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tool for investigating the size effect of electron
conduction in conductors of varied cross-sectional
geometries; thus, the method can also be extended

to solve the galvanomagnetic size effect for the
general case involving cylindrical and rectangular
wires.
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Recent experiments suggest the presence of plasmon sidebands in interband absorption spec-
tra of the simple metals. A previous calculation of the sideband intensity considered plasmon
emission in the final state, including interference corrections (charge cancellation of electron
and hole). These reduce the plasmon intensity about 60%. Here previous work is extended in
several directions: (1) allowance is made for plasmon effects in the initial state; (2) recoil
and dispersion effects are included; and (3) the dependence of sideband intensity on initial
electron momentum is explicitly considered. In this improved model charge cancellation re-
duces the sideband intensity by more than an order of magnitude. This reduction was first
noticed by Brouers for the analogous case of soft-x-ray emission in simple metals. Plasmon-
emission structure is almost two orders of magnitude weaker than interband absorption for
Na, K, Rb, and Cs in the model considered here. These results are inconsistent with recent
interpretations of pronounced satellite structure in the optical data of simple metals.

I. INTRODUCTION

Interband absorption in simple metals is qualita-
tively understood in terms of one-electron theory. ~'3

Although electron-electron self -energies4 and elec-
tron-hole int;erference terms' ' are large in a per-
turbation expansion, the net effect on optical con-
ductivity is small in the interband region, owing
to the almost complete cancellation of electron and
hole polarization fields. Recent experiments in the
ultraviolet ' are not explicable according to band
theory, however. In these spectra significant
structure appears in the energy region above the
plasmon energy S~~, as a broader version of in-
terband structure. Earlier calculations" '4 have
predicted strong absorption above ~ = ~~ in an elec-
tron gas by considering final states consisting of
an intrabimd electron-hole pair and a plasmon.
However, these results appear to be invalid, since

the Hamiltonian used commutes with the momentum
operator, and the optical conductivity must vanish
to order (Fermi velocity/speed of light)a. In real
solids the lattice provides a momentum sink due to
the electron-ion interaction, and dynamic screen-
ing"' leads to resonant absorption near ~~ for
momentum transfer k&k„ the cutoff wave vector
for plasmons. This mechanism relies on disorder
scattering and is inoperative in a perfect crystal
at low temperature, since then q must be a recip-
rocal-lattice vector and is at least twice K,.
Moreover, the observed structure has a peak near
S~~+E~, where Ec, is the optical energy gap. This
suggests an intezband mechanism.

I undqvist and Lydian" have calculated the inter-
band optical conductivity for a nearly-free-electron
gas including electron interaction effects to lowest
order in the coupling to the density fluctuations.
The spectral function for an electron (hole) dis-
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plays a satellite structure about Sz~ above (below)
the quasiparticle peak. This leads to sideband
(SB) structure about a plasmon energy above Ea.
Also, the interband absorbing power is seduced
about 50% due to the transfer of oscillator strength
into the plasmon replica. Several authors' ' have
demonstrated that electron-hole interference ef-
fects, omitted in Ref. 17, enhance the absorption
near the interband threshold by about 50%. Indeed,
in a "conserving approximation" it has been shown
that the cancellation between electron and hole self-
energy clouds is nearly complete, ' and the magni-
tude of interband absorption is accurately given by
one-electron theory. A question thus arises: Do
these interference effects sharply reduce the plas-
mon-emission intensity 'P

To answer this question I have employed the
Bohm-Pines (BP) theory of collective behavior in
the electron gas. By adding the electron-photon
interaction and a weak electron-ion potential to the
BP Hamiltonian, I have derived an optical conduc-
tivity for the SB which explicitly displays electron-
hole cancellation in phase space. The theoretical
conductivity, derived here may also be obtained
from diagrammatic perturbation theory for the po-
larization operator, to lowest order in dynamical-
ly screened exchange, if the energy-loss function
Ime '(q, ~) is replaced by a 6 function at the plas-
mon energy (see the discussion by Brouers and
Longe" of the analogous soft-x-ray emission satel-
lite). To obtain the plasmon sideband, three modi-
fications of the interband polarization operator are
included: (a) electron self-energy, (b) hole self-
energy, and (c)plasmon exchange between electron and
hole. In Ref. 1V the optical conductivity is cal-
culated omitting the interference term based
on a spectral function which includes both plasmon
and pair excitations in the final state. Equation(20)
includes all three diagrams but omits pair excita-
tions, which play an insignificant role in the side-
band region. The chief virtue of the BP approach
is its simplicity, which makes possible succinct
physical interpretation. Like the dielectric formu-
lation, the BP theory is a weak-coupling theory (in-
terelectronic separation x, not too large). The
justification for omitting the subsidiary conditions
stems from the essential agreement of this theory
with the Green's-function approach in the SB; this
agreement was first noticed in the soft-x-ray emis-
sion problem. '

The approach here emphasizes the role of the
coupling between individual particle motions and
collective oscillations in the final state of an in-
terband transition. To lowest order in the elec-
tron-ion potential our model Hamiltonian is written
as a sum of three terms (i) the BP Hamiltonian
for the electron gas (including collective coordi-
nates for k & k,), (ii) the Hamiltonian of the free

electronmagnetic field, and (iii) the lattice-induced
interaction between electrons and photons. In a
previous calculationa~ I considered the final state
interaction of an optically excited electron-hole
pair with the plasmon field. If the electron origi-
nates at wave vector p inside the Fermi surface
(FS), optical excitation to p -K is followed by (i)
plasmon emission by the elect~on, which goes into
the state p -K-k outside the FS or (ii) plasmon
emission by the hole, which makes a transition to
the state p+k inside the FS. The [110] reciprocal-
lattice vector is denoted by K and k is the plasmon
wave vector. C harge cancellation between elec-
tron and hole self-energy clouds reduces SB inten-
sity by about 60% if electronic recoil energies and
plasmon dispersion are omitted compared with
a(u, = n(4vne'/m)"'.

In this paper I present results for the SB which
include electron-plasmon interaction in the initial
state, as well as the processes described in the
last paragraph. Thus, the electron initially inside
the FS can emit a plasmon of wave vector k, going
over to an intermediate state p -k outside the FS;
the umklapp transition to p —K -k follows. For-
mally, this process is a hole-plasmon interaction;
thus we may lift the restriction on the corresponding
phase space, p-k inside the FS, used in Ref. 23.
If p~ is the Fermi wave vector the exclusion prin-
ciple now requires only I p I & p~, I p —K —k I & p~.
Consequently, the electron and hole have identical
phase spaces (in Ref. 23 the electron had larger
phase space) and the SB intensity vanishes unless
the second-order matrix elements for plasmon
emission differ for the electron and hole. These
matrix elements do in fact differ, since they in-
volve electronic recoil energies. In the present
calculation the inclusion of recoil is essential;
otherwise vertex corrections reduce the SB intensity
to zero. Recoil and plasmon dispersion are in-
cluded here. The results are consistent with the
work of Beeferman and Ehrenreich, who demon-
strated that electron-hole interference sharply
reduces electron-electron interaction effects in
interband absorption spectra of simple metals.

The model Hamiltonian is defined in Sec. II. In
the usual way, the electron-plasmon interaction is
eliminated to lowest order by a canonical trans-
formation. The new quasiparticles are "dressed"
electrons and holes, surrounded by polarization
clouds (plasmon wave packets). Optical absorption
is computed by transforming the electric dipole
transition operator in the same way as the Ham-
iltonian. The new transition operator contains a
term corresponding to the plasmon SB. Absorption
intensities including vertex corrections are com-
puted in Sec. III, followed by a brief discussion of
the results and the optical absorption data near the
plasmon frequency.
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II. MODEL HAMILTONIAN HEM —-Xi S(d~&(a&i&az&+ p) . (6)

H, = —(e/mc)p„, A (2)

in terms of the vector potential (transverse gauge)

2~@ 2 f/2
A=K q; (a- +a- ).

q& qX

Here a~
~ and a- are creation and destruction op-

qA,

erators for a photon of wave vector q, polariza-
tion vector q-, and frequency ~- . The effective

qX
momentum operator for nearly free electrons is

p„,= —kK V-„Z [~(p-K) —~(p)] 'c'- -„c- (4)

to lowest order in VK, the Fourier transform of the
optical pseudopotential for momentum transfer
—SK,

Since the photon wavelength is large compared
with the lattice parameter, the plane-wave factor
exp(iq. r) is omitted in (3). The normalization
factor in this equation. is such that the energy den-
sity (E + B )/6m= jg~;„when there is one photon

(q X) in the unit normalization volume. The Ham-
iltonian for the EM field is

I introduce a simple model of an alkali metal
containing electron-photon and electron-plasmon
interactions, omitting the short-range (k& k,) part
of the electron-electron Coulomb interaction, and
terms quadratic in plasmon operators [random-
phase approximation (RPA)]. The long-range part
of the Coulomb interaction is retained (k & k,) lead-
ing to the existence of well-defined plasmons cou-
pled to the Fermi sea of electrons by a linear in-
teraction. This approach, due to BP, succinctly
isolates the essential physical content of many-
body perturbation theory. As noted in the Introduc-
tion, the theoretical conductivity may also be der-
rived by summing Feynman diagrams, for small x.

%e begin with the electron gas Hamiltonian

HO=K ((p) c-c-+2 Z U-(c-,- c-, - c-. c- N), -
p p „k p+k p'-k p'

p pp'4Q
(1)

where e(p)=k pa/2m is the free-electron disper-
sion, U-„=4mea/k~ is the Fourier transform of the
Coulomb interaction, and N is the number of va-
lence electrons. The normalization volume has
been taken as unity, and spin has been omitted.
The ct and c- are creation and destruction opera-

p p
tors for an electron of wave vector p. In the sec-
ond term of (1), the electron-electron interaction,
the k=0 contribution is cancelled by the uniform
background of positive charge.

To treat electromagnetic absorption, we must
couple the electrons to a momentum sink, the lat-
tice of positive ions. Corresponding to a vector
K in the reciprocal lattice the interaction between
electrons and photons is written as

Note that I do not include the effect of the ionic
pseudopotential on the electron dispersion, but only
on the wave function in lowest order (so that ab-
sorption of light is possible). Since for alkali met-
als the FS is very nearly spherical, and since al-
lowed optical transitions are vertical in a reduced
zone scheme, band-structure effects near the
boundaries of the Brillouin zone (BZ) are unim-
portant here.

Following BP 1 introduce field variables Q-„ to
explicitly describe the collective (plasmon) degrees
of freedom in the electron gas. Hp is then replaced
by the model Hamiltonian

Hgp=HO+2 & II g Z & U II C» C
f/2

k -k kkpkp
k &kc k & kc

(6)
in terms of p;, the momentum operator conjugate
to Q„-; k, is the maximum wave vector for well-
defined plasmons. The introduction of k, /6v new
coordinates requires the same number of relations
(the BP subsidiary conditions) for the wave func-
tion of the electronic system; these relations guar-
antee that (6) and (1) have the same eigenstates.
I omit these relations, an omission ultimately
justified —for small x,-by the agreement of this
theory with diagrammatic perturbation theory. The
complete model Hamiltonian is

Ha~+ HEM+ H

To see that H» describes a system of coupled par-
ticles and fields, apply the first BP canonical
transformation22 generated by the operator

S, = Z U- Qc- -c- .1/2 (6)
k &kc

The transformed electron gas term

H(f) e-(Sf/0 H )sf/0»-e ape

contains terms corresponding to independent par-
ticles [of energy e(p)], free plasmons of energy
S~~, and the desired linear electron-plasmon in-
teraction

Uf/2 P

c

X C ic (bi+ b f) 1 (9)

where the b» and 5k-, boson creation and destruction
k

operators for the plasmon field, satisfy the rela-
tions

Q-„= (&/2u)~)'~ (by+ b „-) . (10)

Also contained in H~~ are terms quadratic in plas-
mon operators and short-range electron-electron
interaction; these terms are omitted for small r,.

Optical excitation of a plasmon and an electron-
hole pair by the absorption of a single photon may
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be represented as a two-step process, generated
by successive application of (a) the electron-photon
interaction H„and (b) the electron-plasmon inter-
action H„„. In diagrammatic language the photon
creates an electron-hole pair in the metal; either
the electron or the hole then emits a plasmon. In

the present method we consider the interaction of
the total charge density of the pair with the plas-
mon field. To do this we must first eliminate the
electron-plasmon interaction to lowest order by a
second BP canonical transformation' generated by
the operator

2 @ 1/2

yk (Ac k

x[b((d.,+5k'/2m -hk p/m)]
' b-„c';;„c;+H. c. (11)

In the new representation

H(2) &S2/ h H(1) gS2/h
gp —e ape

contains a term corresponding to independent par-
ticles of energy e(p) and a free plasmon term with

Su~ replaced by~'

5(()„-= h(()& (1+Sh k pz/10m &L)&+ ~ ~ ~), (12)

the plasmon dispersion in RPA. The quasiparticles
I

are mixed states of the electron and plasmon fields
in H». As a result, the quasiparticle state vector

)
e-' 3/)) -j

g
))

~ y
.0)

where 0 denotes the plasmon vacuum, and g;, the
wave function of a bare electron inside the FS, has
a nonvanishing matrix element of the dipole oper-
ator p,«with the electron-plasmon final state

2/ e-i g/ (i4)

where Ip —K-kI )Pz, which nominally contains a
single plasmon of wave vector k. We now compute
this matrix element.

III. SB INTENSITY

It is convenient to transform the electron-photon
interaction twice, as we did H». In the new
"quasiparticle" representation we have

2 1 fS l/h H gS1 h )S2/h
y

—e e

= Hr+ Hss

to first order in plasmon operators. Hz produces
the main band (MB) or interband absorption. The
new term is

+i(~)&/2 e Q b
I E(()E M(p) M(p-k)

m;; rm Ifrd-w c(p —K —8 —((p —(() Irrd- —((p ) r e (p —k) )
x (a-, + a'- ) (bI+ b -) c-'- - c-, (16)

where
M(p) = —S(K' q-„) V"„/[~(p —K) —e(p)]

is the matrix element of p,« ~ q~)„[see (4)]. It is
evident that H» makes possible the event: photon- electron-hole pair + plasmon; thus the plasmon
SB is generated by Hss. The MB absorption is un-
changed by electron-electron interaction in this
lowest-order theory. In reality both the MB and
SB intensities are renormalized by a Debye-Wailer
factor due to plasmon zero-point motion, in order
to satisfy the f sum rule. To achieve this we would
have to keep all terms in (15); doing so would not
significantly affect the relative SB intensity.

Note that H» contains two matrix elements Uk'-

and VK and two energy denominators, correspond-
ing to the fundamental interactions H„» and H, .
Charge cancellation is manifest in (16); if the di-
pole matrix elements are assumed constant, the
SB transition amplitude depends essentially on the
difference of recoil energies for the electron and

hole, and vanishes if recoil is omitted. In Ref. 23
the hole term was restricted by the requirement
Ip —kl & p~ for final-state interactions. In the
present paper the electron can also emit a plasmon

before interacting with the photon field, and the
prior restriction is lifted. Here I assume M(p)
=M(p -k); only then can the phase-space integra-
tions be handled analytically. Comparison of the
results with those of Ref. 1V obtained by numerical
integration lends suppor t to this approximation, as
discussed below. This simplifying assumption, the
same as that of Brouers in the x-ray case, ' ' also
reflects a desire to emphasize the role of charge
cancellation in reducing the SB intensity. The
quantity

1
h(0-+ e(p —R -k) —e(p —K)

k

1 2

n(g„—a(p)+ e-(p -k)
is essentially the dynamic form factor for the elec-
tron-hole pair; the square of the first (second)
term is the form factor of the electron (hole), while
the cross terms contain the interference effects
sought.

The optical conductivity ass((()), corresponding to
the event photon - electron-hole pair + plasmon is
computed from the Golden Rule. For 1 photon per
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unit volume, of frequency &, the rate of absorption
due to (16) is

I( )=—„-'Z l(p-K-»I„- 0;,lII-lp 0; I;„)
yk

x 5 (h(o —g(p —K-k)+ e (p) —I(oI) (17)

in which p&p~, k&k„and lp —K-k l&p~, using
the occupation-number representation for the plas-
mon (k) and photon (q X) fields; an electron at p
is excited to p —K -k. For cubic crystals we may,
without loss of generality, take the photon polariza-
tion vector to lie along the direction of the x axis:
K g;„=K„. Energy is conserved in the absorption
event, according to the equation

m(o= e(p —K-k) —~(p)+h(o- . (16)

Momentum is also conserved: —K= (p —K -k )

-p+k; the lattice supplies the momentum -5K,
and the photon momentum is negligible. The power
absorbed in the metal is

P = o,a((o) ( E'), (IS)

where (E ) is the mean-square electric field in the
state 11;„). Equating (19) to I"(&)0&, and using the
relation (E ) =4vt+ derived from (3), we have the
result

osa((u)

ve g, Ufh(gI M(p)
m'(g -- 2, h(u-+ ~(p —K —k) —e(p —K)yk k

M(p-k)
h(o; —~(p)+~(p —K-k)

x6 (@~—q(p -K -k)+ q(p) -e(g;) . (20)

For comparison purposes I also compute o„a((u),
the optical conductivity in the one-electron approxi-
mation. The transition rate now involves the ma-
trix element(p —K; 0+, IHz Ip;1+), andenergy con-
servation is written as flu&= e(p -K) —e(p). The re-
sult is

c,(~)= Z lM(P)l'6(@~-e(P-K)+e(p)),
rn & p&p

(21)
the well-known result for interband optical observa-
tion in a nearly-free-electron metal. a To obtain
the total absorption one would sum over reciprocal-
lattice vectors K and multiply by 2 to account for
spin degeneracy, in Eqs. (20) and (21). Here we
are interested in relative transition strength; the
coupling constant for plasmon emission by either
the electron or hole is given by

y= Z 2@
= e'k, /van~=0. 17m, , (22)

a&~, 2@~p

which is about unity for the alkal. i metals. As noted
previously, 0' the BP approach leads to a theoret-

ical conductivity which may be interpreted as a
perturbation-theoretic result, with III and II
the relevant interactions.

Now consider the contribution Isa(p) of an elec-
tron initially at p, near the (110) BZ face, to the
SB intensity. Integrating (20) over photon energy
we have

SB

1
X

@~f+e(p —K —k) —e(p -K)

I 2

S~f - e(p)+ e(p - k)

in terms of the contribution of the same electron
to the MB intensity

(
ve' IM(p)l'
m' e (p - K) - e (p)

' (24)

The simplifying assumption M(p) =M(p -%) has
been made in deriving (23), and ~a/we a = e~/
(ez+h&o&) is, approximately, the ratio of photon
frequencies in the MB and the SB; the Fermi en-
ergy ez = Sap~~/2m. The prime over the sum in

(23) is a reminder to include only those final states
of the electron which lie outside the FS: Ip-ig —ki
&p~; we also require k&k, .

To evaluate (23), first rewrite it in terms of the
plasmon dispersion (12)

k&I= ep [ p(2+ p)+ l. 2 p '(2+ p)
' x + ~ ~ ~ J, (25)

E(p) —=I (P)/I (P) ='Y(1+ p)-3 I

'
I I(p), (26

&2+ PJ

where ~p„=K-2p~=0. 28 p~, and the phase-space
integral

1 e g(X)

du+
~

«
~

du)

X
[(1—axe+ cx )(1+bxlj, + cx )]

~+

I(P) = 2P
i

dx
~0

(27)

in terms of p, , the cosine of the angle between k
and K. Here

y = 6+1-p ~ K/P~K (26)

is the distance, in units of p~, of the initial-state
wave vector p from the (100) BZ face. Since
ipi &pz, y& 5. Now IM(p) I2 "y, so we are main-
ly concerned with initial states near pz =-pzK/K
in (20) and (21). Thus, we may assume that the angle
between p and k is approximately given by the an-

where p= k,/pJ„x= k/pI„and k~~ = p(2+ p) e~. Then
we have for E(p), the relative SB intensity due to
an electron at p,
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Rb

Cs

1.0
1.5
2.0
3.0
1.0
1.5
2.0
3.0

1.0
1.5
2.0
3.0
1.0
1.5
2.0
3.0

(1+P) '

0.266
0.266
0.266
0.266

0.238
0.238
0.238
0.238

0.231
0.231
0.231
0.231

0.222
0.222
0.222
0.222

0.226
0.237
0.245
0.263

0.243
0.257
0.264
0.284

0.249
0.263
0.270
0.290

0.256
0.269
0.278
0.299

0.014
0.016
0.018
0.020

0.013
0.014
0.016
0.019

. 0.012
0.014
0.015
0.018

0.012
0.013
0.014
0.016

gle between IY and k, namely cos 'y, . The factor
(1+ P)~ in (26) is the photon frequency ratio ~s/
~ss introduced in (23). The recoil denominators
in (27) involve

a= 2(1+y)(sz/h&~) = 2(1+y) P'(2+ P) ',
b = 2(1+ &- y) P'(2+ p) ',
c= 2. 2P i(2+ P)

i .
(29)

The term cx~ contains the recoil energy, in units
of h+~, of the electron or hole in their respective
rest frames; —axe. and bxp, are the correspond-
ing Doppler shifts. The plasmon dispersion is
also contained in cx~. Finally, for x&y the final
states p & p(x) are blocked by the FS, where

V(x) = (x'+ y'+ 2y)/2(1+ y). (30)

The relative SB intensity (26) contains charge-
cancellation effects. This is to be compared with
the relative intensity Eo(p) omitting interference.
By leaving out the cross terms in (23) we find the
result

Eo(P) =E.i(P) +E..i.(p)
where

E.i(p) =) (I+ J3) 'f„(p),
Eh.g.(P) =)'(I+ P) 'fh. i.(p),

(31)

(32)

are the contributions to Eo for an unscreened elec-
tron and hole, and

TABLE I. Relative intensity E(p) of the plasmon SB
due to an electron initially at p. The distance of p from
the BZ face is ypz, (1+P) 2 is, approximately, the ratio
of the photon frequency in the main band and in the SB,
and Eo(p) is the relative intensity omitting charge cancel-
lation. The latter reduces the intensity by more than an
order of magnitude.

Eo(p) & 2y(l+ P) = 0.4 . (34)

Here the electron and hole contributions are identi-
cal, and there is no interference. In establishing
the upper bound I have used the fact that axe. &cx~

over most of the region of integration.
It is convenient to expand the denominators in

(27) and (33) in powers of the Doppler shifts. The
expansion parameter is

~=-'("f)a&I ')'"/(I "e')
= (-,') 'i'(2+ 5)/(2+ 3. 2P) = 0. 2 . (35)

Terms odd in 4 are sharply reduced by cancella-
tion, since the region of integration is nearly sym-
metrical [as it would be were p, (x) set equal to
unity]. The leading term, of order &, is non-
vanishing in (27) and (33). By actual computation I
have found that the leading term is within 10% of
the exact result. For the present purpose, that of
establishing the role of charge cancellation, the
Doppler terms may be omitted altogether.

IV. DISCUSSION OF RESULTS

The relative intensity of the SB, Eq. (26), was
computed for the alkali metals Na, K, Rb, and
Cs. The results are given in Table I, together
with results obtained by omitting charge cancella-
tion. As explained above it is sufficient to omit
the Doppler terms, which amount to a 10/~ correc-
tion; then the phase-space integrals (27) and (33)
are standard. My primary interest is to emphasize
the role of electron-hole interference, omitted in
Ref. 17. The results for E(p) and Eo(p) are given
for three values of yp~, the distance of the initial-
state wave vector p from the (100) BZ face. The
dipole transition strength IM(p)I -y ' andy &&.
Both F and I'o vary slowly with y and r,. The factor
(1+P)

2 is the (approximate) ratio of the photon fre-
quency in the MB and in the SB.

Although the electron-plasmon coupling constant
(22) is about unity for the alkali metals, recoil
and dispersion (the term cx in the phase-space in-
tegrals), the frequency ratio (1+P), and the ex-
clusion-principle restriction I p —K- k l &P& com-
bine to reduce the relative SB intensity Ez to about
25%. This is consistent with the e'arlier calcula-
tions of Lundqvist and Lyden ~ who omitted inter-

f„(p ) = (1/2P) ( f, dx f, d p+, f dx f, )

xdp[1-axp+cx'] '. (33)

The phase-space integral for the hole fh„~(P) is ob-
tained by the replacement -axe, —bxp, in (33). To
estimate Eo(p) we omit recoil and dispersion and
set p, (x) = 1, ignoring for the moment the exclusion-
principle restriction in the final state. This leads
to an upper bound for the intensity
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ference; their numerical work did not include the
several approximations contained in my work. The
semiquantitative agreement of Il 0 and the relative
SB intensity in Ref. 17 supports the simplifying
assumptions; namely, (i) M(p) =M(p —k); (ii)
Doppler shifts in plasmon emission may be omitted,
and (iii) band splitting at the BZ edge is unimpor-
tant.

Electron-hole charge cancellation, contained in

E(p), reduces the SB intensity by more than an
order of magnitude. Thus, as in the analogous x-
ray-emission case, 0 the integrated SB intensity is
only a few percent of the main band oscillator
strength. This result is consistent with the conclu-
sion of Beeferman and Ehrenreich that electron-
hole interference severely diminishes the observa-
bility of electron-electron interaction effects in the
optical spectra of simple metals.

There remains the thorny question how to inter-
pret the satellite structure in the absorption data
of alkali metals. ' The observed satellites have
intensities about one order of magnitude greater
than the computed plasmon SB intensity. Thus it
is important to consider alternative mechanisms

which can lead to absorption structure near the
plasma frequency, such as dynamic screeningis, &6

for small k &0,. As mentioned in the Introduction,
this intraband mechanism involves disorder scat-
tering, due to phonons or impurities; specific cal-
culations would be helpful. One expects the SB
intensity and shape to depend sensitively on temper-

. ature or impurity content in this case. An accept-
able mechanism for the SB must be capable of
showing why the SB is so much stronger in Cs '
than in Na and K.

In conclusion I have shown for a simple model of
the alkali metals that electron-hole interference
reduces plasmon SB intensity by more than an order
of magnitude. These results are inconsistent with
recent interpretations of pronounced satellite struc-
ture in the optical data of alkali metals.
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