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A convergence study is made of the reciprocal-Lattice expansion of linear-combination-of-
atomic-orbitals integrals in NaF. Converged integrals are obtained by direct summation and
by extrapolation after different numbers of terms. It is found that extrapolation procedures
give simple accurate results and substantially reduce labor involved. Comparison is made
with other methods for obtaining convergence. Converged integrals are used as a basis fora
self-consistent Hartree-Fock-Slater energy-band calculation for NaF using methods previous-
ly developed. Some transition energies are presented and correlated with available optical
data. Self-consistent charge densities in NaF differ only slightly from a linear combination
of ionic charge densities, confirming the ionic nature of NaF.

I. INTRODUCTION

The linear -combination-of -atomic -orbitals
(LCAO) method which was first proposed in 1928
has only recently been developed to its full pow-
er. 9/hile there are still some theoretical
questions of its applicability to quantitative solid-
state calculations, practical experience indicates
that it not only is as accurate as other methods
when done correctly, but also has great advantage
in self-consistent calculations' or problems involv-
ing Brillouin-zone sampling or computation of ma-
trix elements using Bloch wave functions. How-
ever, when reading the literature of LCAO or
tight-binding calculations one must be careful to
distinguish between approximate I CAO calcula-
tions and ones which are performed with new tech-
niques. Neglect or approximation of multicenter
integrals and inclusion of only limited numbers of
neighbors usually means that the energy bands are
qualitative at best. Discussions of the problems
encountered in accurate LCAO procedures are giv-
en in Refs. 6, 11, and 12.

In this paper special attention is paid to conver-
gence properties of the reciprocal-lattice series
expansion of LCAO integrals. Some of the methods

used to facilitate summation of these series are
discussed in Sec. II. In Sec. III, well-converged
integrals for NaF are used to perform a self-con-
sistent Hartree-Fock-Slater energy-band calcula-
tion.

II. CONVERGENCE OF LCAO INTEGRALS

The LCAO method employed here has been dis-
cussed elsewhere ' ' and will not be presented
again. Accuracy in LCAO energy bands requires
a critical analysis of all approximations made. In
this section attention is focused upon convergence
of reciprocal-lattice expansions of various LCAO
integ rais.

Reciprocal-lattice sums are a result of express-
ing the crystal potential as a Fourier series in
order to circumvent calculation of three-center in-
tegrals. Approximation or complete neglect of the
difficult three-center integrals and failure to sum
enough direct-lattice neighbors invalidated early
efforts to use the LCAO method in first-principles
calculations. The Fourier -series technique per-
mits accurate evaluation of LCAO integrals and
produces accurate energy bands.

Introduction of Gaussian orbitals instead of
Slater (exponential) orbitals greatly simplifies and
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accelerates the numerical work. Use of the Fou-
rier series for the crystal potential and use of
Gaussian basis functions for the atomic orbitals
yield analytic expression for all matrix elements
needed in evaluation of the LCAO secular deter-
minant. However, the rate of convergence of
the reciprocal-lattice sums for some LCAO in-
tegrals may be very slow, making it difficult to
estimate the error after a given number of terms.
In some instances convergence is so slow that it is
essential to find ways of accelerating it in order to
obtain the necessary accuracy in reasonable com-
puter times. Examples of the sort of errors which
may occur with inadequate convergence are given
in Ref. 12.

A typical LCAO integral is expressed as

J y, (r) V(r) y, (r —R, ) d'r

=Z V(K„)J Q&(r) e' "'Q&(r —R, ) d r
EC

=- Z V (K„)E,q (K„,R,),
n

where P, and P& are orbitals of given symmetries
centered at the origin and at site R„respectively.

The Gaussian atomic orbitals used for Na and F
are given in Table I. V(r) is the periodic crystal-
line potential and V(K „) is its Fourier transform.
The starting (first-iteration) crystal potential was
constructed as a linear superposition of ionic po-
tentials as discussed in previous publications. "

Convergence of the reciprocal-lattice sum is
governed by both V(K „) and the integral E&&(K„,R,).
The latter will depend upon the symmetry of or-
bitals involved, values of the orbitals exponents,
separation of the orbitals, 8, , and the value of
K„. At large K„ the dominant contribution to
V(K„) comes from the nuclear point charge

V(K „) —4mZe /K „.
For large K„ the integral E,&(K„,R,) is more com-
plicated, depending upon types of orbitals involved,
but all types include a factor exp[-K~/4(o. ~+ nz)],
where nj and 0.~ are exponents in the Qaussian or-
bitals P, and Q&. For large o.~+ o.z the K„depen-
dence of E,&(K„,R, ) is weak, and the rate of con-
vergence is determined primarily by V(K„) until

2K„&4(n~+ o.a). V(K„) gives very slow convergence,
and it is mainly this term which must be over-
come. For some combinations of symmetry and

TABLE I. Gaussian orbitals for sodium and fluorine. The s and p orbitals were obtained from Huzinaga and Sakai, and
d orbitals were generated by a Hartree-Fock calculation.

Sodium wave functions Fluorine wave functions
Orbital exponents of Gaussian basis set

d s

ls 36631.1
ls 5385.07
ls 1216.20
ls 339.529
ls 109.563
ls 38.783 4
ls 14.579 0
ls 5.279 01
ls 1.82902
ls 0.620 535
ls 0.058065
ls 0.024 617

2p 148.928
2p 34.514 9
2p 10.604 5

2p 3.671 06
2p 1.284 90
2p 0.430 941
2p 0.166 490
2p 0.051 793
2p 0.018 420

3d 6.000 00
3d 1.452 00
3d 0.102 959
3d 0.027 170
3d 0.009 342

ls 23342. 2
ls 3431.25
ls 757.667
ls 209.192
ls 66.726 1
ls 23.370 5

ls 8.623 72
ls 2.700 01
ls 1.087 50
ls 0.396 536
ls 0.172 324

2p 65.659 3
2p 15.218 7
2p 4. 788 19
2p 1.727 55
2p 0. 648 123
2p 0. 244 965
2p 0.091 537

ls 2s
Orbital expansion coefficients of Gaussian basis set

3s 2p 3p 3d ls
0.000 38
0.003 05
0.015 99
0.064 27
0.19481
0.400 99
0.392 67
0.082 82

—0.002 65
0.001 77

—0.000 31
0.000 17

—0.000 09
—0.000 74
—0.003 96
—0.01613
—0.053 10
-0.127 76
—0.19952

0.034 27
0.59803
0.485 79
0.01663

—0.007 62

0.000 01
0.000 11

- 0.00060
0.00241
0.008 22
0.01915
0.033 11

-0.010 52
-0.098 98
—0.206 86

0.59948
0.484 01

0.005 147
0.037 920
0.153743
0.352 821
0.457 887
0.239 507

—0.000 105
0.006 753

—0.002 405

—0.000 511
—0.003 805
—0.015 526
—0.036 470
—0.047 405
—0.040 177

0.070 060
0.494 273
0.551 837

0.000 166
0.002 705
0.069 251
0.451 313
0.630 163

0.000 40
0.003 27
0.017 54
0.070 82
0.212 90
0.422 13
0.37480
0.058 66

—0.009 44
0.004 68

—0.001 36

—0.000 09
—0.000 75
—0.004 09
—0.016 99
—0.054 76
—0.13195
—0.184 73

0.081 75
0.551 15
0.445 02
0.061 82

0.008 82
0.057 78
0.19341
0.356 71
0.392 96
0.229 90
0.03143

~S. Huzinaga and Y. Sakai, J. Chem. Phys. 50, 1371 (1969).
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FIG. 1. Convergence behavior of reciprocal-lattice
sums for various Na-Na first-neighbor integrals. The
integrals were computed in rydbergs, but arbitrary con-
stant shifts have been made to display them on the same
graph. 3x is a 3p function transforming like x, while
3x and 3g are 3d functions transforming like x -y and

3m 2-~, respectively.

n~ and o.z the K„dependence of E,&(K„,8,) is
strong enough to produce rapid convergence in
spite of V(K„), but this is only occasionally the
case, e. g. , d-d integrals encountered in this pa-
per. While a simple analytic expression for the
n th term in the reciprocal-lattice sum may be
written down for a single s-like Gaussian orbital,
the atomic orbitals, which are linear combinations
of Gaussian orbitals, are more easily understood
graphically.

Figure 1 shows the convergence behavior of dif-
ferent symmetry-type integrals as a function of the
number of stars of reciprocal-lattice vectors
summed. The integrals have been shifted by ar-
bitrary constant amounts to be displayed on the
same graph. While all have converged to three
significant figures, some have converged to con-
siderably more. Integrals shown are Na-Na first-
neighbor values, but similar results are obtained
for F-F- and NaF-type integrals. The problems
occur with 3s-3p and 3s-3d symmetries. Core-
core integrals are even more slowly convergent,
but the only important ones are central-cell (two-
center) integrals which may be handled without
difficulty.

Figure 2 shows the behavior as a function of R, .
Qnce again the integrals have been shifted by con-

stant amounts. Note the significant figures indi-
cating different degrees of convergence for differ-
ent integrals. As separation of orbital sites be-
comes greater the rate of convergence increases,
but only slightly in most cases. Convergence to
fewer significant figures than indicated may be ob-
tained more readily for larger R, .

The degree of localization of the orbitals also
determines the rate of convergence. For Gaussian
integrals this is indicated by the orbital exponents,
larger parameters corresponding to greater local-
ization. If atomic wave functions are used, as
here, localization is roughly indicated by the prin-
ciple quantum numbers of the atomic orbitals.
Figure 3 shows these trends for some of the inte-
grals which are slowly convergent.

The slowness of convergence for some of the in-
tegrals shown in Figs. 1-3 can be appreciated fully
by reference to Table II, where selected integrals
are given at different stages of summation. In
order to gain understanding of these convergence
properties the authors attempted to perform an
analysis similar to the methods used by Euwema
and Stukel to study orthogonalized-plane-wave
(OPW) convergence in tetrahedral semiconduc-
tors. 3 Their work is of great pedagogical as well
as practical value and is recommended reading for
anyone interested in band theory.

Attempts which were made here to perform a
similar study met with immediate failure. In the
I.CAQ method the Fourier-series expansion is
made for the potential (rapidly varying near the
origin), not the wave function (well-behaved near
the origin). Also, the variational theorem is not
working on the coefficients of expansion of the po-
tential as it is in the case of the QPW expansion of
the wave function. As a result it is necessary to
sum terms to much larger K ~, corresponding to
much smaller R, as defined in Ref. 13. The
dominant potential term is the Coulomb potential
of the nucleus, which is singular at the origin.
Thus, convergence of I CAQ Fourier-series ex-
pansion is more similar to the classic Ewald
problem, as has already been pointed out. 3 The
large number of terms necessary for convergence
as indicated in Table II makes it clear that methods
of accelerating convergence must be found if com-
puter times are to remain reasonable.

Three different techniques have been used to ob-
tain convergence: (i) an Ewald-type method, (ii)
integration, ~o and (iii) extrapolation. The Ewald
method is described in Ref. 3. It uses an arbitrary
auxilary potential function which falls rapidly to
zero over a distance comparable to the lattice con-
stant, but behaves near the nucleus like a point
negative charge equal in magnitude to the nuclear
charge. The Fourier transform of this function
cancels the ill-behaved term in the Fourier trans-
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form of the crystal potential for large K„. On the
other hand, the short-range nature of the auxilary
function permits approximation of its integral by
one- or two-center terms, so that the part added
to the Fourier series is subtracted out afterwards
by direct integration. This method works only if
the errors made in the two-center approximation

to the auxilary potential integrals is valid for the
particular orbitals and auxilary function used. It
may be quite accurate if care is taken with the di-
rect integral. '

The technique of integration consists of summing
the Fourier series to some maximum K„and ap-
proximating the sum of the remaining terms by
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FIG. 3. Convergence behavior of various orbital types.
The integrals have been shifted by arbitrary amounts.

converting the sum to an integral. Errors arise
in this method from both the integration approxima-
tion and the numerical integration technique itself,
but accurate answers may be obtained.

The technique of extrapolation can be the sim-
plest of the three, depending upon the extrapolation
procedure used. It should be possible to develop

a Pade approximate to the series, but it would be
different for each type of integral, and hence a
substantial effort. A simple extrapolation method
is obtained by observing that the sum after N stars
is approximately a linear function of 1/N, and an
approximation to the converged value may be ob-
tained by straight-line extrapolation to 1/N=O or
Pf -00,

Figure 4 shows the asymptotic behavior of some
of the integrals as a function of 1/N. Figure 4(a)
displays straight-line behavior in the region 1000
to 10000 stars, while 4(b) shows the same integrals
in the region to 47000 stars. The slope is constant
to more figures in Fig. 4(b), reflected by more sig-
nificant figures in the extrapolated result. The
values of various integrals obtained by extrapolat-
ing to 1/N= 0 after different numbers of recipro-
cal-lattice vectors (RLV) are shown in Table IIL
Even in the worst cases, extrapolation after sum-
ming 1000 HLV appears to be adequate for the ac-
curacy needed in present-day band calculations.
This represents a substantial savings in computer
time, and further reductions would be realized
with a nonlinear extrapolation procedure which
would permit a smaller K ~.

III. SELF-CONSISTENT ENERGY BANDS

Self-consistent energy bands for NaF have been
obtained using converged LCAQ integrals as a ba-
sis. The self-consistent procedure used here has
been discussed thoroughly elsewhere, ' so it will
not be elaborated again. Its simplicity rests upon
the fact that it is not necessary to recompute (and
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TABLE II. Convergence properties of some reciprocal-
lattice sums for LCAO integrals. Integrals shown are all
first-neighbor (110) Na-Na integrals. The last row shows
estimated convergence after 47000 stars. The last digit
of the converged values is not expected to change upon
furthersummation. 3z is a3d function transforming like
3z2-y2.

TA BLE III. Extrapolated first-neighbor Na-Na inte-
grals. Column 2 shows values obtained by extrapolating
with slope determined by values after 1000 and 2000 stars,
column 3 for 2000-5000, and column 4 for 5000 —10000
stars. The last column shows convergence estimated by
extrapolating from 47000 stars. All energies are in
rydbergs.

1

10
20
30
40

-0.588 304
—0.575 256
-0.573 571
—0.572 718
-0.572439
-0.572 302
-0.572

—0.125 768
—0.127 074
—0.127 241
—0.127 324
—0.127 352
—0.127 365
—0.1273

Stars 2s-2s 3S 3S
{10) (10 3Ry) Ry)

0.110359
0.111401
0.111534
0.111601
0.111623
0.111634
0.1116

2S 3Z 2

Iy)
0.160 352
0.156 095
0.155 546
0.155 268
0.155 178
0.155 134
0.155

3S 3Z

(Ry)

0.040 444
0.041 093
0.041 176
0.041 217
0.041 231
0.041 238
0.041 2

Integral

ls -3z2
2s 3Z 2

3s —3Z

1s —2x
2S -2X
3S 2x

ls —3x
2S —3x
3s 3X

1-2

0.417 783
0, 155 124
0.412419

—0.364 335
0.308 940
0. 282 079

0.670 637
0. 251 493
0. 111661

2-5

0.418 666
0. 155 000
0.412 594

—0.364 148
0.308 998
0.282 133

0.672 053
0.251 294
0. 111641

5-10

0.418 813
0.154 997
0.412 583

—0.364 093
0.308 994
0. 282 130

0.672 289
0. 251 289
0.111669

Converged

0.418 8
0.154 999
0.412 406

—0.364 09
0.309 002
0.282 137

0.6723
0.251 29
0.111666

reconverge) LCAO integrals at each stage of itera-
tion, but iterated matrix elements are expressed
in terms of initial matrix elements. To simplify
the self-consistent calculation, only the following

ls —ls
2s - ls
3S —ls
2s —2s
3S 2S
3S 3S

—0.510 354
—0.649 373
—0.421 083
—0.572 287
—0. 160 260
—0. 127 374
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l.5 Non- Self —Consistent NaF Bands
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FIG. 5. Non-self-consistent NaF energy bands.

X4

X5
X~

gapes, i6 of 0. 85 Ry. ~i1e this was not the experi
ence with LiF, similar behavior occured for other
alkali halides in the work of Page and Hygh. '4

An integration grid consisting of 89 points in ~
of the fcc Brillouin zone was used to obtain self-
consistent charge densities and energy bands. Re-
arrangement of charge during the self-consistent
iterations produced wider energy gaps for fixed z:
Figure 6 shows self-consistent energy bands for n
= 1.06. The computed gap 0. 84 Ry is in good
agreement with the observed gap of about 0. 85 Ry.
The valence bandwidth is 0. 7 eV, which is com-
parable with the bandwidth obtained in LiF calcula-
tions, ' ' ' but smaller than the value quoted by
Gout et al. of 3.44 eV. This latter value should
not be regarded as quantitatively meaningful be-
cause of approximations made in constructing the
crystal potential and also approximations in ap-
plication of the tight-binding method. These ap-
proximations probably account for the off-center
maximum of the valence band in Ref. 20. The
minimum energy gaps obtained in all band calcula-
tions reported here were direct and occurred at
the I' point of the Brillouin zone.

Experimental data which may be compared with
the band structures obtained here consist of the
fundamental absorption edge, "' photoemission
measurements, and extreme ultraviolet absorp-
tion. ' Ultraviolet transmission or reflection

Na: 1s, 2s, 3s, 2p, 3P,
F: 1s, 2s, 2p. 0.5 Self —C onsi stent Na F Bands

These orbitals lead to 14&& 14 Hamiltonian and

overlap matrices. During self -consistent intera-
tions the Na 3s and 3p components played only a
very minor role in determining the self-consistent
potential. d-like orbitals are expected to play an
even smaller role and were not included in the set.
Other calculations" indicate that d-electron levels
do lie fairly low in the conduction bands of alkali
halides and must be included for an accurate de-
scription of optical transitions much above the fun-
damental absorption edge. For this purpose d
functions may be added after the self-consistent
potential has been obtained. Since they have not
been included in this calculation only the lowest
conduction band may be considered reliable at this
point.

Energy bands obtained from the starting crystal
potential are shown in Fig. 5. The lattice constant
used was 4. 62 A. Three values of the X ex-
change parameter are shown: a= 1 Slater ex-
change, n= l. 06, and Q. =O. V64. The immediate
conclusion to be drawn from these bands is that it
was not possible to find an exchange parameter in
the range 3 ~ n ~ I in a non-self-consistent band
calculation to yield agreement with the measured

0.0

~-05—

(9
CL
LU

~ —IO-
L'p

L'p

0.84 a = I.06

"X5
X~

- l.5—

-2.0
L

FIG. 6. Self-consistent NaF bands without polarization
corrections ..
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experiments above 12 eV are limited by the trans-
mission of LiF windows conventionally used on
low-temperature vacuum sample holders, so only
a small portion of the optical spectrum of NaF
above the fundamental absorption edge has been
measured. While the usual exciton is clearly evi-
dent in the data, location of the fundamental ab-
sorption edge is somewhat uncertain because it
falls in, or near, the region of absorption by the
LiF excitons, and absorption by the LiF windows
becomes large. The fundamental absorption edge
is estimated to be about 11.5 eV for NaF. The
photoemission edge has been found to be about 10-
12 eV in the work of Duckett and Metzger.

Extreme ultraviolet spectra has been obtaineda
using synchrotron-radiation sources, and an initial
attempt to analyze such data has been made by
Brown et al. Transitions arising from the 2P
levels of the sodium ion have been tabulated by
Haensel et al. and may be correlated with the
fundamental absorption. Assuming the first two
peaks in the NaF spectra (labeled A and B in Ref.
22) correspond to excitons, the absorption edge
may be estimated. A numerical value for the ab-
sorption edge is not given in Ref. 22, but inspection
of the spectrum suggests that it is approximately
34 eV for the transition Na(2p)- I', .

The following comparisons may be made between
theory and experiment: (i) The fundamental ab-
sorption edge could be fit; (ii) the computed ab-
sorption edge for the Na(2P) transitions was 33. 3
eV compared to 34. 0 eV from experiment; and (iii)
the photoemission edge was computed to be 14.7
eV compared to 10-12 eV.

The position of the Na(2p) absorption edge de-
pends strongly upon the exchange potential, even
more than the fundamental edge, and better agree-
ment'with this edge could be obtained when a was
not constrained to give exactly the fundamental
edge. A similar result was obtained in LiF: For
a = 0. 87 an exact fit occurred to the fundamental

gap, but the Li(ls) edge was missed by 5 eV. A

slightly larger o. gave reasonable agreement for
both edges. Failure to gain exact agreement for
both gaps when fitting one of them probably reflects
inadequacy of the local-exchange-potential approxi-
mation. This conclusion need not be drawn at this
time, however, as polarization corrections to the
bands have not been computed nor is the experi-
mental data, particularly assignment of edge posi-
tions, all that certain.

In Table IV some of the calculated transitions
(n = 1.06) are compared with the data of Ref. 22.
There appears to be some correlation between the-
oretical values of transition energies from the top
valence band (L~ and Xs) to the conduction band and
the extreme ultraviolet absorption peaks given by
Haensel et al. Since the top valence band is very

In Sec. III it was demonstrated that the converged
LCAO integrals provided an adequate basis for
self -consistent Hartree-Fock-Slater energy-band
calculations. Using the same techniques as in the
LiF calculation it was possible to obtain reasonable
agreement with several pieces of experimental
data. A complete analysis of the extreme ultra-
violet absorption data for NaF requires the inclu-

TA BLE IV. Comparison of computed fundamental-ab-
sorption energies with measured extreme ultraviolet ab-
sorption. Column 1 lables the fundamental transitions
and column 4 shows tentative assignments of terminal
levels of the extreme ultraviolet transitions from the
Na(2P) band. All energies are in rydbergs. The labels
of column 7 were given in Ref. 22. The peak labeled C
may be an exciton, as concluded in Ref. 25.

~(2p)
Calculated

Energy
Experiment: Na(2P)

Energy ~ Label

L3 L

L,'-L, ,

X, -X4~

X5 X

17.0

17.2

18.1

20. 0

5.6

5. 8

6.7

8.6

34.0
35.5

39.2

41.6
46.3

0.0
1.5
5.2

7.6

12.3

D

narrow, the peak structure due to these transitions
should resemble the spectra observed from the
narrow Na(2p) bands. However, it is not possible
to make definite assignments without a complete
calculation of ca(&u). While it is tempting to assign
peaks to symmetry. points in the Brillouin zone, it
has been found by detailed calculation ' that this is
not reliable, since peak structures usually arise
from oscillator contributions throughout the zone
and, e. g. , transitions which are dipole forbidden
at symmetry points may appear as a result. Ex-
treme ultraviolet data is especially hard to analyze
because it represents many possible interband
transitions from different sets of bands with the
same energy separations. Possible contributions
in the 34-eV range for NaF are Na(2p) to low con-
duction bands and F(2s) to low conduction bands as
well as transitions from the upper valence band
to higher conduction bands. A further complication
in identifying the structure is the assignment of
exciton peaks. The peaks labeled A and B in the
data of Haensel et al. fall at the same position in
all the sodium halides and are tentatively identified
by them as exciton peaks. Brown et al. question
whether any of the extreme ultraviolet structure
may be identified as exciton peaks with any cer-
tainty, but Fong and Cohen ' assign peaks A, B,
and C to excitons in their eq(ar) studies for NaCl.

IV. CONCLUSION
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sion of d-like conduction bands and a complete cal-
culation of e2(+). This will be the subject of a
future work.

Before concluding, a few observations about the
self-consistent charge distribution of NaF should
be made. The starting potential was constructed
from ionic charge distributions for Na' and F .
Charge redistribution which occurred in the self-
consistent calculation for NaF is shown in Fig. V.

A net movement of electrons from the fluorine ion
to the sodium ion has occurred. An approximate
value for the amount of charge moved was obtained
by performing a volume integral from the ions out
to the points where the charge density went through
zero. About 0. 06 electron was removed from the
fluorine ion and 0. 09 was placed upon the sodium
ion. The rest of the negative charge placed on the
sodium ion came from the interstitial regions. The
total amount of valence charge redistributed was
about 0. 09 electron, so that the change in charge

density of the valence electrons from the ionic to
the self-consistent configuration was less than 10%,
and therefore NaF is at least 90% ionic. This is in
agreement with the LiF results of Drost and Fry.

Simple binding-energy calculations, 6 based upon
an ionicity of one, work well for most alkali ha-
lides, including I iF and NaF. The covalent-bond
theory of Phillips and Van Vechten also predicts
NaF should be highly ionic, possessing a fractional
ionicity of 0. 946, similar to other alkali halides. ~~

On the other hand, there has been some indication
from experiment that NaF may be different from
other alkali halides, ' and electron-diffraction in-
vestigations~ have led to the conclusion that NaF
is partially covalent. Analysis~ of Compton scat-
tering data is not conclusive, but seems to favor
an ionic potential over a neutral-atom potential.
These data need to be further examined to test the
validity of approximati. ons used to describe the
Compton scattering event.

~Work supported in part by the U. S. Air Force Office
of Scientific Research under Grant No. AFOSR65-1565.
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Effects of Domain Shapes on Second-Harmonic Scattering in Triglycine Sulfate
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A general description is given of the second-harmonic scattering of light by domains in a
ferroelectric crystal. In addition to the usual second-harmonic beam, one observes second-
harmonic light in new directions. The angular pattern of scattered light depends upon domain
shapes. Plane parallel or cylindrical domains give very different diffraction diagrams. An

experimental observation of this phenomenon in triglycine sulfate is given, where the vari-
ation of the second-harmonic intensity is correlated to changes in the domain structure.
The anisotropy of the domains's cross sections leads to an anisotropic diffraction pattern.

I. INTRODUCTION

The phenomenon of second-harmonic generation
(SHG) of light is observed when an intense light
beam interacts with a noncentrosymmetric material. ~

If this material is inhomogeneous, second-harmonic
scattering (SHS) is produced. This was observed
for the first time in NH4Cl by Freund and thee in
triglycine sulfate (TGS). ' The origin of this ef-
fect can be easily understood by corisidering the
spatial modulation of nonlinear polarization by the
domain structure. The effect of domains on the in-
tensity of SHG was first observed by Miller on
ferroelectric crystals of BaTiO3. '

We have previously described the angular pattern
of SHS which is observed on TGS crystals. Here
we give new theoretical and experimental results
of the effects af domain shapes on SHS. The dis-
cussion is centered an ferroelectric materials, but
some results can also be applied to the case of
twins.

Section II is a general theoretical discussion of
SHS where the effects of surface and domains are
separated. Perfect correlation in one direction
(cylindrical domains) or in two directions (plane

parallel domains) leads to the characteristic scat-
tering pattern. Particular attention is paid to the
asymptotic behavior of the intensity for large scat-
tering angles. In Sec. III new experimental results
obtained at room temperature on TGS are presented.
After recalling the main nonlinear optical properties
of TGS we study the variation of intensity as a func-
tion of the scattering vector 4k, the effect of the
anisotropy of domain cross sections, and give some
information on the effects of thermal treatments on
domain structure and on SHS.

II. THEORY

A. Ferroelectricity and SHG

When a light beam with an electric field E„of
frequency ~ is propagating in a crystal, it produces
a linear polarization P„=t. ~ E„and also a.non-
linear polarization P2„= (d ~ E„) ~ E„which is ob-
servable if the light beam is intense enough. ~

& is
the linear susceptibility tensor and d the nonlinear
susceptibility tensor. SHG can occur only in non-
centrosymmetric crystals, which is the case in ferro-
electrics.

In the phenomenological theory of ferroelectricity


