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We attempt to determine the binding energy and the wave function of the ground state of an

electron that is attracted to the surface of an ionic crystal by its image potential and is re-
pelled from the interior of the solid. For ionic crystals, such as LiF, theelectrostatic theory
is inadequate and the solid must be treated as a dynamical system. For shallow levels, the

correction to the electrostatic approximation is small and behaves asymptotically as@, where

g is the distance from the surface. The mass of a shallow electron is not enhanced. For
deep levels the ground-state energy is calculated by a variational procedure in the limits of
both weak and strong electron-phonon coupling. For the ground-state energy of an electron
trapped on the LiF surface we find the value —0.29eV. The mass of the deeply bound elec-
tron is enhanced.

I. INTRODUCTION

Let us consider an insulator which has a bottom

of the conduction band above the vacuum level

(Fig. 1). An electron outside the insulator induces

positive charges on the surface and is attracted
to it by the force whose potential is'
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where q, is the static dielectric constant and z is
the distance of the electron from the surface which

is considered to be a plane. For sufficiently low

energy the electron cannot penetrate inside the in-
sulator.

Cole and Cohen '3 worked out a theory of the sur-
face states which are induced by the potential (1)
and applied it to atomic and molecular insulators

—EB ntiol

FIG. 1. Image potential of the electron outside an

insulator.
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such as He, Ne, H~7 and D&7 both solid and liquid.
In these materials q, —1 is small so that the sur-
face states have small binding energies ranging
from 0. 39 meV for liquid He3 to 21.9 meV for
solid D2. The polarization is electronic and is
associated with the excitation of virtual electron-
hole pairs across the energy gap of several elec-
tron volts. Therefore the conditions for the valid-
ity of the electrostatic approximation (1) are sat-
isfied in the work of Cole and Cohen.

In this paper we shall study the problem of the
surface states in a situation for which the energy
of the surface-bound electron is not negligible in
comparison to the energy of the polarization quan-
tum (e.g. , LiF). Here the polarization has two
components, an electronic one and one associated
with the displacement of the ions. To estimate
the ratio of the binding energy and the longitudinal-
optical-phonon energy we use for LiF q, =8. 65
(at 77 'K) and ~~ = 0.08 eV for the optical-phonon
energy. The ground-state level of the electron
in the potential (1) is —0. 5 eV, provided the wave
function vanishes at the surface (hydrogenic ap-
proximation '~). The conclusion is that the elec-
tron moves too fast for the ions to follow its mo-
tion and the electrostatic approximation is not ade-
quate for LiF. Obviously, we are dealing here
with a surface polaron. We need a theory which
treats the dielectric as a dynamical system. In
Sec. II the Hamiltonian for the surface polaron is
derived. As in the case of the bulk polaron in an
external field, various situations are possible de-
pending on the values of s„e„(optical dielectric
constant), and h&z. In Sec. III we study the weak
electron-phonon coupling for both shallow and deep
surface states. The subject of Sec. IV is the
strong electron-phonon coupling. The theory is
applied to LiF for which numerical values of the
ground-state binding energy and of the character-
istic dimensions of the wave function are calcu-
lated.

II. HAMII. TONIAN

The Hamiltonian has three parts: electronic,
one describing the dielectric in the absence of the
electron, and electron dielectric interaction. The
electronic part has the form

P~ e2E ]
Hyg 2 4 7 8 0

here E„=(q„—1)/(q„+ I). The dielectric fills the
half-space z& 0. It is assumed that the electronic
part of the polarization can follow the electron
adiabatically and therefore formula (1) is appli-
cable to it. In LiF the forbidden gap is 13 eV,
while the binding energy will be shown to be around
0.3 eV. We also assume that the potential dif-
ference Vo between the vacuum level and the bottom

M~ = 2(~z. +&r)~3 1 2 3 (4)

where M~ and +~ are the frequencies of the bulk
longitudinal and transverse phonons (see Fig. 2).
The bulk phonons also belong to the excitation
spectrum of the dielectric but it has been shown

by Sunjic and Lucas and by Mahan, ' that the bulk
optical-longitudinal phonons give rise to zero elec-
tric field outside the dielectric and therefore do
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FIG. 2. Phenomenological model of the dielectric is
fully characterized by the values of three parameters e„,

and

of the conduction band is much larger than the bind-
ing energy. For LiF, the photoemission experi-
ments and the band-structure calculations show
that Vo=2-4 eV. Therefore, the electron spends
very little time inside the dielectric and we may
simplify the problem by replacing the step V~ by an
impenetrable wall. This approximation is dis-
cussed in detail by Cole. s

The dielectric is treated as a continuum and its
Hamiltonian can be written as a sum of independent
oscillators corresponding to its eigenmodes. It is
well known from the work of Ritchie and Stern and
Ferrell7 that the surface of a metal can support
a new kind of excitation —a surface plasmon. Sim-
ilarly, there exist surface optical phonons which
propagate along the surface of a dielectric. The
theory of the surface phonons has been worked out
by Fuchs and Kliewer. Following their work we
have for the polarization associated with the sur-
face modes

Pg Pg (tKxe & fKy8, K8 (&)

where & is a two-dimensional wave vector perpen-
dicular to the z axis. If the surface has a shape
of a large square (L&& L) and periodic boundary
conditions are imposed, then the allowed values
of z are (2mn/L, 2wm/L) with n, m integers. p is
a position vector of a point on the surface. The
frequency &, of these modes is given by the follow-
ing formula:
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not couple to the electron which does not penetrate
inside. The transverse modes have zero polariza-
tion charges both in the volume (divP = 0) and on the
surface (P„=0) and do not give rise to an electric
field. Thus, the phonon part of the Hamiltonian
can be written as

H h
= I a&a~a

keeping only the surface phonons. g~& and g„- are the
creation and destruction operators for the surface
phonons, obeying the usual commutation relations
[a;, a2 ]= 522, , etc.

The interaction between the electron and the
polarization field is

(6)lr' -rl
where r is the position vector of the electron. In
terms of the creation and destruction operators
the interaction can be written in the form '"

)ea 1/2 -gg

a„,=2vil2
' Z ~ (e-"'al-e"' a,)

I 26S(g, g
(7)

where S=I. is the normalization area, z is the dis-
tance of the electron from the surface, and g is
given by

2v/5a&, = E, —E„,
where E, = (z, —1)/(z, + 1). The total Hamiltonian
H is the sum „+H,„+0„,.

We define the coupling constant in analogy to the
bulk polaron'~:

a.= e2(E. -E.) (m/2n2~, 9~2 .

III. WEAK ELECTRON-PHONON COUPLING

I
I'y'

= lE — y(z),
2m

(12)

y =(k —~) —g (E —)t(u, ) .

E is an eigenvalue of H which for a given k has a
discrete spectrum.

Instead of the system of the coupled Eqs. (12)
and (13), we can get a closed equation for y by
solving Eq. (13) for cz in terms of y and substitut-
ing into Eq. (12). The calculation goes according
to the method of the variation of constants. ' The
resulting equation for y has the form

12dzq e E mV e "' r(1 —Z')

2m dz 4z h 2 v y

&&

l,Wz, &(2(2yz) e "mz, gg2(2g)e(g)dt;
0

+Mr yg2(2yz) v))a) &&)w2( ) f))d

(
II').')) (14)

where E= me E„/4' y and Wz, &2 and Mz, &2 are
Whittaker functions. '2 Equation (14) is too diffi-
cult to solve exactly but approximate solutions can
be obtained in the cases of shallow and deep bound
states.

d e E 3 82y2
iv ~ P(z) —

2
2+ 4

"lc2(z)= — c2(z),
K 2mdz 4z ] 2m

(13)
where

V = 2v(le /26Sa&, )'

In the weak-coupling limit' (first order in a, ),
we restrict the Hilbert space to include only the
zero- and one-phonon states. We write the state
vector corresponding to the total momentum R

parallel to the surface in the form

lq)=y( ) "'lo&+z; ( )
'" "' 'lo),

(lo)
where I 0) is the phonon "vacuum" and the func-
tions rp(z) and c2(z) are to be determined. Since
the probability for the electron to be on the sur-
face is zero, we have the boundary conditions

9 (z=o)=o, c,(z=o)=o.
Putting the expression (10) into the Schrodinger
equation, and equating the zero- and one-phonon
components on both sides, we get a system of
coupled equations for q(z) and c2(z):

p(z) —iVZ c-„(z)
ff2 dzq (z) e'E . e "'
2' dz 4z a

A. Shallow States

If the binding energy of the electron E~ and its
kinetic energy along the surface are considerably
smaller than the surface phonon energy then we
expect the electrostatic theory based on Eq. (1) to
give an adequate description of the system. Even
if the condition E~ «~, is not satisfied for the
ground state it will be valid for sufficiently high
excited states. The question arises: What are
the corrections to the potential (1)?

Because of the exponential dependence of the
electron-phonon matrix element, Eq. ('7), only
the phonons with the wave vector g ~ zo' will ef-
fectively interact with the electron; zo is the aver-
age distance of the electron from the surface.
Thus, for a shallow state, z «y=(2m&v, /S)~~2. We
also assume that the momentum of the electron
along the surface is small: k «y. We are inter-
ested in the corrections to the electrostatic image
potential for distances z of the order of z&. Then
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the arguments of the Whittaker functions in Eq,
(14) are large and we may use the asymptotic ex-
pressions"

me E„ 1Mz, ) z(2yz) =
~(1 )

e"'(2yz) 1+

(i.5)

li z 1/2(2yz) = e "'(2yz) 1 + 2 ) (16)
me 8„1
8 y z

where the fact that K«1 for shallow states was
also used. The integrals in Eq. (14) have expo-
nentials e" and e "'. Therefore they can be ap-
proximated by the following asymptotic expressions:

f f(g)e"' dl =(1/y) [f(z) —(1/y)f'(z)

+ (1/yz)f "(z)]e"', (IV)

f" f(r)e "'dK =(1/y) [f(z)+(1/y)f'(z)

+(1/y )f"(z)]e "' . (18)

Using the asymptotic approximations in Eq. (14) the
summation takes the form P&e

"' x (slowly varying
function of ~). The slowly varying function is ex-
panded into a Taylor series. Keeping only the
terms leading to corrections of the order Zze/h~,
or lower in the effective wave equation, we get

2m P'~ g$
(p ~ (p +

2m 4z 8 8m~ p z

Semor, 2m z 16gm w, z z

zs,. (p) =(z-2 )z. ()9)

The first term in the square brackets combines
with the image potential of the electronic polariza-
tion to give the electrostatic image potential. The
second term contains the energy and in order to
put the equation into a form of an eigenvalue prob-
lem we bring it to the right-hand side and multiply
the equation by 1 —(E, —E„)e /4R(dz. As a result
we get

r
p.' e'E. . (E.-E„)e' 1 I'u'

4
+&

8 s Pz9'

(20)

In the process of obtaining Eq. (20) a term was
dropped which contains (8, —E„), which makes it
proportional to o, Equation (20) has a form of a
wave equation but its "Hamiltonian" is non-Hermi-
tian. We introduce the renormalized amplitude I'

(z. —z.)8')
8I(o,z

In terms of E, Eq. (20) takes the form

I'p, E a(E. -E„)e' 1 h'k'')
&

l,2m 4z Bm(u, z 2m )
(22)

As we expected, the effective potential is essential-
ly the static image potential plus a correction of
the relative order a, r„,/zo, where r„,= (5/m&u, )' '
«zD, the average distance of the electron from the
surface. It must be emphasized that we neglected
terms of relative order n, so that the condition of
the validity of Eq. (22) is not only the smallness of
a, (weak coupling) and r„,/zo«1 (shallow states),
but also c(,«r~, /zo.

The image charge is a point charge in the static
limit. When the dielectric is treated as a dy-
namical system, the image charge will no longer
be strictly a point and deviations which occur are
described by the correction term in Eq. (22). This
term vanishes in the static limit &,- . The use
of asymptotic expansions renders Eq. (22) inap-
plicable for z & ~~, . Although this region is small
in comparison with the dimensions of the wave
function, the singularity 1/z' is so strong that the
term cannot be treated by perturbation theory.

8. Deep States

When the binding energy is larger than the sur-
face-phonon quantum, the electron moves too fast
in the z direction for the ions to follow its motion.
The situation is better described by saying that the
ions adjust their positions to an average field of the
electron (averaged in the z direction only, how-
ever). We are still treating the weak coupling
case and use the ansatz'

~ g) = p(z) (e'"'+Z- c-"' e'~ ""a-~ 0)) . (23

y(z) and cI') are to be determined variationally.
For a given y we can define an effective Hamilto-
nian

8 eE„S 8 9
2

— "
9 - a+ 3 +@~.~a-.'aa

D . Q I), 2m Bz 4z 2m ex ey

3 i/8
+2' dzq+ z e-"'q z e "'at-e'"'a~ .

26SQ) s % K
(24)
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This is a Hamiltonian of a two-dimensional polaron
where the electron-phonon interaction elements are
functionals of (/&(z). Assuming (/&(z) in the form

y(z) = 2(2P)"'ze ~", (25)

we have

8
"

0+2 (P„+P„)+K(d,E a-„a2

( @e2 1/2
1'

&28S~, „(('/2 (z+ }3

&(
(e-((('P a(' ek('P a } (28)

Now we use the condition that the electron-phonon
coupling is weak. In -analogy to the three-dimen-
sional case, "the energy is given by the second-
order perturbation formula

E(~
8 8 e E„n' )t 22' ke

8m 8 2m 6$(d,

p2

z (z+ p) h&u, —)3 k ~ z/m+lf z /2m
(2V)

Strictly speaking we should determine the energy
exactly within the zero plus one phonon space.
However, to the first order in o., the result is the
same as given by the Rayleigh-Schrodinger per-
turbation expansion. The energy (2'7) is then mini-
mized with respect to P. This is best done nu-
merically and an application of Eq. (2V) to LiF will
be discussed below.

For very deep levels, p»1/2~, . The region of
the variable K which contributes significantly to the
sum in Eq. (27) is limited to the values z&r,„.
Therefore, we may approximate ((+ P = P. Then
we expand the right-hand side of Eq. (28) in powers
of k. For k = 0 we have

IV. STRONG COUPLING

For large values of the electron-phonon coupling
constant, we use in analogy to the three-dimension-
al polaron problem, the ansatz

ls&=fl( )le&, (30)

where Q(r) depends only on the electron position
and I V&) only on the field coordinates. We insert
expression (30) into the Schrodinger equation,
multiply from the left by 0*, and integrate over the
electron coordinates. The resulting equation for
I(t& ) has the form

2 2

d rQ+
2

— " 0+@~ 5 a-„a2P eE„
2m 4z

1/2

( 2'|&S(»3 r(

From (31) we see that 1(P ) can be found in the form
of the product

I~&=rr le;&, (32)

where I (t&-„) obeys

. ( me'
S&u, a-„a-„

l
(P-„)+ 2wi

l 2 (ds K

Q ~y ~ e ~"'~ d3r gt

-JII~II"-""'~"~)I(i&=~;II(~ & (»&

/3E(k = 0}= —2 2'(&(, K(d, . (28) E=Z-„A.-„+Jd rQ*(P /2m —E„e /4z)A . (34)

The coefficient in front of the quadratic term de-
termines the effective mass

m~ = m(1+ —,
'

7/ (2,) . (29)

Let us note that the mass is renormalized only in
the case of the deep levels, but not for shallow
states. The reason for this can be traced to the
exponential dependence of the electron-phonon ma-
trix element. Generally, the mass renormaliza-
tion depends on the function (/&(z) and, roughly
speaking, is proportional to the time the electron
spends in the region near the surface z4r~, . The
formula (29) gives the maximum enhancement
(within the weak-coupling scheme) for very deep
states. As the energy level becomes shallower,
the mass renormalization factor approaches unity
and the electron is effectively out of contact with

the surface for very shallow levels.

3 2

lnl e "e'"'d'~. -2me 1

Q) 6$ K
(38)

At this stage we choose the form of the function 0

fl(r) (P3 2/4 )1/2 -(2/2&e -(v/2&P (36)

Equation (34) then becomes

If v Ii P PeE„e(E,—E„)
8m 8m 8 2

J, (1+x)'[1+(P'/v')x']'

First we minimize X-„ for a fixed A. The Hamilto-
nian of Eq. (33) is easily diagonalized by a canoni-
cal transformation, and its lowest eigenvalue is
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This expression will be minimized numerically in
Sec. V.

V. APPLICATION TO LiF

We use the following values to characterize LiF:

For the extension of the wave function in the direc-
tion perpendicular to the surface we get

2/P=4 A.

The strong-coupling theory, Eq. (37) gives

g, =8.65,

@~,=O. O81 eV,

c„=1.92,

Au&=0. 038 eV

E~&'& = o. 23 ev

2/P = 4. 1 A, 2/v = 9 A

For h&o, we use Eq. (4):

5(gp, =o. 063 eV .
The electron-surface-phonon coupling constant is

as=7. 1

To obtain a lower bound for the ground-state
binding energy (with zero momentum along the sur-
face), we calculate Es for the stiff lattice (only
electrons contribute to the polarization). It is Es"'
=0.081 eV. The actual binding energy will be big-
ger so that we have to do with the case of a deep
state.

The minimization of the weak-coupling expres-
sion (27) gives for the binding energy

z( &=0. 29 ev.

for the extension of the wave function perpendicular
and parallel to the surface, respectively.

Similarly to the three-dimensional polaron, '
the weak-coupling theory is superior to the strong-
coupling scheme [at least with the ansatz (36)] for
a coupling constant as large as 7. 1.

The maximum of the charge distribution is only
4 A from the surface. This is to be compared with
the LiF distance which is 2 A, so that the treat-
ment of the dielectric as a continuum may not be
adequate.
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