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A general description is given of the second-harmonic scattering of light by domains in a
ferroelectric crystal. In addition to the usual second-harmonic beam, one observes second-
harmonic light in new directions. The angular pattern of scattered light depends upon domain
shapes. Plane parallel or cylindrical domains give very different diffraction diagrams. An

experimental observation of this phenomenon in triglycine sulfate is given, where the vari-
ation of the second-harmonic intensity is correlated to changes in the domain structure.
The anisotropy of the domains's cross sections leads to an anisotropic diffraction pattern.

I. INTRODUCTION

The phenomenon of second-harmonic generation
(SHG) of light is observed when an intense light
beam interacts with a noncentrosymmetric material. ~

If this material is inhomogeneous, second-harmonic
scattering (SHS) is produced. This was observed
for the first time in NH4Cl by Freund and thee in
triglycine sulfate (TGS). ' The origin of this ef-
fect can be easily understood by corisidering the
spatial modulation of nonlinear polarization by the
domain structure. The effect of domains on the in-
tensity of SHG was first observed by Miller on
ferroelectric crystals of BaTiO3. '

We have previously described the angular pattern
of SHS which is observed on TGS crystals. Here
we give new theoretical and experimental results
of the effects af domain shapes on SHS. The dis-
cussion is centered an ferroelectric materials, but
some results can also be applied to the case of
twins.

Section II is a general theoretical discussion of
SHS where the effects of surface and domains are
separated. Perfect correlation in one direction
(cylindrical domains) or in two directions (plane

parallel domains) leads to the characteristic scat-
tering pattern. Particular attention is paid to the
asymptotic behavior of the intensity for large scat-
tering angles. In Sec. III new experimental results
obtained at room temperature on TGS are presented.
After recalling the main nonlinear optical properties
of TGS we study the variation of intensity as a func-
tion of the scattering vector 4k, the effect of the
anisotropy of domain cross sections, and give some
information on the effects of thermal treatments on
domain structure and on SHS.

II. THEORY

A. Ferroelectricity and SHG

When a light beam with an electric field E„of
frequency ~ is propagating in a crystal, it produces
a linear polarization P„=t. ~ E„and also a.non-
linear polarization P2„= (d ~ E„) ~ E„which is ob-
servable if the light beam is intense enough. ~

& is
the linear susceptibility tensor and d the nonlinear
susceptibility tensor. SHG can occur only in non-
centrosymmetric crystals, which is the case in ferro-
electrics.

In the phenomenological theory of ferroelectricity
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it is customary to suppose that the ferroelectric
phase is not much different from the paraelectric
one, and that all differences can be ascribed to the
spontaneous polarization P, which appears during
the transition. Therefore, one can expand the ten-
sors describing physical properties, in ascending
powers of P„using coefficients (of tensorial form)
which are the same in both phases, and which are,
to a first approximation, temperature independent.
Thus, we obtain the following expressions for q

and d

s =6 0+Kg' 'PE+( 62 ' PE) ' PE

= do+ dg' PE+(d2' PE) ' PE

As & is a second-order tensor, E~ is also second-
order, && is third order, and so on. In the same
way d and do are third order, d, is fourth order,
etc. All these tensors are the same in both phases,
and so they reflect the symmetries of the most
symmetrical phase, the paraelectric one. Now one
can distinguish between ferroelectric crystals
which are centrosymmetric and those which are
noncentrosymmetric in the paraelec tric phase. In
the first case all the tensors in Eq. (1) can be dif-
ferent from zero. But in the second case, the
centrosymmetric paraelectric phase, all tensors
of odd orders are null. Then

= e~+ (cz P,) P, + terms with even

powers of P, , (2)

d = d& ~ P, +terms with odd powers of P,
Then, in the paraelectric phase, there is no SHG
arising from dipolar effects. In the following we
consider only ferroelectric crystals with a centro-
symmetric paraelectric phase, which have only
180' domains. (The spontaneous polarization is
always parallel to the same direction, only its
sense changes. ) The susceptibility tensors (and so
the refractive indices) are the same in domains of
positive or negative polarizations. If domain walls
have no effects, the refractive indices are the
same throughout the crystal and so one cannot ob-
serve the domain structure by ordinary optical
means. But for SHG, the nonlinear susceptibility
is to a first approximation proportional to P, (the
sign of which changes from one domain to the other).
This modulation of the nonlinear polarization pro-
duces SHS as is explained below.

B. General Formulation of SHS

%e shall study the problem of SHS in a nonlinear
crystal, with homogeneous linear properties and
with only 180 domains. This crystal is surrounded
by a linear medium with the same optical prop-
erties as the crystal to suppress the reflections on
surfaces. The coefficients of the nonlinear sus-

ceptibility tensor of the crystal are taken to be pro-
portional to the magnitude of the spontaneous polari-
zation at the point r, P(r) =+ 1P, I. We suppose
that the second-harmonic (SH) intensity is small,
so that the intensity of the fundamental is not de-
pleted. In this parametric approximation one can
calculate the SH intensity by two methods: Fourier
transform in plane waves, or Green's functions,
which was used previously for SHG by focused
beams. "Here we use the latter method.

First we calculate the electric field E2„radiated
at a point r' by a volume of nonlinear material,
small relative to the wavelength of light situated
at a point r. For an isotropic medium, it is given
by'

2(d
E, (i')= (

— (T-ss) Es (r)eissr'

1 ~ ~

e fk) (Ee-r) (3)lr —r'
I

k& and ka are the wave vectors of the fundamental
and SH waves. I —s s is a projection operator used
to select the transverse component of Pz„with I
the second-order unity tensor and s the unitary
vector along ka. %hen considering a macroscopic
body it is necessary to integrate (3) over the en-
tire volume of the sample. For a point at a large
distance R from the sample one gets, with P2„
= d, uP(r) E„E„(where u is a unit vector along
the polar axis),

(d
Ei (E)= (

— (( —ss) (i(i' iiE E )

x F(hk)

F(~k)=J (P)r"e"' 'd~,

with ~k= 2k, —ka.
The intensity I2„, in the direction k2 is given at a

large distance from the sample by

Iq„-Eg~E2„- ~E(&k)
~

(6

The SH intensity produced by the crystal is pro-
portional to the square of the modulus of the Fou-
rier transform of the polarization. For linear scat-
tering, the analogous result is true only if multiple
scattering can be neglected. For SHS this result
is valid in the parametric approximation.

A formula such as (6) is also found for the in-
tensity of small-angle x-ray scattering, where the
polarization P(r) is replaced by the electronic den-
sity p(r). Many results of this well-studied
phenomenon can be used for SHS. The main dif-
ference is in the order of magnitude of the scat-
tering vector. For x rays, 1/i&kl is of the order
of 10—500 A, for light it is between 1 and 1000 p, .
In the case of media with anisotropic optical prop-
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B(r) = I (z+-,'l) —I'(z --,'I),
where I'(z) = 0 if z& 0 and Y'(z) = 1 if z& 0. (The
origin of the z axis is taken at the middle of the
slab. ) We can suppose that P(r) is defined in all
space so that

F(bk) = f, ,P(r) B(r)e'~'d~ r
= (2m) f P(q) B(ak —q) d q

(8)

(9)

where P(q) and B(q) are the Fourier transforms
of P(r) and B(r). The (2z) factor in the convolu-
tion product of Eq. (9) comes from the choice of
the argument of the Fourier transform, so that

5 e'"'d r= (2m)'5(k) (1o)

where 5(k) is the Dirac distribution. If the Fou-
rier transformof the domain structure is known,
one can calculate the SH intensity directly. One

can also use a correlation function to do this:

~- l&(&k) I'=Sf P(.) (r»(r')'(")
)dyd y'

= f d u e' " "fd3rP(r)

&& P(r + u)B (r)B(r +u), (11)

erties calculations are more complex, but the ex-
pression for the Green's function at a large dis-
tance from the sample has the same spatial varia-
tion as for an isotropic material~ and so one also
gets the same equation (6) for the scattered inten-
sity at infinity. The principal difference between
an anisotropic and an isotropic material is the ex-
istence, in the former, of waves with well-defined
linear polarization (ordinary and extraordinary
beams in an uniaxial crystal) which leads to the
realization of phase matching' between beams of
different polarizations. Depending upon the po-
larization of incident light, three nonlinear po-
larization waves with the different wave vectors
can propagate in the crystal, each one giving rise
to two scattered waves of orthogonal polarization.
In the following we consider only one nonlinear po-
larization wave giving rise to one well-defined
scattered wave. So there is only one kind of scat-
tering vector hk, the extremity of which lies on
well-defined index surfaces.

We are going to show that there are hvo con-
tributions to the SH intensity which can be sepa-
rated by a suitable cut of the sample: One comes
from the domain structure inside the crystal and
can be called the heterogeneous part, while the
other comes from the continuity conditions at the
crystal surface and can be called the homogeneous
part. We introduce a form factor of the crystal,
B(r) = 1, if r is inside the crystal, and B(r) = 0,

, if it is outside. For a plane-parallel slab of thick-
ness l, perpendicular to the z axis,

with u=r —r' ~

In general the domain structure is not exactly
known and it is necessary to make some assump-
tions to get the correlation function. If the do-
mains are small enough, so that there is a great
number of them in the light beam, one can suppose
that the intensity produced by a large number of
samples will be nearly the same, and can be
given by some statistical mean value on a domain
ensemble. We assume that

P(r) P(r+u) = (P(r) P(r+ u))„= C(u) (12)

because

=2 l&(,)
q»

(18)

+DO 22sin-, q, l d, = 2'
4 moO q,

With this approximation,

S(q) = (2&)'«(q) (19)

In general, the correlation function C(u) contains
singular parts. If the mean value of the sponta-
neous polarization is not zero,

P, =(I/V) f P(r)d'r~ 0,

where (),„denotes an ensemble average. In gen-
eral this average can be obtained by an integra-
tion in the plane perpendicular to the s axis where
B(r) is constant. We suppose that the correlation
function C(u) is independent of r. In doing so we
lost the interference effects which can arise be-
bveen the domain structure and sample surfaces.
Then

~F(&k)~ = J d uC(u)e' " "fd 'rB(r)B(r+u)
(i S)

The second integral is then the autocorrelation
function S(u) of the shape of the crystal,

S(u)= fB(r)B(r+u)d'r (14)

if C(q) and S(q) are the Fourier transforms of
C(u) and S(u),

IF«k)l'=(») 'f C(q)S(~k-q)d'q (16)

For a plane-parallel slab defined by Eq. (V) one
obtains (by surface unit)

S(u)= ~l -u,
~

for u, inside t
—l, +l~

=0 for u, outside
~

—l, +l~, (16)

&(t() = (2~)'&(q.) ~(s, ) (-
q»

which is the usual result for the intensity of the
SH intensity produced by a nonlinear. slab. ' If l
is great enough (relative to the coherence length
l, = w/ ~

hk i ), S(q, ) has a narrow peak around q,
=0 and can be replaced by a Dirac distribution
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there is a singularity in the form of the 5 distri-
bution in the Fourier transform of P(r) and also
of C(u),

(20)C(q) = (2v) Pa 5(q) +C '(q)

where C'(q) is a regular function. [If the domain
structure was very regular such as to form a
true grating of reciprocal vector q0 there would
be terms of the form 5(q —nqa), where n is an in-
teger; such a term, rather improbable in a real
crystal, can be treated in the same manner as
5(q).] Then

~P(hk)~ =P S(nk)+(2m) JC'(q)S(sk —q)d'q
(21)

As C' (q) is a regular function which is supposed
to have a smooth variation, one ean use the ap-
proximate form of Eq. (19) for the second term:

~

P(~k)
~

'= (2v)'P,'6(no„)6(n a, ) hk,

+I C'(q) . (22)

Consequently, there are two parts in the intensity:
The first term is the same as for a homogeneous
slab of uniform polarization PD. The second term
arises from the domain structure and gives a dif-
fuse scattering. If one measures the intensity in
all of the reciprocal space, one can get the domain
correlation function by the inverse Fourier trans-
form. The scattered intensity can be calculated
in considering only domains of one sign. We take

P(r) = P,[1—27'(r) ], (23)

with q(r) = 0 for r inside a positive domain, q(r)
=1 for r inside a negative domain:

C(u) = P', ([1—27'(r)][1 —2q(r+ u)] )„
2P, P,

- P+ 4P(q(r)q(r u+) )„, (24)

with

C. One-Dimensional Models

In this case the polarization is a function of only
one variable, and this leads to the existence of

P, =(P(r))„=P,[1 —(2q(r))„] .
Now we shall discuss the particular form of the
intensity pattern obtained when there is perfect
correlation in one or two dimensions. Perfect
correlation in one dimension in a ferroelectric is
often found in order to obey the condition divP= 0
in the bulk which leads to cylindrical walls parallel
to the polar azjs. Furthermore, to reduce the
elastic deformation energy, domain walls are often
parallel to some crystallographic direction and
then the polarization depends only on a one-dimen-
sional coordinate. '

In the expression of the intensity there are terms
of the form e' ""& '&''. lf there is no correlation
between the domain walls the mean value of these
.terms for great 4k and for jW j' is zero. Thus
only the terms with the same indices contribute
to the intensity so that

Q2I- '-, (~ [-1+(-1) e""']~'+4N] . (2V)

For large &k, there is a great increase of inten-
sity by a factor of the order of N (the number of
domain walls) and the asymptotic dependence is in
~k . For an anisotropic crystal with a phase-
matching direction it is possible, by rotating the
crystal, to vary ~k from 0 to a finite value, and
so to obtain the dependence of intensity on 4k. The
exact variation for small &k depends upon the cor-
relation effects between domains, which are very
important in one dimension and cannot be calcu-
lated in general cases. One must make a specific

plane-parallel domains. The effect of such a do-
main structure on SHG was first observed by
Miller on BaTiQ3 and then by Vogt et al. on
NaNO~. ' They give a result for the intensity in
two limiting cases of near phase matching or of
perfect disorder. Freund observed the SHS from
an irregular plane-parallel domain structure in
NH4Cl. The correlation function for such a do-
main structure is of the form

C(q) = 6(q„')&(q,') C(q,')

where we have made the choice of a new reference
frame OX' F'Z', with OZ' perpendicular to domain
walls. As before, if the mean polarization is not
zero, there is a 5(q,') distribution to C(q). In this
case the intensity is given by Eq. (22). If the crys-
tal surface is not parallel to the domain walls there
are two peaks in two different angular directions:
One comes from the homogeneous contribution
with a scattering vector ~k perpendicular to the
surface, and shows the oscillations of l(sin —,'Ski)/
&k I and has a maximum in the phase-matching
direction &k = 0. The other, the inhomogeneous
contribution, has a scattering vector perpendicular
to domain walls and has a maximum when l, = v/
I&k ( is of the order of the domain width. This
maximum is well marked if the domains form a
regular lattice. If the surface is parallel to do-
main walls there is only one peak and the homo-
geneous and inhomogeneous contributions are
mixed together. In this case, with N domain walls
at point z~, and the surface at z= 0 and z =l,
and supposing that the first domain is positive,
one has'

F(Lk) = .
' [—1+2e' "'~- 2e' '~+ ~ ~ .

i&k

+2(-1) e' '~+(-1)"e' "]. (26)
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hypothesis as to the domain structure to go further.
One of the simplest is to suppose that the wall
positions are obtained by a Poisson procedure:
The probability of finding a domain wall between
z and z+dz is ~dz. The Fourier transform of the
correlation function is then equal to'~

by an affinity of ratio v from a circle and its
Fourier transform is

f(~k) = J,„„„,„,e' "' d r

= 4z'va'tZ, (m)/m]a(~k„)

C(hk) = 4A/(4hz + b k ) (28)
with

If only the distribution of domain widths is known,
one cannot calculate interference effects between
domains, and it is necessary to suppose that there
is no correlation between domains, ' which is a
suitable approximation only when there are few
small domains.

D. Two-Dimensional Models

Now the polarization depends only on two vari-
ables X', F' and the domains are cylinders parallel
to the OZ ' direction. The Fourier transform of
the correlation function depends also upon two
variables, and Eq. (22) gives

+ 2vlC(b k, &kr ) &(&kz ) (29)

with OZ always perpendicular to the crystal sur-
faces. The first term gives a peak for ~k perpen-
dicular to the surface. But now the second term
gives a scattered line for &k perpendicular to the
domain axis (which was indeed observed on TGS
see also Sec. III). In the following we will calcu-
late the scattered intensity for a few simple cases.

We consider first the case of cylinders with a
circular cross section of radius a. Following Eq.
(24), we only calculate the Fourier transform of
the cylinders, supposed to be, for example, posi-
tive domains. Then

f(&k) = J „e' ' d r= 4v a [j&(m)/m]&(4k, ')

with

m=~(gkz ~gkz, )'~z (so)

where J~ is the Bessel function of first order.
If there. is no correlation between domains, the

total scattered intensity is the sum of the intensity
scattered by each domain, which is 4Pz~f(bk)

~

z.

In this summation process, as the radii a& of the
cylinders have a certain distribution, the oscilla-
tions of the Bessel function are lost and only the
mean variation remains. As J&(m)- m for large
m, the asymptotic behavior for large &k is pro-
portional to 5.', a, /(hk), so the intensity for large
scattering angles is proportional to the cylinder
area.

A similar result can be obtained for cylindric
domains with an elliptic cross section of length
2a along OX' and 2va along OF '. This is deduced

m =
~

4k~ a(1+v tan e)~~z cos8 (31)

where 8 = (k, OX')
If we suppose that there is no correlation be-

tween domains we only sum the intensity of in-
dividual domains. For ellipses of the same ratio
v, constant intensity is obtained for m constant
which gives an equi-intensity curve which is an
ellipse of parameter v with its long axis perpen-
dicular to the long axis of the domains' cross sec-
tions. As for circular cylinders, the asymptotic
variation is in bk . The assumption of no cor-
relation between domains is not very reliable par-
ticularly when there are many domains. So one
can expect interference effects between domains,
mainly for small &k. For greater 4k the inter-
ference effects between domains decrease, be-
cause then the intensity depends upon the variation
of the correlation function C(u) for small u which
depends mainly on the form of domain surfaces.
Then one can show that for cylinders the asympto-
tic variation for large b,k is always in b,k z (see
the Appendix).

E. General Three-Dimensional Case

If the polarization depends on the three compo-
nents of the spatial variable, we have a real prob-
lern in three-dimensional space, and there is scat-
tered light in all directions. If there are no cor-
relations between domains, we obtain results
closely resembling those of small-angle x-ray
scattering. One cannot say much in the general
case about the domain's correlation, and one must
use appropriate models in each case. Only for the
large scattering vector &k do interference effects
generally disappear and, as is shown in the Appen-
dix, the asymptotic variation of the intensity is of
the form (~k(

In studying all of the angular variation of SHS by
ferroelectric domains, one can obtain, by Fourier
inversion, the correlation function of the polariza-
tion. But if this inversion is not performed, one
only gets some information on a particular point
of the domain structure. To get a real picture of
domains it would be necessary to preserve the in-
formation which is contained in the phase of scat-
tered light waves by an appropriate experiment.

III. EXPERIMENTAL RESULTS ON TGS

We have previously reported the observation of
SHS in TGS. '4 Here we present some new results
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FIG. 1. Index surfaces of biaxial TGS for fundamen-
tal (6943 A, broken line) and second-harmonic (3472 A,
full line) intensities. Dashed lines indicates phase-
matching directions. Arrows show the polarization di-
rections of ordinary (o) and extraordinary (e) light in
principal planes.

on the influence of domain shapes on this effect
at room temperature. Temperature dependence
and phenomena near the Curie temperature were
published elsewhere.

A. SH Scattering in TGS

First we recall some properties of TGS ': It is
an optically biaxial crystal with ferroelectric prop
erties below the Curie temperature (Tc = 49 'C).
The domains are cylinders parallel to the ferro-
electric axis so we are dealing with the case of
Sec. IID, and scattering vectors ~k are perpen-
dicular to the ferroelectric axis. We choose an
orthogonal reference frame with QY along the ferro
electric axis (also, the rotation axis is of order 2,
which is the only symmetry element of the point
group in the ferroelectric phase) and with OX in the

optic plane. The refractive index surface for fun-
damental (ruby laser light with wavelength 6943 A)
and SH (3472 A) intensities are shown in Fig. 1.
There are two kinds of phase matching, A and I3,
with

A ' and B ', in the other principal plane (YOZ). The
angles of these directions with the polar axis are
given in Table I (with an uncertainty of about
+ O. 5'). These values were obtained with the ex-
perimental apparatus described before in which
the crystal is immersed in paraffin oil. The in-
ternal angles of the ordinary fundamental beams
with OF were calculated using index values deduced
from SH measurement as explained in Ref. 4.
For comparison we also show the phase-matching
angles given previously by Smith. " These are
infair agreementfor A and B, butdiffer muchfor B'
(called D by Smith); 2' was not previously observed.

One must also note that 8~ and (9~. are not
characteristic of the crystal, but they depend on
the angle of the surface normal to OY. Indeed,
these angles depend on the sum k1, +k«which de-
pends on the direction of surface normal. In par-
ticular, the calculation of ~~ shows that there is
no phase matching for a F cut. Phase matching
B is only possible when the angle of the surface
normal to OF is great enough, which was the case
for the experimentally obtained results.

All of the following results were obtained in
plane-parallel slabs of about 2&& 10&& 10 mm per-
pendicular to the OF axis. The laser beam was
incident either in the optic plane (XOY) or in the
perpendicular plane (Y'OZ) where one has ordinary
and extraordinary light. The polarization of light
is then either parallel or perpendicular to the in-
cidence plane. The incidence angle 0 can be varied
by rotating the crystal around a vertical axis (OZ
for light incident in the optic plane, OX for light
incident in YOZ plane).

We have shown previously that when the laser
beam is in the optic plane there are five scattered
lines labeled A to I'. The existence of scattered
lines is also observed when the incidence plane is
FOZ. The scattering angles of three lines A', B',
and C ' are plotted in Fig. 2 as a function of the
incidence angle. All these lines have extraordinary
polarization. In the FOZ plane we were not able
to see the two ordinary lines which must exist,
because their intensity was too small.

TABLE I. Angles of phase-matching directions, A. .

and B in the (XOY) plane and A' and B' in the (YOZ) plane,
with the polar axis.

A: k2 =2k(,

J3: k2, =k), +k~,

Incidence plane

Phase matching

Angle of sample normal
with OY

POX (Optical plane)

A B A'

FOZ

B'

with subscripts 1 and 2 referring to fundamental
and SH intensities, and o and e to ordinary and
extraordinary polarization. One can see in Fig.
1 that there are two phase-matching directions
A and B in the optic plane (XOY) and two others,

Experimental external
incidence angle

Calculated internal
angle ( from OY)

Results from Ref. 15

52o

48. 6'

48. 8

37.5" 16.6' 44 5

63. 8' 15,4' 40. 6'

64. 5' Not observed 32
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~~mrad
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30 40 45e~
FIG. 2. Angular positions in air of scattered SH lines

as a function of incidence angle in the plane YOZ perpen-
dicular to the optic plane. N is the normal peak; A', B',

and C' are scattered lines. Solid line: calculated values.
Dots: experimental points.

Qne observes an analogous scattering pattern
for negative incidence angles, with scattering
angles opposite to the previous one. So on the plot
of scattering angle versus incidence angle the
origin is a center of symmetry. Qne can see in
Fig. 2 that the B' line can be observed for value
of the incidence angle on the two sides of the ferro-
electric axis. So when the laser beam is near OY

one can observe SH light scattered simultaneously
on two sides of the normal. The propagation of
different light waves in the crystal in this case is
pictured in Fig. 3. There are two refracted fun-
damental beams, one ordinary and one extra-
ordinary, which produce three nonlinear polariza-
tion waves with wave vectors K„,K„,K„. The
homogeneous SH contribution goes out into direction
¹ The scattering vectors ~k are contained in
planes perpendicular to OF and pass by the ex-
tremities of vectors K. These planes cut the SH

index surfaces along nearly circular curves cen-
tered around OF, giving the directions of SH waves
inside the crystal. The external directions are
obtained by Snell laws. So in the FOZ plane one
obtains external SH waves in directions A ' to I' '

near the laser direction and also in directions
A" to I'" on the other side of the ferroelectric
axis, which can be considered as SH waves re-
flected on domains. The intensity of this line de-
pends on laser-beam polarization and on the form
of the nonlinear tensor. For example, for 8=0
the nonlinear polarization is along OY, so no SH
waves are observed in the homogeneous contri-
bution N, which is then in the OF direction. But
SH waves from a nonlinear polarization along OY

can be observed in scattering directions which
make an angle greater than 0. 2 rad with OF. One
can expect to see scattered SH waves all along a
closed curve around OY, but the intensity is large
enough only for 4k near the YOZ plane (this is re-
lated to the anisotropy of domain cross sections as

per

Oy
Cp r

8q

sB A
Ag

n~ ~gqgc'
"2z K

K+~g
Kgg

l
/LASER

DEI,

1(P

f/////////A

FIG. 3. Propagation of light waves for a laser beam
incident near the ferroelectric axis. The sections of
index surfaces by the YOZ plane are drawn with a dashed
line for the fundamental intensity and a full line for the
intensity SH;n~ and n2 correspond to the external me-
dium and K~, K«, and K«are the extremities of the
wave vectors of nonlinear polarization waves. N is the
direction of the homogeneous waves. A' to E' are the
directi. ons of scattered lines near the laser beam; A" to
E" are the directions of scattered lines on the other side
of the ferroelectric axis.

explained below). Thus, we only observe SH waves
near 8 ' and I3", the intensity of the other lines
being far too small. One can follow the B' and
B" lines to 0. 3 rad from the laser beam which
corresponds to a coherence length of 1 p, . For
greater hk the intensity is too small to be observed
with our apparatus.

The intensity variations of the normal peak and
of several scattered lines as a function of incidence
angle are given in Figs. 4 and 5 when the incidence
plane is YOX and FOZ. These curves were obtained
on crystals which have remained for a long time
at room temperature. The intensity peaks cor-
respond to phase-matching directions. The di-
rection 8 = 0 corresponding to the ferroelectric
axis is marked by a sharp dip in Fig. 4. This dip
is not observed in Fig. 5, due to small misalign-
ment of the surface normal. The form of these
intensity curves varies very much from one crys-
tal to another, and also depends on the thermal
treatment of the crystal.

B. Effect of Anisotropy of Domain Cross Sections

A limited length of domains along OY would pro-
duce scattering with ~k parallel to OY. We have
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FIG. 4. Variation of SH intensity I (in arbitrary units)
as a function of incidence angle for a laser beam in the
optic plane YOX. N is the normal contribution; A, 8,
C, and F are scattered lines.

never observed a transversal width of scattered
lines greater than that due to the beam divergence
(5 mrad). So the hypothesis of long domains along
OF seems quite good.

It is also known, however, that TGS domains
have a cross section elongated in a direction
parallel to the optic plane. ~ The magnitude of
this elongation varies from one crystal to the
other, depending mainly on the impurity concen-
trations. jIf we suppose that domain cross sections
are ellipses, with the same direction but with un-
correlated positions, from Sec. II the scattering
curves would be anisotropic. For a given modulus
of &k one expects a greater intensity for ~k per-
pendicular to the optic plane than for ~k parallel
to it. This effect is indeed observed as is shown

i~ [ (arbi&rary
go, Uhll'5)

10-

'leak J.

6 k//~DOMAlN
CROSS SECTION

in Fig. 6.
The two upper curves are obtained on a Y-cut

crystal, with the optic plane XOY as incidence
plane, near phase matching A. The intensity of
a SH wave is plotted as a function of the modulus
of &k for given directions. The curve ~k„ is ob-
tained with &k in the optic plane, parallel to the
greatest domain dimension in rotating the crystal
from an incidence angle of ~= 52' to ~=44' to
vary the modulus of ~k. The curve ~k, is ob-
tained at 8 = 52' (phase matching A) and in mea-
suring the intensity along the scattered A line cor-
responding to a ~k nearly perpendicular to the in-
cidence plane. With the XOY plane as incidence
plane the scattered lines are quite well marked
and extend relatively far from the incidence plane.
The two lower curves are obtained with the in-
cidence plane in YOZ near phase matching 8'.
4k is now contained in the incidence plane and the
corresponding curve was obtained in changing the
incidence angle ~ from 44. 5 to 17.5'. For this
geometry the scattered lines are rather sharp
and decrease quickly when ~k goes out of the in-
cidence plane; thus it was difficult to obtain di-
rectly the intensity variation along 4k because
this intensity is screened by the far greater in-
tensity of the phase-matching peak. It was neces-
sary to use several orientations of the crystal
near the phase-matching angle and to interpolate

B
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FIG. 5. Variation of SH intensity I as a function of

incidence angle for a laser beam in the YOZ plane. N
is the normal contribution. A' and B' are scattered
lines. (N cannot be observed in the neighborhood of
phase-matching angles because its intensity is smaller
than that of A' or 8'. )

I IG. 6. Variation of intensity as a function of the
modulus of Ak for dg perpendicular and parallel to the
great dimension of domains. Upper curves: incidence
plane in the optic plane; lower curves: incidence plane
perpendicular to the optic plane.
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FIG. 7. Variation of SH intensity as a function of
incidence angle near the phase-matching direction 8' in
the FOZ plane for various domain structure (see text).
The curves A, 8, and C have been shifted arbitrarily in
the vertical direction.

shapes of the intensity variation as a function of
the incidence angle near the phase-matching di-
rection B' in the FOZ plane are plotted in Fig. V.
(Similar variations were previously observed by
Sonin and Suvorov '~.)

Curve A corresponds to a nearly single domain
crystal; it has a well-defined sharp peak, which
looked like the curve I =

~ (sin-,'bkl)/b, k (s. The
foot of this peak is widened by the presence of
domains. This curve is typical of crystals which
have remained a long time at room temperature:
There is little scattering, which shows that there
are few domains, and there is a big peak which
shows that the crystal is polarized in one sense.
After heating a, short time above the Curie tem-
perature Tc and slow cooling (about 1 h) to room
temperature, a curve such as B is obtained. One
observes apeak, but now the bottom of the curve
is very wide and domain scattering is quite intense.
When the crystal is heated longer above Tc (for
example, 12 h) one obtains intensity curves C or
D, where the phase-matching peak has disappeared,

'

and sometimes there is a dip in the curve in the
phase-matching direction, showing that there is
no longer a residual polarization. If the crystal
has a mean polarization which is null, one gets
a curve F- where now there is a downward "peak"
just in. the phase-matching direction. The maxima

this curve. But nevertheless, the general result
appears clearly, for a given magnitude of &k the
intensity is greater for &k perpendicular to the
great domain dimension than for &k parallel to it.
For an elliptic cylinder of axes lengths a and b,
equal intensities are obtained for

hk, a = 4k~ b

' t [ (arbi trary units)

10-

As one sees in Fig. 6 that equal intensities are
obtained for ~k,- 5 ~k„, one can deduce that the
great dimension of cross sections is about five
times greater than the small one. So the most
intense SHS is observed for a 4k perpendicular
to the optic plane. When the optic plane is the in-
cidence plane there are broad scattered lines.
When the incidence plane is FOZ, perpendicular to
the optic plane, the scatteredline is much narrower,
with a sharp maximum. It is then easy to follow
the intensity of this maximum as a function of the
modulus of bk to get the information about domain
structure.

C. Effects of Thermal Treatments

10-
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As we have shown in Sec. II, the phase-matching
intensity depends upon the mean polarization of
the crystal, while the scattered intensity depends
upon the number and the magnitude of domains.
The shape of the phase-matching peak is very
sensitive to the crystal state. Several typical

FIG. 8. Evolution with time of the scattered intensity.
The variation of intensity I as a function of the modulus
of the scattering vector lac is plotted at three time in-
tervals after a rapid cooling from the paraelectric phase
toroomtemperature. I M I is measured relative to the
length of k&, wave vectors of SH light are in a vacuum.
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APPENDIX

We will calculate the asymptotic variation of
the intensity scattered by one domain for a large
scattering vector in one, two, and three dimen-
sions. This result can easily be deduced from
Erdeleyi's theorem' ' which gives the asymptotic
behavior of the Fourier transform E(k) of a func-
tion f (x), which we will use in two particular
cases:

F(k)= f'f(x)e*'"dx (Al)

iff (x) is one-time continuously differentiable;

E(x) =i f (b) eiab f ( )afeaa

k

f '(b) e' -f '(a) e'"'
(A2)

[where O(k ) indicates a term which tends to zero
faster than k j: If f(x) is regular between a and

b but singular at x = a and x =- b Then f (x.) - (x

of the intensity correspond to &k=m/a, where a
is of the order of magnitude of domain widths.

Often these curves change with time, following
the evolution of domain structure. For example,
Fig. 8 shows the variation with time of the de-
polarized crystal of curve E of Fig. 7. Qne sees
that the b,k= 0 intensity increases, showing a
partial repolarization of the sample. At the same
time, there is a shift of the intensity maximum
towards smaller ~k, indicating an increase in do-
main width from about 10 to 70 p. , which was pre-
viously observed in TGS by etching. ~ It is pos-
sible to study the variation of domain structure
by observing the variation of SHG near a phase-
matching direc tion.

IV. CONCLUSION

In this paper we have shown that the study of

SHS by ferroelectric domains can be used to ob-
tain information on domain structures. Very dif-
ferent patterns of scattered light are obtained for
plane-parallel cylindrical- or arbitrary-shaped
domains. An example of the use of this technique
has been presented here, in the case of cylindrical
domains of TGS, where we have observed the ef-
fects of domains on the SH intensity. One can hope
that a systematic study of SHG can give more
quantitative information on domain structure and
its evolution under various external conditions
(temperature, applied electric field, etc. ).
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y'+ (R -u)'=R',

D(u) = 2y(u) = 2(2Ru)'" .
(A4)

The asymptotic variation of E(k) is in k '~2

and that of IF(k)I is in k . If points with tan-
gents perpendicular to OX have a random distri-
bution, one has only to sum their respective in-
tensity to get the total scattered intensity.

For a three-dimensional volume V with a form
factor f(x,y, z) limited by a surface Z we also
take an axis parallel to the wave vector k,

E(k) = f f f v f(x, y, z)e' "dxdy dr

=- f S(x)e""dx, (A5)

where S(x) is the surface of the section of V by a
plane of abscissa x. As in two dimensions, for
a regular surface 7 we must calculate the varia-
tion of S(x) near the points with a tangent plane
perpendicular to OX. To do this we write the
equation of Z in a rectangular reference frame,
with its origin at a point A of a tangentplaneper-
pendicular to OX and retain only terms to second
order. Z is then approximated by a quadric,
which is, in general, an ellipsoid, and its section
by a plane is an ellipse. At point A, the ellipsoid
has two principal radii of curvature R& and R~ in
two perpendicular planes. The lengths of the two
axis of the ellipse are

—a)'~ ' when x- a and f (x)- (x —b) '~ ' when x- b

and, therefore, F(k)-k '~ when k-~.
In one dimension the form factor of a domain

is given by f (x) = 1 for x inside the domain and

f (x) = 0 for x outside. So from (A2), F(k) -k ',
and the intensity proportional to I F(k) I

' decreases
like k

In two dimensions a domain is limited by curve
C and its form factor is f (x,y) = 1 if the point
(x, y) is inside C and f (x, y) = 0 if (x, y) is outside.
If we choose an axis OX parallel to the direction
of vector k, then

F(k)= f f'" f(x, y)e""dxdy= f D(x)e"*dx,
(A3)

where D(x) is the length of the straight line of
abscissa x contained in C. In general, D(x) is a
regular function except when curve C has a tan-
gent perpendicular to OX. If a and b are the
abscissa of such points, without other singulari-
ties between them, we can apply the second case
of Erdeleyi's theorem. To calculate the singular
variation of D(x) near x=a, for example, we re-
place curve C by a circle with the same radius
of curvature as C and make a change of variable

Then the equation of this circle of radius R is
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S(x)= ~ab = 2v(ft, a,)"'x .
Then E(k) for large k varies as k ~ and !E(k)I2 as
k 4. For other kinds of singular points the

asymptotic dependence can change, consequently,
the scattered intensity for large k in one, two,
and three dimensions varies, respectively, as
k ~, k 3, and k for contours and surfaces with-
out singularities.
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The usual model for singlet-exciton motion and trapping in molecular crystals is general. —

ized to arbitrary finite trapping regions about each activator and to more than nearest-neigh-
bor steps by the random walker. The properties of extended trapping regions, which simulate
activator-induced host traps, are obtained rigorously by applying general results for three-
dimensional random walks. The capacity C(A) of the extended trapping region is shown, by
explicit calculations for a simple cubic lattice, to depend on the size and shape of the trap-
ping region and on the anisotropy and step distribution of the random walker. The capacity
controls the competition between singlet-exciton absorption (trapping and subsequent trap
fluorescence) and emission (host fluorescence) observed in doped organic crystals. The
model accounts qualitatively for the "anomalous" time dependence of the energy-transfer
rate in tetracene-doped anthracene and in anthracene- or tetracene-doped naphthalene. The
model also accounts for the reported variations in the apparent exciton hopping time, which
provide strong evidence for the hypothesis of extended trapping regions.

I. INTRODUCTION

Both exciton diffusion'~ and long-range resonant
transfer~' (LRRT) describe the motion of singlet
excitations in molecular crystals. LRRT has been
thoroughly documented for energy transfer between
immobile excitations on impurities embedded in
the crystal. Simpson' demonstrated singlet-ex-
citon diffusion in anthracene and Trlifaja related
theoretically the diffusion constant to the efficient
LRRT between adjacent host sites. In the foll.owing,
we reserve "diffusion" for nearest-neighbor ran-

dom walking by whatever mechanism of the singlet
excitation.

Powell and Kepler6-" (PK) recently observed
the time evolution of both sensitizer (host) and ac-
tivator (trap) fluorescence in doped organic crys-
tal. s. Singlet-exciton motion in either crystalline
anthracene or naphthalene, the two hosts studied
by PK, is generally thought to be diffusional at
room temperature, where the shallow host traps
which are observed at l.ow temperature are ther-
mally detrapped. The PK data nevertheless de-
cisively rule out the usual formulation of exciton


