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The fine structure of the lines appearing in the 21500-cm absorption band of Mn in ZnS
has been studied in great detail. We show that the three sharp zero-phonon lines at 21242. 5,
21238, and 21233.5 cm ~ are due to the transitions A&-I'6(E), A&- I'8(E), and A&- I'&(E)
of Mn in T„symmetry, the degeneracy of the 4E level being lifted by the first-order effect
of the spin-spin interaction and by the second-order effect of the spin-orbit interaction. To
confirm these assignments, we performed a uniaxial-stress experiment on these levels by
applying a pressure along the [110]crystallographic axis. We show that the observed splitting
of the degenerate 18 level {23&& 10 cm '/dyn) can be interpreted as being due to the com-
bined action of the induced rhombic distortion and the spin-orbit interaction. Furthermore,
we show that the other sharp phonon-assisted lines of the optical spectra behave like cubicI'„r, and r, levels. Complementary studies regarding the polarization and intensities of
these cubic lines have beenperformed in order to reinforce these interpretations. Finally, we
studied the case of a pressure-induced trigonal distortion and the splitting of the E level of
Mn" in the hexagonal phase.

I. INTRODUCTION

In luminescence the most studied 3d ' ion has
been Mn" incorporated as an activator in various
Az&-B«compounds. However, until recently, the
absence of good crystals prevented a systematic
analysis of Mn" energy levels in these compounds.

Generally, the energy levels of the Mn" ion in
T~ or O„symmetry are determined using either the
theoretical study carried out by Orgel in a weak-
field coupling scheme or the study made by Sugano
-and Tanabe using an intermediate coupling
scheme. In Fig. 1(a) we report some low energy-
levels of the Mn" ion calculated in an ionic model.

In 1965 and 1966, Langer et al. 3' studied the
emission and absorption bands of ZnS: Mn,

ZnSe: Mn, and CdS:Mn. They pointed out not only
zero-phonon lines, but a certain number of pho-
non-assisted lines for all the bands. In addition,
they established the origin of a great number of
phonons participating in the emissions. For Mn"
in ZnS and ZnSe, they deduced the values for the
cubic field parameter Dq and the Racah parame-
ters 8 and C from the experimental spectra. For
Mn" in CdS, only the level T, can be observed,
thus the optical parameters cannot be determined
from experiments. However, while indicating the
original multiplets of the observed zero-phonon
lines, these authors did not explain their struc-
ture.

Amongst all the structures observed in ZnS:Mn,
we studied those appearing in the band A& - E
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FIG. 1. Lowest energy levels
for Mn in ZnS. (a) Levels in an
ionic model where levels E and 4A&

are degenerate. (b) Splitting of
levels 4E and A& by covalency. The
levels studied in this paper are
given in the insert of (b). The split-
ting of the levels is shown on an ex-
panded scale.
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(21 5QQ cm ') and particularly, the structure of the
zero-phonon line (21 2SS cm ), which appears to
be composed of three lines separated by 4. 5 cm '
[Fig. 2(a)]. Simple symmetry considerations show

that these lines can be associated with the three
levels I"8(Z), F~(Z), and I'8(Z). The difficulty
that we encounter is that the level A~ does not ap-
pear in this description of the zero-phonon line.
In fact, Koide and Pryce~ have shown that the de-
generacy of the levels E and A, of Mn" is lifted
by covalency in the case of an octahedral symme-
try. By adapting their findings to the case of a
tetrahedral symmetry, we show that covalency can
lift the degeneracy of levels E and A& of Mn" in
ZnS [Fig. 1(b)].

To support our interpretation of the structure of
level F., we ran experiments under uniaxial

stresses by applying a pressure parallel to the
crystallographic axes [110]and [111]. In the first
case (P II [110])we obtained evidence that the de-
generacy of level 1'8( Z) can be lifted by the pres-
sure-induced rhombic distortion. In the second
case (P ll [111]),applied pressures were not suffi-
cient to permit an experimental observation of the
splitting of level I', (4Z) by the pressure-induced
trigonal distortion. These experiments, as well
as polarization experiments, are reported in
Sec. II.

In the theoretical section, Sec. III, we study
the effect of covalency on levels 'A, and 'E, show-

ing that these levels can be split in the case of
a I'„symmetry. e demonstrate that the splitting
of the 4E level (4E- I'6, I'„ I', ) is due both to the
spin-spin interaction and spin-orbit interaction
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FIG. 2. Spectrometer recordings of some ZnS: Mn

lines of the 21500 cm excitation band for applied pres-
sure parallel to the [110]direction. In (b) a splitting of
the central line at 21 235 and 21250 cm ~ becomes ap-
parent as well as a shift of all lines toward lower ener-
gies. In (c) the preceding l.ines are well separated. The
two lines at 21243 and 21 240. 3 cm ~ appearing in spec-
trum {a) have not been interpreted. All spectra were
taken at 1.5'K.

when 0= 0, and also to the pressure-induced
rhombic field when P il [110]. The dipole strengths
and polarization effects are studied theoretically.
Finally, we give acalculationof the splitting of the
E, level when pressure is applied along the [111]

crystallographic axis.
In Sec. IV we compare the theoretical and ex-

perimental results.

II. EXPERIMENTS

A. Samples and Apparatus

For our experiments we used single crystals of
ZnS of both hexagonal and cubic structure grown
by Eagle Picher. As determined from electron-
paramagnetic-resonance (EPH) spectra, the con-
centration was approximately 0. 1-0.01 mol% Mn"
These spectra also showed that our samples were
predominantly cubic with a 10/~ hexagonal phase,
and that they presented also a number of Mn" ions
in other axial sites. The crystals which served

for the uniaxial-stress experiments were sliced
and mechanically polished, great attention being
given to the faces perpendicular to the pressure.
An interferometer controlled the parallelism of
these faces during the polishing so that the dis-
tance between the two fa,ces was determined with
a margin of error less than 1 p, . The dimensions
of one of the crystals were 8.25 ~2. 85 x1.55 mm;
the cross-sectional area perpendicular to the
[110]direction was (2. 85+0. 01)x (1.55+0. 01)
mm. The dimensions of the other crystal used
in our experiments were 5. 00&&1.25~0. 82 mm;
the cross-sectional area perpendicular to the
[111]direction was (1.25 + 0. 01)x (0.82 +0. 01) mm.

The stress rig was the same as that used by
Schawlow eI; al. except for the removal of the Tef-
lon pedestal. The experiments were performed
either at 1.5 or at 4. 2 K in a glass Dewar, the
sample being directly immersed in liquid helium.
The measurements were performed with a high-
resolution spectrometer (HHS-2, manufactured by
Jobin-Yvon) equipped with a grating having 1200
lines/mm. Almost all spectra were obtained with
a resolution better than 0.4 cm in the investigated
region.

B. Experimental Results

We studied the behavior of the nine sharp lines
appearing in the spectra near 21238 cm ~ (group
A), 21254 cm ' (group B), and 21322 cm (group
C). Figure 2 shows the recordings at three dif-
ferent pressures (Pi! [110])for the A and B groups.
For P=O, the spectra are very similar to those
of Langer and Ibuki. For P= 8x 10 dyn/cm and
P= 16x108 dyn/cm~, a, splitting of the central lines
is apparent as well as a shift of the set of lines.
In Fig. 3, displacements have been plotted in terms
of pressure for the six lines of groups A and B.
We see that the lines of the two groups have the
same behavior in terms of pressure. The dashed
line in this figure indicates the theoretical dis-
placement of one small line whose peak cannot be
determined experimentally since it is situated on
the side of a line of strong amplitude of group A.
The lines for group C being well isolated, we de-
termined experimentally the positions of each of
the lines for this group for applied pressure up to
16x 10' dyn/cm . We have found that the behavior
under pressure for the three lines of group C is
identical to the behavior of the lines of group A
(same splitting and shift in terms of pressure).

Further experiments on the effect of polariza-
tion on the nine lines studied showed that all the
lines which appear at each group were polarized.
In Fig. 4 we give the spectra for P=16x10 dyn, /'

cm for group A and group C. Unfortunately,
under high pressure, the lines of group 8 are too
weak to be analyzed in detail and are partly super-
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P= 36xl08 dyn/cm2

FIG. 6. Broadening
of the central lines
when P II [111]~. T
=1.5 K. The light was
unpolarized.

generacy of levels 'A, and 'E in the case of tetra-
hedral symmetry.

As the main part of the Coulomb integrals comes
from the charge clouds near the nucleus of the
central atom, we replace the radial part of the
13 t2) electronic wave functions by k times the
original ones since they are the only ones which
mix with the 0 orbitals of the ligands. In this ap-
proximation the matrix of the electrostatic inter-
action for the states of E symmetry is given in
Table I, where B =Bpk', 8 =Bpk C =Cpk C
= Cp k ' Bp and Cp being the Racah parameters of
the free ion. The energy of the state
t2( A2) e ( Az): ( A~) is 10B +5C . The notations
are those of Koide and Pryce. The 'A& state is
taken as ref erence.

Assuming Bp = 900 cm ' and Cp = 3600 cm ', we
can find the value of k by fitting the theoretical
energy of the level E(4G) to the experiment. We
obtain k~ =0. 84 and g'( A&) —W( E( G)) =1300 cm '
for Mn" in cubic ZnS. In the following, the slight
mixing of the levels E( G) and E( D) will be
neglected.

pressure. In the absence of pressure, the A&

-4A, transition should give a single level I'8 ( A, )
for the centers in cubic symmetry and could give
two Kramers doublets in the case of a C3„sym-
metry. (We considered this possibility since our
crystal contained hexagonal centers, although only
10% of Mn" centers are situated in sites of hexag-
onal symmetry. )- By applying a pressure, only
the degeneracy of the cubic level I', could be lifted.
Not one particular experimental fact permitted us
to attribute any of the lines appearing between
5000 (20000 cm ') and 4200 A (23 810 cm ') to
level A&. In particular, the behaviors of the
sharp lines of each of the groups A, B, and C
under uniaxial stress are too much alike to enable
us to attribute one or two lines of one group to the
Ag - A~ transition.

B. Levels in Undistorted Crystal Field of Td Symmetry

The Hamiltonian governing the energy levels of
a 3d ion in a site with T„symmetry is of the form

K = Xp + R~+ ACID +XII,
where Xp is the free-ion Hamiltonian and K, is the
Hamiltonian ina cubic field. K„and 3C„are, re-
spectively, the spin-orbit and spin-spin Hamilto-
nians. The levels of Mn" in a cubic field have
generally been calculated by omitting the interac-
tion of the fundamental configuration with the ex-
cited configurations of opposite parity by the odd
potentials. This hypothesis is acceptable since the
Racah and crystal field parameters are obtained

III. THEORY

A. Splitting of Levels Al and E

As indicated in Sec. I, the levels A& and E are
degenerate if only the ionic approximation is con-
sidered. We follow the arguments of Koide and
Pryce to show that covalency can remove the de-

gl oup

P=36~ IO dyn/cm

TABLE I. Matrix of the electrostatic interaction for
the states of E symmetry. B', B", C', and C" are
defined in Sec. IIIA.

group

4E t3(2E)e2(3A )

t2( E)e (A2) 4B' +2C'+BB"+3C"
t', ('A, )8'('E) —2~3 B '

t,'(4A, )e2('E)

—2~3 B'

8BO+ 2CO+6B '+3C '
FIG. 7. Polarization effects for P II [111]. (a) Electric

field parallel to [111]~; (b) electric field perpendicular
to [111]
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by fitting the experimental levels to the theoreti-
cal levels. To our knowledge, the spin-orbit in-
teraction has not been previously studied in detail.
Since Koide and Pryce' have given only qualitative
explanations for the action of this interaction on
the E level, our first aim will be to give a de-
tailed analysis of it.

The first-order effect of the spin-orbit interac-
tion, as can easily be seen, cannot lift the degen-
eracy of the E level. We must take into account
the spin-orbit interaction to the second order,
coupling the E level to the T1 and T& levels, in
order to get the following decomposition:

4Z- I",+r, +r, .
In order to make full use of the symmetry prop-

erties we will work in the spinor symmetry group
T„*. For calculation of the reduced matrix ele-
ments we will use the complex tetragonal compo-
nent system defined by Griffith. '

The detailed calculations are given for the 'T&

and T~ levels which intervene in the calculations
of the dipole strengths. The contributions of all
the levels T» T» T, , and T~ are given in
Table VII.

We can express the quadruplets T1 and Tz in
spectroscopic terms I L, M~ ) in the following man-
ner:

l
ITIMr& = zzzl Fs TIMr)+ &zl Fs TIMr)

+yzlqG TIMr)

I T2 Mr ) = czz
l

Ds T2 Mz ) + i'32
l

Fs T2 Mz )

+yIl G, T M„).

The components u and z of level E perturbed by
K„will be given by

l('E„sM, )'&= l'E„sM, &

3 sz I

+F Z 'P ('F, T„M, —ql(-1)'
i-"1 q=-1

xQ lz, sz, l G, E„SMs)
l IT2, Ms —q) .

p is the spin-orbit constant. 4f and b,
&

are the en-
ergy differences between the E level and the, T1
and, T~ levels. 3C„ is expressed in terms of a
scalar product of the monoelectronic tensor op-
erators of rank 1, lf and s, :

+1

&„=p 2 (- I)' Z l, s
q=-1

where index j refers to the jth electron and q to
the components of the tensors l and s . It is very
convenient to calculate

((4E„sMs) lx„l (qE„S M')')

and

(('E„sM, )'l x,.l
('E„s' M ', )')

in the spinor group.
The matrix elements of K„in the spinor group

T„~ are given by the following general relation:

&rMrzr*MT*Six-lr'M 'J r+ M + ~ S )

=(rstlss. .llr's')q, (, '
/

. 0)1" I' Mpe)

(In our case J or J refer to representations I'*
or I* of the spinor group when they intervene
more than once in the direct products I'&& T1 or
I'xTI. ) The Q~~. are given by Griffith. s Some
0«. used in this section are given in Table II.

The energies of the levels 16, I', , and I', due
to the spin-orbit interaction are calculated from
the following values of the reduced matrix ele-
ments:

( E( G)II&„ll'T ('F)) = -&'T ('F)II&„ll'E('G))

3 +1

+Z 2 ' ( F, TI, SMs —ql(-1)'
f~1 (I=-1 f

xg 7, ,s, l
G, E„SM ) l, T

3 I
p'p ('F, „,-ql(-1)

I Iq=+ I,-I=
xZ lI, sz l

G, E„sMs) lqzT2 Ms q )

l('E„sM, )'&= l'E„sM, &

=+ 10/v21,

('E('G) IIX,.II'T,('F ) &
= —('T ('F )II&„Il'E('G) )

= —2~S/WV.

TABLE II. Values of Q~z. (z. z @ 1~). The notations

are those of Griffith II'ef. 8). The values of Q+J,
(zlzz ( III ) are related to the preceding by Q J J'

(3)2 3p~
2 TI ) —

( i)r+ I'
2) (3(2 3)2 TI ) with ( I)

=-(-1 2=-1.

3

+Z Z ' ( F, T, sM —ql(-1)'
f=1 q=+1, -1 4g

6~2

'T2 r, 4T'( 4y 'T (g) 'T, (')

1 4 1 1 4 .Z 2&2

2~3o ' 2~ 2~3 ' ~ s/Ts

2 lzqsz-ql Gs Eq s)
I ITIq Ms q)

4T 1
2~o

4 1
2~o

2' 3W
s~s j.o~o
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~20 4Er,g 4Er, —g

4r)r7g

~20

4r)r, g

4Er, g

1
3~

TABLE III. Values of IIJJ (r -~,.rr*~„I"'r'*~,*,).
The values of J and J' are given in parentheses.

In this expression, y(r) is the dimension of the
representation I', and V(I', M„) is an operator
spanning the component M& of the representation 1".

For 5 li [110]the nonzero linear combinations of
the stress tensor coefficients are

T2I'6y T21 Ty T2r7y

4T,Q)) r&($) - $ — z, g) -$

4Z (5)g

1 1
sm 3m 4r, (-'.) —.'

4y (5) 8

4r, (g) -5

4T' (j) -$

'&2(Sk 3 3 1
'&2(g) —2 —~ 4r2(2) —

&

W(r.)=k &t k&s,

w(r, )=g;z, +$z, ,

w(r, ) =@-sc,+Pe, ,

with

From these values and from the 0's we get

1
3&2

s:(A,) = (s,t + 2s t,)P,

e(E„)= —(stt —sts)P,

e(Tat ) =+ ss, P/2,

where s,&'s are elastic compliance factors of the
crystal.

It is easy to see that there is no first-order ef-
fect of these deformations on I's, I'~, and 1 s. The
splitting of the I's level is due principaOy to a sec-
ond-order perturbation mixing the E level with the

T, and Ts levels via the rhombic deformations e(Ts)
and the spin-orbit coupling.

In order to calculate the matrix elements of b V

in T~~, it is convenient to use the following rela-
tion which is the counterpart of relation (1) for a
spin-independent operator:

(rJr*M,*
~

v(r" M„.)
~

r'J'r*'M, *,
&

=(I II vI "llr')

with
XII~q.(r Mz"'Is'Mrer I* Mz'e ) )

z, =Z
f

In order to account for the spin-spin interaction
to the first order, we use the equivalent Hamilto-
nian calculated by Pryce

R„„=+P[(I..S)'+ s(1 .5) ,'L(L+1-)S-(S+1)],

with p= -0.834 cm . This operator is diagonal in

Tz*. Explicitly, we get

W(I' s) —W(l s) = W(I' s) —W(I'7) = —8p .

C. Levels in the Distorted Crystal Field F I( [1TO)

We shall consider the case of a pressure P ap-
plied along the [110]crystallographic axis of a
cubic sample and show that the degeneracy of level
I's is lifted.

For Tz symmetry, it is convenient to express
the variation 4 V of the crystal field in terms of
the linear combinations a(r, Mr) of the components
of the stress tensor spanning the irreducible rep-
resentations I" of the symmetry group. Thus, by
using the coupling coefficients defined by Griffith,
we get

nV= Q [q(r)]'~a V(r, M, )e(r, M, ) .
1"Mp

Ii„,(r"M, rr*r'r") = 2 (-I)"'"r
s "rur'

xv(
r' r" l

(-Mr Mz M„"j

TABLE IV. Matrix elements of the pressure-induced
crystal field and of the spin-orbit interaction vrhen P
It t'110]. X and Z are defined in Sec. III C.

I'6p y

1

Fs T

I"8+~

r, + —,
'

——X3
2

3 ZQ

1

0

x (Sr Zr*M, *~ Sr M, M, &

X (SI'M, Mrr, ~Sr'g'r*'M, .&.

The II's intervening in our calculations are given
in Table DI.

Taking into account b, V and 3C„we get the ma-
trix elements given in Table IV. The energy of
the unperturbed I', level is taken as reference.
The eigenvalues of this Bx8 matrix are +-,'IZl and
+-', (Xs+ I Z I

')'~' with
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2
z= ~ p (z„l v(T )IT„(F))h

+ (z„l ~v(T„)
I
T„(~)) E

~f )

l4,~) being the wave function of an opposite-par-
ity configuration (3d4n l ). It is convenient to
write 3R in terms of tensor operators of rank 1:

II = —e(- D.Ik' —Dl k + DB k ),
with

2i
+ ~2- p (E„l6 v(T 2) I TBB(E)) Z

f f

-1+ i3k'= 1 —g3k = k =k,

X=+@KI+@KB.

D. Dipole Strengths: Polarization

First, we shall consider the case of an un-
stressed crystal. For the sake of brevity the cal-
culations will be made only for the zero-phonon
transitions.

For a Sd ion in a T~ symmetry site, the rele-
vant part of the Hamiltonian is

+0+eyen++so++eq &

X „being the even part of the cubic crystal po-
tential. 3C„ is an equivalent even operator aris-
ing, in our case, from the composition of the elec-
tric dipole moment operator 5K with the odd part
of the crystal potential'; /Cps 3{leq is given by'

IK I 4 QQQ) (0 OBB I X 044+ X gdB I @gdB) (40441%
E(3d ) -E(4',BB)

i, j, k being unit vectors along the [100], [010],
and [001] crystallographic axes. From the gener-
al formula giving 3Ce„' we get, in the cubic
axes system,

Xe4(DB)=8494(Dp D 2)+82' (4D2 D p) y

Ã,4(DI) = —84,4'+ 84,4D I+ 82,4D I,
K,4(D I) = —84„DI+84 „D~—BB„DI,

with

B4 eq 1 84eq 2 B2eq 12 2

8, vV ' 8 „v7 ' 8'„v2
we can thus verify that 3C„(DBI), ~„(DII), and
X„(D'I) transform, respectively, as TBB, T», and
T2-1.

It is well known that the Af level of a 3d'ion can
be coupled only with the Tf levels by the spin-or-
bit interaction' '; thus the dipole strength of a
transition I'*( A, )- I'*'( E) is given by a second-
order perturbation:

y [r*('A,)- r '(4z)] = Z Z
( A f)Arly ( E)Nrg 2 (]T )r+Nr2jcd'

„(('A,)r*M,*IX..I (', T, )r*m„*z) ((', T,)r*m, *six„l ('E)r~'m„+, ) '
W( Al) —W(I T, )

with I"*= I', ( A, ), I', ('A, ) and I'*' = I",( E), I",('E),
(4E)
To obtain this relation we have used the facts

that iso and +eq span~ respectively, the Af and T2
representations of the spinor group T„*. The
products of matrix elements can be calculated

easily since
gI

,' I

= [3(2s+ I)]-'12l)(z, s)li(z', s).
i

The dipole strength of a transition I' (BA, )- I"( A, ) is given by a third-order perturbation.
Using the above notations we get

@[r*('AI)- rB('AI)] = ~, ~ & Z ((BA,)r*~r* I&..l
(4T )r*~ * l )

& Af)&r* ~ Af)rs&r*' ~f~f)r*&r+5~2 ~&~f)rs&r* 3&2

x ((', T, )r*M, -,'I ~„I (,'T, )r~, , -', ) ((,'T, )I pg, , —,
'

I ~,.I
('A, )I,M, , )

[W('A, ) —W(', T, )] [W('A, ) —W(', T,)]

x ((I TI)I Mr4& I3c+Ol (I T2)r ~r4~) ( (J T2)r ~r+~l+ I ( AI)rB~r ) [w(BA ) w(4T )1 I w(4A ) (4T )1
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The explicit calculation given in the Appendix
shows that the dipole strength of a transition
I'( A, )- I"( A&) should be roughly 1000 times
smaller than the dipole strength of a transition
I'( A, )- I"( E). The band at 23300 cm ' is not suf-
ficiently forbidden to be associated with the A,
—A, transition.

For Mn" in ZnS it is known from EPB spectra
that the levels I', (8A, ) and I'8( A, ) are separated by
only 23,.6x10 cm '." This splitting cannot be ob-
served in the optical spectra and will be neglected.
Using the 0's and the 0's we get the following
relative dipole strengths for unpolarized light:

y['A, - r, ('z)] = 2, @['A,—r, ('z)] = 3,
6',['A,- r, ('z)] = 5 .

In the case of a stressed crystal (P It [110]), we
must use the eigenvectors of the matrix of Sec.
IIIC; they are given in Table V.

The components of the normalized eigenvectors
will be noted (I'", Mr* ) in the following. The di-
pole strengths Q(v), for light polarized along the

[110]crystallographic axis and the dipole strengths
Q(oq) for light polarized along the [110]crystallo-
graphic axis are given by

Oi(;, )=~so
l

—(I', +-', )+2(I', + —,')+fv 3 (I",+ —,')l'

+~2O 3 '~' (I', ——,')+—(1,+-,')
v'3

+ 3i(r, + —,')+ 2f(ra —~p)

+k I2(r, +-,')-(r, +-,')+f~3(r --.)l,
where the upper signs correspond to O)(v) and the
lower signs to $(o&). For light polarized along the
[001] crystallographic axis, we get

e( )=l l(r +l)+(r +l)l'+ o l(r '-,')+(r, --,')l'.
To obtain these relations we neglected the mixing
of the intermediate levels I(, T,)r*Mr*J') by the
rhombic deformation, this hypothesis being cor-
rect if the spin-orbit interaction is stronger than
aV.

E. Splitting of the "E Level in C» Symmetry

When pressure is applied along the [111]crys-
tallographic axis, the symmetry is reduced from
tetrahedral to trigonal. The nonzero linear com-
binations of the stress tensor are

«(A, )- (sn+2s„)P )

«(T„)= «(T,„)= «(T„)= s44 P/3 .

It must be noted that in this case, the three com-
ponents of T~ intervene, whereas in the case
P II [1TO] only T,~ intervenes.
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Under Cs„symmetry, the E level decomposes
into four distinct levels:

&'B),, -3r, +(r, +r,],
(levels r, and r~ are degenerate, being related by
time-reversal symmetry). We calculated the
splittings in the trigonal axis system, [112], [110],
and [111], using complex basis functions.

In this axis system the variation of the crystal
field is given by

AVc& = (EB2Do+ AB4 Do)s44 P/3

D,' 's are tensor operators defined by Judd. '~ The
matrix elements of X„+AVc3, were calculated
from the eigenfunctions of X, expressed in the
trigonal axis system. They are given in Table
VI where

B= -2V se"'"1,
C = 2W2e""r,

5v3
ps44P Z ~ (, &r') aB,'+ „,&r') ~B4)

TABLE VII. Contribution of the levels T&, 4T2 Tf
and T2 to the splitting of the E level for I'=0. The
Racah parameters and Dq are given in Sec. IV. 4 mea-
sures the separation between the I'6 and I'7 levels [4
= w(r, ) —w (I,) j".

Level
Energy
(cm-') Level

Energy
(cm-') Level

Energy
(cm-')

(P) 'T,

(G1) 2T,

(F2) T1

(G,) 'r,
(H) T1

(H) T1

(F,) 'r,
(z) 'r,

66 680

03 520

40 940

39 480

38 240

36 640

33 330

29 000

Contribution to g
—15.09 cm '

(D,) 'T,

(G1) 2T2

(D,) 'r,
(F2) 'T2

(G2) 'T2

(h) r,
(F,) 'r,
(D3)

(I) T2

(Z) f, r2

72130

53 900

49 290

41 590

40 120

38 790

34 360

32 440

29 660

26 850

(F) 4r,

y) 4r,

(G) 4r,

35 300

26 130

18 410

Contribution to &
2. 08 cm

(F) T2 36 470

(D) 4T2 24 980

(t ) T2 20870

Contribution to 4
0.16 cm"

Contribution to 4
25. 88 cm

Levels are labeled following the convention of Griffith
(Ref. 8) and J. C. Slater [Quantum Theory of Atomic
Stmctuxes (McGraw-Hill, New York, 1960), Vol. 2].

+Z ' ' (~ &r4)~B,')

and

&2

+& ' (k (~')&&i-a (~')~&i))

~=ii (siiz)'(i'i Z ~ ((i') ~as+ii (r )r'ai)'

IV. RESULTS AND DISCUSSION

A. Splitting of 4E Level for Zero Applied Pressure

The computed contributions of all the T, , T, ,
Ta, and T2 levels to the splitting of the E level

are given in Table VII. The energies of the spec-
troscopic terms were deduced from the following
values of the Hacah coefficients:

(& ') ~B,')' a= V30 cm-', C =2880 cm '.

I2
ip-, r ~ (--'( ')aBi', + (r')isa )'ji

I'6k

rk - gx+U

I 7k 18—+2

A —2A

IX+ U 0

I'8k I'6 - k I'7 —k

0 0 C

1 8$ I'8 —-'

—C B

I'3-k

I s

r, -k
r, -k

I'3 —k

(complex conjugate)

A —C —B

U B —C

—)X+ U -A

$X+ U

0 —C

C 0

—2A 0

0 —2A

U -A

TABLE VI. Matrix elements of the pressure-induced
crystal field and of the spin-orbit interaction when P
II [111]. U, A, B, and C are defined in Sec. IIIE. X is
defined in Sec. III C.

The matrix elements of the cubic crystal field
between the spectroscopic terms mere calculated
from the following value of the cubic field param-
eter:

Dq= —420 cm

The length of the calculation was slightly reduced
by noting that the matrix elements of an even crys-
tal field operator are zero when they are diagonal
in the seniority. The larger matrix that me ob-
tained was the 10&&10 matrix giving the T2 states.
The matrix elements of the spin-orbit interaction
were calculated by taking p = 300 cm '.

Of course, there is some uncertainty on the the-
oretical results because the parameters J3, C, and
Dq are not well defined from the experimental
levels ' and because most of the calculated energy
levels cannot be compared mith experiment. In
fact, at least for the T& and T~ levels, the results
do not depend strongly on B, C, and Dq, the split-
ting calculated from the values chosen in a pre-
ceding paper' and from the values given here dif-
fer by no more than 10/g.
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The following general features can be deduced
from Table VII: (i) The contribution of the T~
levels is negligible, W(I'~) —W(I'7) & 0. 2 cm
(ii) The contribution of the T, levels and the con-
tribution of the T2 levels are preponderant.

The over-all contribution to the splittings gives

W(1' ) = —W(I' ) = 9. 18 cm ',
the I 8 level being taken as reference. This value
compares favorably with the experimental value of
the splitting (4. 5 cm ').

B. Splitting, Shifts, and Polarization in the Case P II [110]

First, we shall study the splitting of the I 8 level
and the shifts of the other lines with respect to
their center of gravity. In an ionic model, the cen-
ter of gravity of the cubic lines E is not shifted
linearly by the hydrostatic component of the stress
[Fig. 1(a)]. Detailed calculations taking into ac-
count covalency could explain the observed linear
shift. Knowing the experimental value of X from
the splittings obtained for P=O, we can deduce the
experimental value of Z by fitting the observed
shifts and splittings (see Fig. 3). We get

IZI, , =23&&10 ' cm /(dyn/cm ) .
In order to calculate Z, the part of AV spanning

Tao will be written in terms of tensor operators
D~"' defined by Judd'6:

EV(T20) + [~B2(D ~
—D2)+ AB4(D ~

—D~)]&(T~q).

Evaluating the relevant matrix elements of
AV(TM), we get

z= —4+ 415 pr(7'2, )(+ Z (2&so (r') aa',

+ P &2 (~') ~B', )

of (ee,«/R ) (Sdlr tSd); we will therefore use a
relation given by Blume and Orbach':

(SdI ~13d ) = 0. 28 (Sdl ~'I Sd)/sao

ao being the first Bohr radius. From Dq= -420
cm ', s44=0. 243&&10" cm /dyn,

' and p=300 cm ',
we obtain

Z = 2. 62 && 10 ' cm '/(dyn/cmm) .
Given the crudeness of the model used to obtain
this value, we could not hope for more than order-
of-magnitude agreement with experiment.

Up to now the existence of two cubic sites in our
crystal was not taken into account, these sites
being equivalent for P II [110]. In fact, we have
verified by EPR experiments on the determina-
tion of the spin-lattice coupling coefficients of
Mn" in ZnS, ' ' that these coefficients do not de-
pend on the presence of two cubic sites, or on the
presence of a small quantity of hexagonaL or more
complex sites, this indicating that the pressure-
induced deformations can be calculated indepen-
dently for each center.

However, for polarization studies, the relative
positions of the two cubic sites intervene. We can
obtain one site by rotating the other by 180'
around a [111]crystallographic axis denoted [ill]~
(Fig. 5).

In our experiments, the light beam was in the
plane (110)~ and made an angle 8 = 2V' with the
[lll]~ axis. With n denoting the angle between the
axis [111]~and [001]' we get

$(E ii P)=2@(11)

for light polarized parallel to P, and

$(E l P) =$,[cos (n —8)+ cos (n —8)]

+%&[sin (n —8)+ sin (n+ 8)]

—"W2 (r') ~B'

I2
+Z ', (-', v'30 (~')&Bp —~2 (& ) &Bs)I

for light polarized perpendicular to P. The rela-
tive dipole strengths were calculated for P= 16
x lO' dyn/cm'.

The experimental conditions do not permit a di-

In a point-charge model AB~ and hB& are given by

b, B2= —i 9 v 6e e,~~/R

and

zB42 = x~9 & lo e e.„/R',

TABLE VIII. Theoretical dipole strengths for P =16
x 10 dyn/cm (P II [ll0]). The lines are determined by
the eigenvalues of the matrix given in Sec. III C. The
values given in parentheses are obtained by taking into
account the mixing of the T& levels via the rhombic de-
formations.

8 and e,«being, respectively, the charge of the
electron and the effective charge of the nearest
neighbors. R is the anion-cation distance;
(Sdlx 13d) AB4 can be deduced from the experi-
mental value of the cubic field parameter by

—2I zl

G. 10

(0.64) (0.10)(1.o6)

3@2+
I zi 2)1/2

Eigenvalue line at higher energy +~lZI

Dipole 1.0 0.65
strengths

EII P

3@2+ I zI 2)1/2

line at lower energy

0.25

(o. as)

(e e.„/R') (SdI r'I Sd) = —~gDq .
To our knowledge there is no experimental measure

Dipole
strengths

EzP

0.26

(0.28)

0.44 0.64

(0.56) (0.60)

o.38

(o. 52)
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&i Energy (crn l)
20-

ra,'=a~e e„,/tt'

r B4 = 10 e e„,/tt' .

l0

The shift of the center of gravity of the levels is
proportional to the square of the applied pressure:

U= —6. 6x10-"P' .

ciyn/cm 2)

-i0

-20-

FIG. 8. Theoretical splitting as a function of applied
pressure. Pressure P II [111]~.

rect comparison between the spectra shown in

Fig. 4 obtained for light polarized parallel to P
and for light polarized perpendicular to P, the
spectra being attenuated by a factor 2. 2 for light
polarized parallel to P. The theoretical values are
reported in Table VIG; the values obtained from
the hypothesis of a slight mixing of the intermedi-
ate levels I'~( T, ) and I"8( T, ) by rhombic distor-
tions are given in brackets. These values describe
correctly the polarization effects, in particular,
the relatively small dipole strength of the two
lines at higher energy when E l P; however, the
theoretical dipole strength for one of the two lines
at lower energy seems to be too small. We must
note that the polarization effects are identical for
the groups A and C (in Fig. 4, the resolution is
better for group A than for grouy C, this explaining
the broadening of the lines).

C. Splitting and Shift in the Case P II [111]:Mn"
in Wurtzite

In the axis system defined in Sec. III E, the
amplitudes of the relevant pressure-induced crys-
tal field components are

7 is given by

y=0. 3x10-"@.

(U and Y are expressed in cm ' and P is expressed
in dyn/cm .) The computed relative positions of
the levels are given in terms of applied pressure
in Fig. 8. For P = 36x 108 dyn/cm2, the theoreti-
cal splitting of the I'8 level is roughly 1 cm . This
splitting can hardly be observed experimentally
(Fig. 6).

For Mn in wurtzite the theoretical splitting of
the central line is roughly 3 cm '. (In this case we
calculated U and F in terms of the noncompensated
cubic part of the crystal field defined by Sharma
et at.")

Since all lines of groups B and C are equally
sharp, they cannot be associated with Mn" in
wurtzite. Furthermore these lines do not exhibit
significant polarization effects for zero applied
pressure.

V. CONCLUSION

We have shown that the three lines of each group
A, 8, and C are associated with the I'6( E), I'7( E),
and I'8( E) levels of Mn" in cubic ZnS. By study-
ing the splitting of the E and A, levels and the di-
pole strengths of the (BAN)- ( A, ) and (~A, )- ( E)
transitions, we have shown that the A, level can-
not intervene in the description of the observed
fine structures and that the ( A, )- ( A, ) transition
is very strongly forbidden.
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APPENDIX

Neglecting the splitting of the I'7(~&, ) and I"8(BA,) levels, we obtain the following dipole strengths:

N[('~, )- ('~, )] = 6p'~'(l -~ ~ » &~'
&
E'...++«&~') E4., I'

+ l-PW3 &~'&a', .,+P W6 &~'& a,'., l' l+~ W3 &~'&a', ., -~W6&~'&a', ., l'),
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with

v'30 g o.gy( g p( 4v'42 g a, p, g ~a'p~2, W( Ag) —W() T,), W( Ag) —W(, Tp) 7 ( W( A, ) —W(, T,), W( A, ) —W(, Tp)

and

14, W(sAq) —W(, Tg); W( Ag) —W(;Tg),. W( A, ) —W(, T,), W( Ag) —W(, T~)

@[(8A,) I'~( Z)] 9p ~Q 8 4 (~+~ v 210 (r ) B2„+,'47 414 (r ) B4„)

+Z
W(8A ) 'W(4T )

(qq v'14(r ) B4„)~
i 1 & 1

The z&, p&, y, , zI, p,'. , y,
' are defined in Sec. IIIB. The ratio (r )Bz„/(r )B~~, =9v3/scan be easi-

ly calculated from the general relations giving the equivalent even fields. '~ Numerical calculation gives
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Symmetry of the Far-Infrared Resonant-Pair Mode in KCI: NaCI

T. L. Templeton and B. P. Clayman
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The symmetry of the far-infrared- (44-cm ) active resonant Na'-Na' pair mode in KCl: NaCl
has been determined by stress experiments to be tetragonal.

I. INTRODUCTION

Impurity pair modes have been observed in the
all.owed phonon bands of several alkali-halide sys-
tems: a single infrared-active absorption at
44 cm ' due to Na'-Na' pairs in KCl: NaCl, ' a
Haman-active scattering peak at 47 cm due to
Ag'-Ag' pairs in NaCl:AgC1, and, most recently,

five infrared-active absorption lines at 32. 7, 38.0,
40. 2, 44. 7, and 48. 4cm due to F -F pairs in
NaCl:NaF. ' A knowledge of the site symmetries
is essential to an understanding of these pair
modes.

By applying uniaxial stress to KCl:NaCl single
crystals along the high-symmetry directions, the
Na'-Na' pair-mode frequency is observed to shift


