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First-Principles Calculation of the Optical Absorption in Diamond
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A nonempirical first-principles energy-band calcu1.ation for diamond has been used to calcu-
late the optical absorption expressed as the imaginary part of the complex dielectric function
e.&{~) in the random p-hase approximation. The use of Tc-dependent transition-probability ma-
trix elements calculated fromthe Bloch linear-combination-of-atomic-orbitals wave functions
is found to significantly improve agreement of the calculated e2(&) with experiment, as com-
pared to the results obtained with averaged matrix elements. Within the statistical exchange
one-electron band model Hamiltonian and the random-phase approximation to the dielectric
function, we find good agreement with experiment for the magnitude and position of the main
peak and general shape of e 2((,&) over a large energy range without any empirical adjustment of
the calculation. There is structure in the low-energy region which is not reproduced by our
treatment, suggesting inherent deficiencies of the band model and jor limitations of the theoretical
expression for ~2(~).

I. INTRODUCTION

Although the energy-band structure of diamond
has been the subject of considerable study, the
theoretical calculations have generally proved too
inaccurate to provide a completely satisfactory in-
terpretation of the observed optical spectrum. Re-
cently more refined experimental procedures and
the development of band-theory techniques capable
of including "non-muffin-tin" corrections to the
crystal Hamiltonian have made it possible to com-
pare the results of theory and experiment over a
large energy range ' for solids characterized by
strongly anisotropic crystal potentials. The op-
tical properties of insulators present an important
test for theoretical models of electronic structure.
Expressed as the imaginary part of the dielectric
function ea(op), the optical absorption provides a
convenient measurab1e quantity to be compared
with model predictions. Detailed comparisons of
this sort, when based on first principles or ab
jgjtjo band structure models, can reveal the in-
herent shortcomings of the theoretical models of
excitations in insulators, and help resolve impor-
tant questions concerning many-body effects on the
dielectric function.

Furthermore, first-principles calculations of e~

provide a check and "calibration" point for improv-
ing pseudopotential and other empirical schemes,
in which various features of the band model and
experimental data can be made to agree by proper
choice of adjustable band parameters. The em-
pirical-pseudopotential method has been used to
calculate e3 in diamond by Sa,ravia and Brust, and
more recently by Hemstreet, Fong, and Cohen, '

who used a nonlocal-empirical-pseudopotential
model (NEPM). The earlier pseudopotential cal-
culations do not yield very good agreement with the
position of the main peak in the experimentally
derived E„nor with the line shape at lower ener-
gies. The NEPM results are in good agreement
with the position of the main peak in type-I dia-
mond, but are based on a band structure with a
level ordering different from that found in the
first-principles calculations. Furthermore, there
is a large discrepancy with experiment for the
magnitude of the main peak in c3, and the band re-
sults predict additional structure which is not found
in the experimental curve.

In this article we report a calculation of e~ ob-
tained directly from a first-principles Hartree-
Fock-Slater one-electron treatment of the band

structure of diamond and investigate the corre-
spondence with experiment. The band structure
was calculated using the discrete variational meth-
od (DVM) in a linear-combination-of-atomic-
orbitals (LCAO) Bloch basis set, as reported in a
recent paper. ' The assumed potential function
used in that work was formed by the superposition
of atomic Coulomb potentials and charge densities
employing the statistical exchange approximation
without any empirical adjustment to experimental
data. Previous success in correlating features of
the theoretical DVM band structure of graphite
and diamond with experiment motivates this more
extensive first-principles calculation of e~. In
diamond the DVM results were in excellent agree-
ment with the best-known experimental detail of
the band structure, the indirect-transition thresh-
old, and calculations of the interband densities of
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states showed encouraging correspondence with the
experimental E~ spectrum. Structure in the optical
absorption has been generally interpreted in terms
of critical points of the interband density; however,
a proper treatment requires the calculation of os-
cillator strengths contributing to e2 from the entire
Brillouin zone. A major goal of this work has been
to investigate the behavior of the oscillator
strengths and to determine their role in shaping &~.

We calculate the interband contribution to the
imaginary part of the dielectric function:

.,(E)=~a ', 'dkf, (k)
'( «"'-",

, , (2~)' . '~ E„(k)

where

2I(k, i IpIk, j) I

sm E„(k)

is an interband oscillator strength between valence
band i and conduction band j at a given point k in the
Brillouin zone, E&,(k) is the corresponding energy
difference, and A = e h /m. Scattering, relaxation
effects, and local-field corrections are not in-
cluded in this expression for &~. We calculate the
singular integrals appearing in (1) in a histogram
representation by interpolating the k-dependent
oscillator strengths and energies throughout the
Brillouin zone and integrating numerically by irra-
tional vector sampling.

II. RESULTS

S

E, (k) = Z f ', Z, (k) .
s=&

With 8 = 25, we were able to attain fits to the en-
ergy bands with root-mean-square (rms) errors
of approximately 3&& 10~ a. u. in the valence bands
and 6. 5x10 a. u. in the conduction bands. By
numerically evaluating the matrix elements of the
gradient between the linear combinations of Bloch
basis functions which form the solutions of the
eigenvalue problem, the oscillator strengths were
determined without the usual decomposition into
atomic -multicenter integrals. Having found the
oscillator strength for 16 valence-band-conduc-
tion-band pairs at 33 nondegenerate wave vectors
in the Brillouin zone, additional matrix elements
were calculated by local interpolation'~ of the form

f()(k) = & ~ f()(k )I & ~
m=1 ~=1

where the vectors k denote the M given data points
nearest to k, and the weight & is given by

~.(lk -k.
l ) = lk-k.

l

~

In a histogram representation, we write

Ee,(E)=Z„C„II„(E),
where H„(E) is a histogram function centered at
energy E„. Using the k-interpolated oscillator
strengths and energies from (2) and (4),

In order to calculate the integrals of Egs. (1) and

(2), it is necessary to choose a representation of
E(k) and fo(k) over the entire Brillouin zone based
on the finite number of "data points" available from
a first-principles calculation. Semiempirical
Fourier-series representations have been much
used in the past in a variety of applications. These
applications include the LCAQ "tight-binding" pro-
cedure of Slater and Koster where empirical atom-
atom interactions were deduced, and the effective-
mass Hamiltonian scheme of Dresselhaus and Dres-
selhaus. A Fourier -series band representation
was selected for this work; however, for our pur-
poses, some other interpolation functions (e. g. ,
Kubic harmonics or local interpolation, see below)
would serve as well. The convergence properties
and error analysis of the Fourier expansions used
here are discussed in more detail in the Appendix.

Fourier representations of each of the four va-
lence bands and each of the lowest set of conduc-
tion bands were obtained in a least-squares fit
over 45 inequivalent wave vectors using symme-
trized sums of plane waves' for the fitting func-
tions E,(k). Numbering individual energy -band
representations in order of increasing energy, the
jth energy band appears as

where n&, (k, ) is unity if E&,(k, ) is within an inter-
val nE (the histogram box width) about E„, zero
otherwise, and the vectors are the elements of the
irrational vector sample over the Brillouin zone.
In these calculations, we used 4E = 0.02 a.u. and
N= 25 000 sample points to give an energy resolu-
tion of approximately 0. 3 eV in E2.

A simplification often made in treating the di-
electric function is to assume that the oscillator
strengths (or gradient matrix elements) given in
(2) are slowly varying functions of k and to replace
them with some average f,&.

E&2=A Z f)~ I)~(E) .
&eS

For example, we may define a volume average
according to

f;~= V„ f dk f,)(k),
or we may consider these average oscillator
strengths as adjustable parameters. The I,&(E)
are the interband densities of states given by

I„(E)=,Jl dk V(E„(k) —E) .
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oscillator-strength approximation.
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Critical points" can give rise to four types of ana-
lytic singularities in the interband densities. It is
in terms of these Van Hove singularities arising
from single critical points that structure in the
optical spectra is often interpreted, and one of our
purposes is to determine the adequacy of such anal-
ysis. In Fig. 1 we present the results of a calcula-
tion of ca in the approximation (6) of using lt-aver-
aged oscillator strengths Cont. ributions from 16
interband pairs between the four highest valence
bands and the four lowest conduction bands were
considered. The experi. mental curve appearing in
Fig. 1 is from the.paper of Roberts and Walker.
Although the position of the main peak is in fairly
good agreement with experiment, its height is too
low, both near the main peak and at lower energies,
and structure arising from I44(E), which is not ob-
served in the experimental curve, appears at high-
er energies (15—18 eV). It is evident that the con-
stant-oscillator -strength approximation leads to
significant disagreement with the experimental e, .

To further investigate the effects of the constant-
matrix-element approximation, it is convenient to
cast the oscillator strengths into an explicitly en-
ergy -dependent form,

f dkf, ,(k) 5(E„(k)—E)

f dk 5(E&,(k) —E)

The expression (1) for ca may then be written in the
equivalent form

Eea(E)=A Z f;~(E)I4)(E) .

A calculation of the quantities in (8) and (9) was

made, and in Fig. 2 we show the results for band
pairs 4-5 and 4-6, which are the most important
contributors to e~ in diamond. It is seen that
f4, (E) falls well below the k-averaged 4-5 oscil-
lator strength except in the vicinity of 12 eV. Also,
the 4-5 interband density of states has a very large
peak near 12 eV, indicating that states in an ex-
tended region of the Brillouin zone are participat-
ing in transitions at these energies. Including the
k dependence of the 4-5 oscillator strengths
will then effect an increase and sharpening of the
main &z peak. In the case of 4-6 transitions, it is
seen that f4a(E) is decreasing rapidly at those en-
ergies where the interband density of states is
large. The energy-dependent oscillator strength
appears in this case to have at least as much
structure as the interband density itself, and will
significantly affect the contribution to e~ from this
band pair. For example, although I«(E) has a
sharp edge near 17—18 eV, the oscillator strengths
are falling to a minimum at these energies, and
their inclusion in the final calculation will greatly
reduce the comparative strength of this structure
ln Cg.

In Fig. 3 we present the results of a full calcula-
tion of ca(E) according to (10) with k-dependent ma-
trix elements (2) included. Experimentally, struc-
ture in E~ for type-IIa diamond is observed at 7. 3,
V. 8, 12.2, 16, and 23 eV. The main feature of
the optical absorption is the large peak at 12.2 eV.
The 7. 8-eV peak is strongly temperature depen-
dent, and the situation regarding structure at 16
eV is unclear. Earlier workers ' observed it, but
Roberts and %'alker find no sharp structure near
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FIG. 2. Energy-dependent oscillator strength and interband density of states for 4-5 and 4-6 band pairs.

this energy. However they caution that their data
are least reliable between 13 and 19 eV. The main
peak in the theoretical curve is at 12. 25 +0. 3 eV.
In a previous paper we gave an analysis of struc-
ture in E~ in terms of critical transitions at sym-
metry points and along symmetry lines. Strong
contributions to the main peak come from the tran-
sitions L3. L3 (12.0 eV), L~. -L~ and X4-X~ (12-. 5

eV), including transitions along Z to the K point
(12.1 eV). It should be emphasized however that
the over-all size and shape of &z result from tran-
sitions over an extended region in k space. We
find that 4 —5 transitions account for about 65% of
the peak height, with 4-6 and 3-5 transitions con-

tributing about 10% each. The calculated direct
threshold is at about 6. 0 eV, arising from 4-5
zone-center transitions (I"as. —I'z5). We find a weak
change in slope in the theoretical &2 at 8.4 +0.3
eV which is due to a shoulder in the 4-5 contribu-
tion. Another weak change in slope occurs at
16.6 +0. 5 eV, arising from 4-6 transitions. Fin-
ally, the theoretical curve falls below the experi-
mental one for energies above about 22 eV. In the
DVM energy-band calculation, a second set of con-
duction bands was found which will begin to con-
tribute to the optical absorption with small oscilla-
tor strengths above about 20 eV. These states
were not included in the present calculation of E2.
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III. DISCUSSION

%e find that the &z calculated directly from the
DVM energy-band structure and wave functions
without empirical adjustment agrees quite well
with the experimental curve for diamond with re-
gard to the position of the main peak and gerieral
shape over a wide energy range. The most impor-
tant discrepancies between theory and experiment
involve the shape of the calculated absorption edge
near the direct threshold and the fact that the cal-
culated e~ is systematically lower than the experi-
mental curve on the low-energy side of the main
peak. Including the k dependence of the oscillator
strengths leads to improved agreement with exper-
iment; previous investigations based on pseudopo-
tential wave functions have left this point somewhat
uncertain. Thus, Brust finds an &2 for Si which
is insensitive to k averaging, while Herman et al.
report considerable sensitivity in a similar study
of Ge.

Concerning the significant disagreement between
experiment and the theoretical E& curve between
threshold and approximately 12 eV, we consider
the following possible causes: (a) errors in os-
cillator strengths and/or band structure, (b) lo-
cal-field effects, and (c) exciton modes.

Estimation of absolute errors in the oscillator
strengths calculated from approximate solutions
to the band problem is difficult. As is well known
from molecular theory, the use of approximate
eigenfunctions of the Schrodinger equation (al-
though accurate according to the energy criterion)
can lead to large uncertainties in the calculated

oscillator strengths. Thus, it is desirable to
carry out systematic studies of f,&(k) as derived
from various band models. ' In the present case,
however, we consider that the shape of the theo-
retical &2 curve near threshold, which is in sig-
nificant disagreement with experiment, cannot be
seriously affected by errors in the oscillator
strengths, since this shape is evident even in the
constant-oscillator -strength approximation.

It appears that carrying the band-structure cal-
culation through to self-consistency would not sig-
nificantly alter the calculated &z, since the ad hoc
starting crystal charge density obtained by super-
imposing free-atom Hartree-Pock-Slater charge
densities is matched very closely by that calcu-
lated from the Bloch solutions to the resulting
model Hamiltonian. Also, these results are not
expected to depend strongly on the exchange fac-
tor since the variation of the band gaps with ex-
change scaling is relatively slight in diamond. ~

In addition to the various optical energy-gap
comparisons of the first-principles band structure
put forward in our previous article, we can also
use cyclotron effective masses to investigate band
parameters around the I' point. Lacking reliable
effective-mass data for both valence and conduc-
tion bands, the light-hole, heavy-hole, and third-
band-hole masses obtained by Bauch for type-IIb
semiconducting diamond was compared with our
calculated valence-band structure. The calculated
effective masses are considerably smaller than the
experimental values. Further experimental studies
which can distinguish between (intrinsic) conduc-
tion-band and impurity-band resonances would be
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helpful. However, we see that even modification of
our band structure to fit the available m* data
(which would increase the slope of the absorption
edge) would not alter the essential conclusion that
the calculated line shape of absorption at low en-
ergies is qualitatively different from experiment.

There is the interesting possibility that local-
field (or Lorentz) corrections ' to the theoretical
form of the dielectric function (1) can affect the
shape of the theoretical curve; in a tight-binding
model their inclusion would increase the value of
the calculated &3 on the low-energy side of the main
peak, thus at least partially resolving the system-
atic deviation from experiment which is observed
in this energy range.

The peaks in the experimental absorption at 7. 3
and 7. 8 eV require further study. We tentatively
identify the temperature-independent 7. 3-eV peak
with a change in slope in the 4-5 interband density
of states, which appears at about 7. 5 eV in our
calculation. This feature would appear as a weak
bit of structure in a higher-resolution calculation
of E&. Temperature-dependent structure in the
low-energy absorption has previously been ascribed
either to energy-band shifts, or to exciton
modes; we find no feature of the band structure
to support the former hypothesis. Furthermore,
inspection of our theoretical band structure along

symmetry lines shows no regions which will sup-
port direct (k conserving) excitons with a reason-
able binding energy. In fact we find only one re-
gion, valence-band states around L coupled to con-
duction-band states along ~, which appears capable
of supporting an indirect exciton of this energy.
Such an assignment is purely speculative; line-
shape studies of the 7.8-eV peak would be valuable.
Van Dyke has recently made a study of interband
absorption in Si and Ge using the orthogonalized-
plane-wave (OPW) method '; he concludes that the
3-eV peak in Si similarly is due to excitonic ef-
fects.

The absolute magnitudes of the calculated oscil-
lator strengths are subject to a further check
through the sum rule on e&,

f (d&2((d) Ad = g1I'(dp,

which can be written in the form

J '(o~, ((o) d(o = —,'v (4nNe'/m) n(ru0),

where N is the atom density and n(&0) represents
an effective number of electrons/atom contributing
to the optical properties in the frequency range
0-0. By integrating the theoretical &3 over the
range 0-38 eV, or by adding the averaged oscil-
lator strengths f,&, we obtain n(38 eV) = 2. 2
electrons/atom. Integrating the experimental a~
over the same frequency range gives approximate-

ly n(38 eV) = 2. 9 electrons/atom. This result may
be compared to the optical absorption in graphite,
where n(~0) reaches the saturated value of 4 elec-
trons/atom at 30 eV. ~ More rigorous tests of the
sum rule will require evaluation of the high-energy
tail of e&, including contributions from core levels
and a large number of excited state bands.

APPENDIX: FOURIER REPRESENTATIONS OF
ENERGY BANDS

Energy expansions in Fourier series in a re-
stricted energy interval have been successfully
used by Ketterson, Mueller, and Windmiller~~ and
by Roaf ' for fitting experimental (de Haas-van
Alphen) Fermi-surface data in Pt and .in the noble
metals. Fourier representations of the energy
bands of Fe were constructed and used to calculate
the Fermi surface by Maglic and Mueller. Using
approximately 1000 symmetrized plane waves per
band, they found an accuracy in energy of. = 2 mRy
over the entire Brillouin zone. Schuurmans, van
Haeringen, and Junginger have investigated Fou-
rier fitting the energy bands throughout the Bril-
louin zone in Si, GaAs, Al, and Pb. They con-
sidered fits to the energies at M data points using
S symmetrized plane waves and calculated the av-
erage and maximum errors over another set of
M k points. In band 3 of Si, for example, they
found average errors of 3. 5 and 2. 0 mRy for
8=20 and 30, with M=200. In band 5, they found
average errors of 7. 2 and 6. 3 mRy for 8 = 20 and
30, These values are about half the size of rms
errors found by us in the corresponding bands of
diamond with S= 25, using a smaller number of
fitting points. These authors emphasize that un-
wanted oscillations in these fits can occur, and
they find maximum errors considerable larger
than the average errors cited above.

Energy-band functions are continuous throughout
the Brillouin zone, but can have discontinuous
derivatives at points of degeneracy, which cannot
be exactly reproduced by a finite Fourier series.
For example, cross-over degeneracies occur in
the conduction bands of diamond. These degener-
acies lead to kinks in the band structure, which in
turn will lead to unwanted oscillations in the Fou-
rier representation. This behavior is further
manifest in a reduced convergence rate of the
Fourier coefficients measured by the number of
plane waves required for given rms error. Nat-
urally, it is undesirable to differentiate this se-
ries; however, our method of evaluating Eq. (1) by
numerical integration is not susceptible to this
type of error.

We find that increasing the number of Fourier
coefficients 8 in the fit decreases the rms error
and 'hxore faithfully" reproduces structure visible
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in hand-drawn plots of the data. At the same
time, we do observe oscillations in the fit which
appear "unphysical"; these oscillations become
more pronounced as the number of fit functions
approaches the number of given data points. This
is a familiar phenomenon in fitting methodology.
For a given number of data points M, an optimum

number of coefficients 8 is chosen such that the
oscillatory behavior is kept to an acceptable level.
Simultaneously we require that the rms level in
fitted energy differences (the quantities required
for calculations) should be equal to or less than
approximately —,

' of the energy resolution (histo-
gram width) chosen for the ez calculation.
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The phonon-dispersion curves have been measured for CsC1 at 78 and 298 K on a triple-axis
neutron spectrometer and analyzed in terms of a rigid-ion model and various shell models. A
simple shell model with eleven parameters is sufficient to reproduce the measured dispersion
curves. Frequency distributions and SD-vs-T curves were calculated based on the parameters
determined from the two sets of data.

I. INIODUCTION

A considerable amount of theoretical work has
been published by many authors on the lattice dy-

namics of the alkali halides with the NaCl and
CsCl structures. At the beginning of the present
study, experimental coherent inelastic neutron-
scattering data had been obtained for numerous


