Rather, we note that the t "~ term in Eq. (21) con-
tributes up to times [C(A)/C(0)]3 longer for an ex-
tended trapping region and a fixed random walk
(fixed a ). The variations in C(A) with the volume
and shape of the extended trapping region and with
the anisotropy and step distribution of the random
walk thus indicate that the second term in Eq. (21)
is important up to times several orders of magni-
tude longer than expected when trapping occurs on

the first visit to an activator site. And it is just
the rapid convergence of k(t) to k(~) that spoils6-"
the usual formulation of exciton trapping and either
nearest-neighbor random walking or diffusion. Ex-
perimental evidence over some two orders of mag-
nitude variations in C(A) for different activators
in naphthalene then provides strong qualitative
support for extended trapping regions.

A. Time Dependence of k(t)

The rate of energy transfer k(t) of singlet ex-
citations from the sensitizer to the activator is
obtained from the time dependence of the host and

trap fluorescence studied by PKS " in doped or-
ganic crystals and described by the kinetic equa-
tions

riz(t) = G(t) —P~n~(t) —f G(t')k(t —t )n~ (t —t ) dt

(25)
n„(t) = f ' G(t )k(t —t )n, (t —t ) dt —P„n„(t) .

provided that the restrictions y«1 and nrC(A)
&nr(A+ 1}«1aresatisfied. Fluorescence-quenching
experiments'9'20 thus provide estimates for C(A}y'.
No assumptions about anisotropies or lengths of
steps or about the extended trapping region are
required in Eq. (22) unless a numerical estimate
of C(A) is attempted. I,(0)/I, (nr) data provide an
estimate of C(A)r ', since the emission probabil-
ity per step y is simply

(22)

and the undoped-sensitizer-fluorescence decay
rate P~ is readily measured. The asymptotic rate
of energy transfer

n~ and n„are, respectively, the sensitizer (host
exciton) and the excited activator (guest or trap)
concentrations; G(t) is the exciton generating func-
tion, which in the PK experiments is either an
x ray or a laser pulse and leads to neglibible activa-
tor excitation; pz and p„are the measured inverse-
fluorescence lifetimes of the sensitizer (host) and
-activator (trap). The solution for n~(t) in Eq. (25)
is a convolution of the excitation function with the
response function for singlet excitons

n, (t) = f ' G (t') n, (t —t') dt',

where

n, (t —t') = exp[-P (t —t') —f,', k(t" —t') dt"] .
(25)

The variation of nz(t) and n„(t) are directly re-
flected by the time evolution of the host and trap
fluorescence I,(t) and I„(t) reported by PK and

analyzed by them for various functional choices of
k(t).

Numerical values for the time evolution of k(t)
in Eqs. (25) and (26) are obtained as follows. '~

First, smooth curves are drawn through the PK-
fluorescence curves. Here it is important to note
that these data are normalized to unity at the max-
imum observed fluorescence and thus will yield
relative rather than absolute k(t) values. Next,
we consider time intervals of c and assume that
k(t), the most slowly varying quantity in Eqs. (25)
and (26), is constant during each interval. For a
6-function excitation pulse, the second equation in
(25) can be integrated to give"

(27a)
for p = 0, 1, 2, . . . and n„(0) = 0 if direct trap excita-
tion is neglected. Equation (2Va) then yields ex-
perimental k(t) values, since all quantities on the
right are measured. Finally, the relative k(t)
values for a given activator concentration in a
given sensitize r are normalized to give the best
superposition for the time dependences.

The ~-function excitation is iri an excellent ap-
proximation for the laser pulse and is actually not
too bad for the x-ray pulse with a 2. 5-nsec full
width at half-maximum. ' However, for the latter
case, a somewhat different procedure is more
accurate at short imtes. G(t) for the x-ray pulse
will be nonzero for about the first 5 nsec. Thus,
from Eqs. (25) and (26),

n, (t) = f,
' G(t')n, (t- t') dt',

ri„(t)+ P„n„(t)= f'G(t')nz, (t —t')k(t —t') dt' .

Now if we consider 5-nsec intervals and treat k(t)
as a constant within each interval, we find
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diffusion'-" which leads to a constant k(t) except
at short times of no interest on the nanosecond
time scale, is clearly shown by the time depen-
dence of k(t) shown in Figs. 1 and 2. The consid-
erable scatter of the data does not obscure the fact
that k(t) decreases in both doped-anthracene and
-naphthalene crystals. An asymptotic value, which
we will associate with k(~) in Eq. (24), is ap-
proached after 30 nsec in anthracene and, less cer-
tainly, after 60 nsec in naphthalene.

The absolute value of k(~) can be estimated from
the sensitizer (host) fluorescence. Integrating Eq.
(25) gives

FIG. 1. TiiCe dependence of the energy-transfer rate
in tetracene-doped anthracene under the following condi-
tions: Q, thick crystal with 4.7 X10 -cm tetracene and
x-ray excitation at-300 K; L, the same crystal excited
by two-photon absorption at - 300'K; 'P, a thin crystal
with 4. 7 &&10 -cm tetracene excited by x rays at 100'K;
an/ Q, the same thin crystal x ray excited at -300'K.

k(f —2. 5) = [n„(t)+P„n„(t)]/n (t) . (2Vb)

The curves for the activator fluorescence can be
numerically differentiated so all of the quantities
on the right side of Eq. (27b) can be measured

Relative curves for k(t) obtained as described
above using Eq. (27a) for laser excitation (with
e = 5) and Eq. (2Vb) for x-ray excitation are shown
in Fig. 1 for tetracene-doped anthracene and in
Fig. 2 for anthracene- or tetracene-doped naph-
thalene. Although the nz dependence of k(t) is lost
by using this procedure, we show below that ab-
solute k(Q values can be obtained for samples with
different n~ by focusing on the host fluorescence.

The data in Figs. 1 and 2 represent a variety of
exper imental conditions. The tetr acene-doped
anthracene results in Fig. 1 represent'I: (i) a
thick crystal with 4. 7 X 10"-cm I (-1 ppm) tetra-
cene and x-ray excitation at -300'K; (ii) the same
crystal excited by two-photon absorption at 300 K;
(iii) a thin crystal with 4. 7&& 10'I-cm I tetracene
excited by x rays at 100 'K; and (iv) the same thin
crystal x ray excited at -300 K. The naphthalene
data shown in Fig. 2 were all obtained with x-ray
excitation and represent"": (i) a thick crystal with
3.9&&10"-cm I (-0.7 ppm) anthracene; (ii) a thin
crystal with 4. Vx10"-cm I(-67 ppm) anthracene;
(iii) a thick crystal with 3.3&&10"-cm ' (-61 ppm)
anthracene; and (iv) a thin crystal with 1.4 x10"-
cm (-26 ppm) tetracene. As shown elsewhere, '
the wide variety of experimental parameters in-
vestigated by PK " in an effort to understand the
time dependence of k(t) provides stringent condi-
tions on adjustable parameters in theoretical mod-
els.

The failure of the usual formulation of exciton

12-

10-
p

8-
8

fU

8

+- 4

I ~ I I I I I I

NAPHTHALENE

8
0

I ~fSIgfP@
ppp

5 10
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FIG. 2. Time dependence of the energy-transfer rate
in x-ray excited naphthalene crystals at room temperature
under the following conditions: Q, thick crystal with 3.9
&&10 -cm anthracene: Q, thin crystal with 4. VX10 -cm
anthracene; &, thick crystal with 3.3 &&10 -cm anthra-
cene; and Cl, thin crystal with 1.4 &&10 -cm 3 tetracene.

I (t)o:n, (t) =exp- (P t+ f'k(t) dt ) (26)

for G(t)~ 5(t) and n, (0) =1. The host fluorescence
thus decays exponentially for large t, when k(t)
-k(~), even if k(t) is not constant at small t. The
exponential long-time decay for the host fluorescence
of two anthracene crystals (1- and 83-ppm tetracene)
and of two naphthalene crystals (1- and 61-ppm anthra-
cene) are shown in Fig. 3. k(~) is found from the
difference in the slopes of the doped and undoped
samples, also shown in Fig. 3, at long time; The
lightly doped naphthalene (1-ppm) crystal decays
only slightly faster (& 0. 1 &&10' sec ') than the un-
doped crystal and does not provide an accurate
k(~), while the heavily doped (63-ppm) anthracene
decays too rapidly to provide an accurate k(~).
In both cases, however, the data are consistent
with k(m) proportional to nr. The measured value
of k(~) for anthracene is 0.3x10' sec ' for nr =10~
and P~ = 3.7 &&10' sec ', the measured undoped
decay rate; the value of k(~) for naphthalene is
1.5&&10' sec ' for nr =61&&10' and P, =0. 94&&10'

sec ', the measured undoped decay rate.
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FIG. 3. Semilog plot of the long-time host fluores-
cence for doped anthracene (Q, undoped; Q, 1-ppm tet-
racene; &, 83-ppm tetracene) and for doped naphthalene

(, undoped; a, 1-ppm anthracene; g, 61-ppm
anthracene) .

I,(0)/I, (nr) =1+ 'nr, (29)

where I,(nr) and I,(0) are, respectively, the host-
fluorescence intensities for doped and undoped
samples. If I, decays exponentially, then the ratio
p~(nr)/P~(0) of the host-fluorescence decay rates
can be used in Eq. (29). The proportionality con-
stant z is obtained from the slope of I,(0)/I, (nr)
vs n~ curves and is to be related to theoretical
models. In the "hopping model" generally used to
describe exciton motion, ' z is given by

(30)

where v'„, is the apparent mean time between ex-
citon jumps in the host lattice. It has implicitly
been assumed in obtaining 7'„, that trapping occurs
on the first visit to a trapping site, or that C(A)-1
in Eq. (22).

A curious consequence of this type of analysis
has been that different apparent hopping times have
been reported for different activators in the same
host. ' Fo1' example, the apparent hopping
times for naphthalene doped with various activa-
tors range from 3. 2&&10-' to 8. 5&&10 ' sec, as

B. Fvidence for Extended Trapping Regions

A popular method' for investigating energy
transfer in doped organic crystals has been to mon-
itor the quenching of the sensitizer-(host) fluores-
cence intensity or decay time as a function of ac-
tivator concentration n~. Thedata are interpretated
in terms of

TABLE III. Apparent singlet-exciton hopping times in
naphthalene crystals doped with different activators.

Activator

p methylnaphthalene
Anthranilic acid
1,4 diphenylbutadiene
1,6 diphenylbutadiene
Anthracene
Acridine
Tetracene

~a~(sec) a

10 13

1.5x10 '3

3.2x10 14

4.0x10 13

4.0x10 '2

4. 2 x10-12

8, 5x1()

Reference

20(a)
20(c); also quoted in 20(b)
20(c); also quoted in 20(b)
20(c); also quoted in 20(b)
19; also from data in 20(d)
From data in 20(d)
From data in 11

See Eq. (30).

shown in Table III. The hopping time is of course
an intrinsic property of the host. The variation
of the apparent hopping time based on Eq. (30) for
x is thus an important, and previously overlooked,
indication that the model of trapping on the first
visit to an activator site is unadequate.

The generalization of Rudemo's result for the
emission probability to extended trapping regions
provides a microscopic theory for v and, as shown
in Eq. (22), leads to v= C(A)/(Pr). The extended
trapping region, whose properties depend on the
shape of the activator and on the depths of the trap
thus enters naturally and Table III provides strong
evidence for significant variations of C(A) with
different activators in naphthalene. Even if the
trap concentration n~ is too large to permit the
asymptotic form Q(A, y, nr) in Eq. (8), an approxi-
mately linear relation of Q'(A, y, zr) vs nr is ex-
pected, with the coefficient slightly larger than

C(A). A detailed analysis of the experimental un-

certainties in fluorescence-quenching data may
thus provide experimental estimates of C(A) for
various activator s.

There are thus two results for k(~) = C(A)r ' for
anthracene-doped naphthalene, The PK value"
based on k(~) =1.5x10' sec ' for nr =61x10~ dis-
cussed above leads to C(A)v-'=2. 5x 10" sec '.
The inverse of the apparent hopping time' of
4x10-'' sec ' in Table III also leads to C(A)v '
= 2. 5&&10" sec '. Such agreement has been used' "
to demonstrate that time-resolved fluorescence
spectroscopy data are consistent with previous
studies in which the time evolution of k(t) was not
measured.

It is tempting to assign the smallest apparent
hopping time in Table III to be the result for trap-
ping on the first visit to an activator site. Even
then, however, Eq. (30) could not be used to ob-
tain r. The reason is that C(0) = G-'(0) may be
substantially less than unity for an anisotropic ran-
dom walk, as shown in Table I. It is therefore

&not possible to extract a purely experimental value
for r from I,(0)/I, (nr) data.

Craig and his co-workers' '" were led to postu-
late extended trapping regions to account for the
efficient transfer of energy from host to activator
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even when, as in tetracene-doped napthalene, the
activator- and sensitizer-energy difference is
large. The successive emission of several phonons
upon trapping occurs with too low probability to
account for the efficient observed energy transfer.
The suggestion ' is that in mixed crystals the
host-exciton energy bands bend to lower energy in
the vicinity of a deep-trap (activator} molecule.
A smaller amount of energy must then be dissipated
thermally upon trapping and trapping occurs more
efficiently. No estimates of the trapping region
were proposed, although the neutral activator is
not expected to change the electronic levels of
sensitizers more than a few lattice spacings away.
Extended trapping regions thus arise naturally in
several contexts, but have not been susceptible to
direct measurement. The variation of C(A) with
different activators in the same host may thus pro-
vide the most direct method for studying the trap-
ping mechanism.

IV. DISCUSSION

The random-walk model for exciton trapping
developed in Sec. II is a natural generalization of
the diffusion result' ' for absorption by a sphere
of radius R~;

kD(t) =4mDRonrI1+Ao/(vDt)"3] .
Here D= —,'o. v ' is the exciton-diffusion constant.
The time dependence of kn(t) and of the random-
walk result k(t) in Eq. (21), are identical asymp-
totically. Even the volume dependence of the trap-
ping region is the same, since the capacity C(A)
is proportional to the radius of the trapping re-
gion and occurs in k(t) in the same manner that
Ro occurs in k~(t).

There are several important advantages to the
microscopic random-walk model. The extended
trapping region arises naturally, while the inter-
pretation of Ro in k~(t) is difficult. " Even more
important is that anisotropic extended trapping
regions can readily be included and that the effects
of different step lengths, which are completely
obscured in the diffusion limit, pose no difficulties.
It is evident that a scalar parameter like Ro can
at best reproduce the volume dependence of C(A).
The dependence of C(A) on the shape of the trap-
ping region, on the anisotropy of the random walk,
and on the distribution of step lengths is summa-
rized in Tables I and II and must be considered in
any but the most qualitative model.

The inadequacy of kD(t) is perhaps best shown
by considering the radius Ro required to fit the k(t)
data in Figs. 1 and 2. The estimate of Ro-5-10
A for trapping on the first visit to an activator
leads' to t & 10-" sec before the constant term in
Eq. (31) dominates. The PK data in Figs. 1 and
2 require Ro values of at least 1QQ A, with Ro-130

A providing a reasonable fit for doped anthracene.
Taking a typical lattice spacing of 8 A, we see
that an extended trapping region of 10-20 neigh-
bors is required, and such an enormous trapping
region is not physically reasonable for a neutral
substitutional. impurity.

The generalized random-walk model, on the
other hand, requires far smaller extended trapping
regions to fit the PK data. Although the quantita-
tive results in Sec. II for a simple cubic lattice
cannot be applied directly to singlet-exciton mo-
tion in monoclinic anthracene or naphthalene crys-
tals, it is nevertheless interesting to consider the
qualitative picture for exciton trapping which
emerges from an analysis of the time-resolved
spectroscopy data in terms of Eq. (21) for k(t).

The generalized random-walk model requires
three parameters besides the (known) activator
concentration nr: (i) the capacity C(A) for the ex-
tended trapping region adopted for a particular
activator; (ii) the mean time v between jumps;
(iii) the mean-square length of the steps 3v in
units of the lattice constant. As shown in Eq. (18),
the exciton-diffusion constant D can be used to
eliminate o~. An immediate consequence of the
model is that the host lattice enters in 7 and 0
(and thus in D), while the activator is described
by the extended trapping region. Different activa-
tors in the same sensitizer should only require
different C(A) values.

Two estimates for C(A) and 7' are obtained if we
choose —,

'
& 2o- & 1, which is consistent with the 0

values in Table II. First, specific I, (t) and I„(t)
curves, for example those in Figs. 1-4 of Ref. 8,
give excellent fits when Eqs. (25) and (26) are
solved using a combined ' theory, with exciton dif-
fusion and LBRT to the traps, for k(t). The com-
bined theories, which fail only because they re-
quire anomalous parameters, '" lead to k(t) oct-"3
at short f and to constant k(t) asymptotically. The
generalized random-walk model, which is based
on extended trapping regions and a distribution of
host-host steps, leads to k(t) in Eq. (21} and gives
the same excellent fits, but with quite different
interpretation of the parameters. For —,

'
& 2o. &1,

the results are C(A) -19-38 and 7' - (1—3)x 10 '0

sec for doped naphthalene; the corresponding val-
ues for doped anthracene are C(A) -35-70 and
y-(3—6)x10-" sec. The smaller C(A) and r val-
ues hold for 2o = —,', which may be more appropri-
ate since anisotropy reduces v~. The 7/C(A) val-
ues are in excellent agreement with Wolf's appar-
ent hopping times': 3&10 ' sec for anthracene:
tetracene and 4&1Q-' sec for naphthalene: anthra-
cene.

Another estimate for C(A) and v', this time for
all the samples shown in Figs. 1 and 2, is ob-
tained by again choosing —,

' & 20~ &1 and using Fig.
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3 to obtain C(A)r ' experimentally. The coefficient
of the t " term in Eq. (21) then provides another
relation between C(A) and 7'. In spite of the con-
siderable scatter, either Fig. 1 for doped anthra-

«cene or Fig. 2 for doped naphthalene give reason-
ably straight lines when plotted against t "; the
slope is the desired coefficient. The results for
naphthalene are C(A) -6-60 and 7 -4-40X10 " sec;
for anthracene C(A) -30-80 and r -1- 6 && 10 " sec.
Again, the smaller values of C(A) and 7' corre-
spon to 2o = —,'. The greater uncertainties reflect
the greater number of experiments being fitted.

As shown in Tables I and II, either an anisotrop-
ic trapping region or an LRBT step distribution
can double the capacity. Thus, even for an extended
trapping region of 27 lattice points, or of only two
neighbors, C(A) values of 7-10 are possible when
the trapping region is anisotropic and steps longer
than nearest neighbor are included. The propor-
tionality ' of C(A) to the radius for a large spheri-
cal trapping region is very well satisfied even for
the radii of 0, 1, and 2 given in Table I. Extended
trapping regions of around 5 neighbors are thus
sufficient in either naphthalene or anthracene. As
emphasized already, these estimates are qualita-
tive, since Eq. (21) was derived for an isotropic
random walk and the numerical results are for a
simple cubic lattice. The values of the capacity
estimated above seem somewhat large for a neu-
tral impurity andwould require the hostmolecules
within about five lattice spacings are perturbed
by the presence of each activator. However, it is
easy to see that the generalized random-walk
model leads to substantially smaller estimates
than the 10-20 lattice-spacing radius obtained from
kD(t), since both the anisotropy of the trapping re-
gion and the step distribution increase C(A) with-
out increasing the trapping volume A+1.

We have concentrated on demonstrating that the
generalized random-walk model for exciton migra-
tion is consistent with the time dependence of the
energy-transfer rate and with the variation of the
apparent hopping times for different activators in
the same host. These are the two observations
which cannot be explained by the usual formulation
of exciton diffusion theory. The generalized ran-
dom-walk model. is also consistent with other ob-
servations which are satisfactorily predicted by
exciton-diffusion theory. The model does not, for
example, alter the interpretation of Simpson's'
experiment demonstrating singlet exciton diffusion
in anthracene. In contrast with the PK experiment
of randomly distributed, isolated microscopic
traps, Simpson used a macroscopic (-I-p) layer
of heavily tetracene-doped anthracene as a detector
behind an equally thin l.ayer of pure anthracene.
Singlet excitons created in the anthracene layer
are trapped and detected as tetracene fluorescence

if they cross the interface with the heavily doped
region. Since the diffusion length of 460 A is
many times 5-10-A lattice spacing, the diffusion
limit is appropriate. Neither an extended trapping
region of a few lattice spacings nor an LBRT dis-
tribution of host-host steps is then important. The
former merely shifts slightly the (poorly defined)
interface between doped and undoped regions; the
latter contributes to the diffusion constant whose
magnitude is to be determined from the experi-
ment. A more thorough, microscopic analysis of
the random walk and of the trapping mechanism is
only required in the more compl. icated, and po-
tentially more interesting, situation of microscopic
trapping regions.

There is considerable evidence"'3o showing that
the quenching of the host-fluorescence intensity and
decay time varies linearly with activator concen-
tration. At the long times where those measure-
ments are made, the generalized random-walk
model predicts a constant-energy-transfer rate,
k(~) in Eq. (24), proportional to activator concen-
tration and is therefore consistent with results of
this type.

The results of temperature-dependence studies
are generally too complicated to be currently use-
ful in characterizing energy transfer. ' The host-
fluorescence lifetime changes with temperature
due to changes in reabsorption or exciton trapping;
the exciton motion is sensitive to changes in ther-
mal or defect scattering or to trapping by host
traps, and both the hopping rate and trapping rate
may change due to spectral overlap changes. These
changes should have similar effects on both exciton-
diffusion and generalized random-walk models,
and neither of these theories is inconsistent with
the experimental results which have been reported.
It should be mentioned, however, that at low tem-
peratures' in pure crystals the exciton may move
coherently instead of incoherently and neither the
generalized random-walk nor the exciton-diffusion
models may then be appropriate. Studies of tem-
perature and sample-size effects indicate9 that ra-
diative reabsorption is greately decreased for
small samples and at low temperatures. Experi-
mentally, it has been shown that radiative reabsorp-
tion has only a small effect on the time resolved-
spectroscopy results (except for an over-all life-
time lengthening effect) and exciton-diffusion theory
still is not satisfactory even when reabsorption is
minimized. Although host reabsroption acts as a
l.ong step in the exciton random walk, these steps
take place at a very slow rate (approximately the
host-fluorescence decay rate) and are too slow to
alter the time development of k(t)

In summary, the present model generalizes the
usual diffusion model for exciton trapping by pos-
tulating an extended trapping region and by treating
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explicitly steps of arbitrary length. The general-
ized random-walk model reconciles, at least qual-
itatively, the time dependence of k(t) observed by
PK "with singlet-exciton diffusion at room tem-
perature in organic solids. Extended trapping re-
gions provide a straightforward interpretation for
the different apparent hopping times reported"'
for naphthalene doped with different activators.
The properties of extended trapping regions and of
an ~-' step distribution mere obtained for random
walks on a simple cubic lattice, but can readily

be generalized to any lattice whose Green's func-
tions are known.
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