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stantial advance in the solution of the exciton com-
plexes. The success of this method is again due to
the fact that the interparticle potential is totally
included in the zero order Hamiltonian H and none
of its terms appears in the remaining Hamiltonian
II,' used as perturbation. The development of this
method to apply to other complicated observed
complexes is in progress.
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We describe electron-paramagnetic-resonance studies of shallow tin donors in GaP under
applied uniaxial stress. Because of the X3 symmetry of the conduction-band minima relative
to a Ga site, the Sn donor states are "orbital" triplets whose components correspond to the
three valleys, with the sixfold degeneracy (including spin) split by a weak spin-valley coupling.
The valleys are mixed also by the angular momentum operator of the Zeeman Hamiltonian with
a small effective intervalley g factor gL. From the stress dependence of the resonance we
have determined directly the one-valley g factors g~=1.997+ 0.001 and g„=1.991+ 0.003 and
the intervalley g factor g& =0.010 + 0.002. This is the first time that these parameters are
determined for GaP. In addition, we deduce the value (4. 8 + 0.7) && 10 4 for the rms value of
random strain and 5.2 + 0.4 eV for the deformation potential =„* of the bound state.

I. INTRODUCTION

Electron-paramagnetic-resonance (EPR) studies
of electrons at donor sites in semiconductors have

been very useful in yielding information concerning
the wave functions of the donor states and band
structure of semiconductors. ' The wave functions
of the ground states of the donors for which EPB
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has been performed to date have, with one excep-
tion, interstitial Li and Si, all involved orbital
singlets. This includes measurements on the ele-
mental semiconductors Si and Ge ' and the com-
pound semiconductors SiC, ' GaAs, ~ InSb, ' InAs, '
and GaP. ' In this paper we shall describe EPR
studies on the group-IV donor Sn in GaP. The
group-IV donors (substitutional at Ga sites) differ
from the previously studied' group-VI donors (sub-
stitutional at P sites) in GaP in having ground
states which are orbital triplets.

For semiconductors with three conduction-band
valleys at the (100) zone edges, the representation
X, or X& to which the conduction-band minima be-
long, depends upon the choice of the origin of the
coordinate system. ' For the origin at the P site
in GaP the conduction-band minima have X, sym-
metry, and the ground state of an electron bound
to an impurity at that site is an orbital singlet com-
posed of all three valleys. For the origin at a Ga
site, the conduction-band minima have X3 sym-
metry, so that the states of the electrons bound to
Ga-site impurities are not mixed by the impurity
potential and the electrons occupy orbital triplets.
This difference can be determined from EPR mea-
surements on the bound donor electrons.

The spin resonance of group-VI donor electrons
in GaP has been studied previously' and is well
understood. Since the ground state is an orbital
singlet, it exhibits an isotropic g factor which is
an average of the components of the single-valley
g tensor parallel and perpendicular to the valley
axes, 9

gL

go s gii+ 3 gx ~

The threefold degeneracy of the group-IV donors
can be lifted by either spin-orbit (= spin-valley)'0
splitting or by application of uniaxial stress that
removes the equivalence of the three conduction-
band minima or alters the shape of the minima.
Because of the electron spin the "spin-orbit" inter-
action splits the six states derived from the triplet
into a quartet and a lower-lying doublet. This
splitting is relatively small and may be masked by
internal random strain in the samples. A large
uniaxial stress applied in an appropriate direction
can overcome the effects of the internal strains,
and makes it possible to observe EPRsignals. The
observation by Haraldson and Ribbing" of group-
IV donor resonances in an externally unstressed-
polycrystalline-GaP sample presumably resulted
from the presence of large nonrandom internal
strains in their materials.

II. THEORY

A. Introductory Remarks

The wave function for the ground state of an
electron bound to an Sn donor has a ls-like enve-

lope function. The z component (z valley) of such
a ls-like state can be written

g, (v) = E&,(z, r)u, (r) sinkoz

(with similar expressions for the x and y compo-
nents), where u, (r) sinkoz denotes the Bloch func-
tion of the z valley at ko = 2w/a, and E&,(z, r) is an
envelope function satisfying the effective-mass
equation. ' Such a tripl. et state possesses both a
nonvanishing "orbital" (intervalley) g factor
g~ and a finite "spin-orbit" (spin-valley) inter-
action, ' although both may be small because of
the periodic factor sin@os. Thus, the theory of
spin resonance of group-IV donors in GaP must
include this orbital g factor as well as the mixing
among the six nearly degenerate states (including
spin) split by the small spin-orbit interaction.

Because of the orbital degeneracy, uniaxial
strains along the (100) axes, which split the ener-
gies of the x, y, and z valleys, significantly alter
the wave functions and g factors in the manner found
by Feher et al. ' for degenerate hole states in Si.
In particular, if the random strains in the crystal
produce valley splittings which are large compared
to the spin-orbit splitting, they broaden the lines
and destroy the resonance. In this case only after
an external stress of sufficient magnitude is ap-
plied does the resonance reappear. In our analy-
sis we shall derive the wave functions and g fac-
tors for an orbital triplet split by a weak spin-orbit
coupling and perturbed by both random and ex-
ternally applied (100)-type strains. A similar
analysis has recently been carried out by Watkins
and Ham~ in their resonance study of the doublet
and triplet states associated with the interstitial
donor Li in Si. The exceedingly small value which
they found for the spin-orbit splitting factor
(& &0. 05 cm ') allowed them to make certain sim-
plifying assumptions which are unjustified for our
ca=e.

B. Ideal Model

We begin with the basic model having three val-
leys (see Fig. 1) which are coupled by a weak spin-
orbit interaction and of which one (the z valley) is
separated from the other two by a uniaxial stress
applied along an axis in the (110) plane. The per-
turbing Hamiltonian contains the two terms

describing the spin-orbit and applied-stress inter-
actions, respectively.

The spin-orbit interaction term

$C =XS L

is conveniently rewritten, following Ham, in
terms of a fictitious angular momentum operator
Z~ L defined by its nonvanishing matrix elements
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FIG. 1. Schematic diagram of the donor energy levels
of the x, y, and z valleys under positive [001] stress.
The labels c] identify the zd states mixed with the 1s
ground state by the local strain and Stark fields.

+y )]/IRI for stress along R= (x, y, z). Thus,

Eo = —,
' &' + D = —,

' X' [1 + 3 (x + 1)] (lla)

( I) (001)
y~ = —,

' for stress applied in (112) directions.
(110)

(10)
In the Hamiltonian the two terms of Eq. (2) are

of comparable magnitude (of order 1—10 meV),
while the Zeeman term, described in Sec. DC, is
much smaller. Therefore we solve the secular
equation for (2) acting alone and treat the Zeeman
term by degenerate-per turbation theory. For
basis functions we use the set I2, S, M zMz),
where M+ and M~ are the components of 2 and S
along the g cubic axis. Since 2=1 and S =-,' re-
main good quantum numbers, we omit them and
write only IMz, Mz).

Solving the secular equation for (2), we find that
the sixfold-degenerate level splits into three dou-
bly degenerate levels shifted in energy by

with respect to the functions t)3„, g„and 0, ,

(4)

E,=
~ ( D —

2 -X'+ 2 Q&') = —4X' [—1 ——,'(x+ 1)+ Q],
(11b)

where

Thus Q = (x + 8) and x = I + 6D/X' (11c)

(5)

where the effective spin-orbit splitting factor is

X' =glA. ,

and g~ is the orbital g factor defined in terms of
the usual angular momentum operator J.,

(7)

For the triplet states as defined by Eq. (1) the
tensor g~ is isotropic. We note from Eqs. (4) and

(5) that we may develop the theory in terms of Z
and S in the usual way, provided we modify X ac-
cording to (6) and introduce an orbital g factor
g~ from (7).

The interaction with the applied stress, which

may be written

Figure 2 shows these three energies as functions
of D. Upon application of the external magnetic
field, each of these Kramers doublets splits into
two levels whose separation at resonance equals
the microwave energy h. v. Since our experiments

X,=D(ss.'- Z') (8)

raises the energies of the x andy components g„
and P„by an amount D while depressing the z com-
ponent by 2D. The parameter D is

= syg='. (Sii-~la) =- (9)

where "*„ is the shear deformation potential for
the donor state; e„„, e», and e„are the diagonal
components of the strain tensor„s ~~ and s ~3 are
cubic compliance constants; and y ~

= [z ——,
' (x

FIG. 2. Energy-level splitting of the ground state due
to the combined effect of spin-orbit and deformation inter-
actions as a function of the deformation parameter D.
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~E, —,')=a ~1, --,'&-a. ~O, —,'), M~ ——y (i2a)

~&, --.'&=a
~
-1, l&-a. to, -l&

where

(13)

C. Zeeman Interaction

Since the orbital g factor g~ is not zero, the
Zeeman Hamiltonian contains both orbital and
spin parts:

Kg Keg' +Kg$ e (14)

Because of the modifications of the P, produced by
the local fields around the donor, " the orbital g
tensor could be slightly anisotropic. However, the
anisotropy of gl. due to this effect is extremely
small and will be neglected in the present paper.
Thus we write for the orbital Zeeman Hamiltonian

were performed at low temperatures, they mea-
sured only the lowest of these doublets, that was de-
scribed by & of (11b). The eigenstates ~E Mz&

which correspond to this energy and to the eigen-
values of the z component of the total angular
momentum M~ =M +M$ =a 2 are

= (4/Q)g -!(3+~/Q)g. +l (1-~/Q)g (18b)

The sign ambiguity present for the g values de-
termined from Eq. (17) has been resolved by not-
ing that at zero stress (and for g„=g,—=g,), g'„
—gg 3(4gL -g, 'I as is foundfor ap, ~ a atomic level ~

The dependence of the g factors on the stress
T is conveniently expressed in terms of the
parameter

K=D/~'T = C(e)/~' (i9)

which depends on the ratio of the deformation po-
tential to the effective spin-orbit splitting param-
eter of the donor state and also on the stress
orientation through the factor y~ of Eq. (9). In
terms of E we may write the stress-dependent
factors in (18) as

and

Q
—2[2+ (3KT s)2]&r 2

x/Q = 2(3KT —-')/Q = + [1+2/(3KT —-')'] "
(2Oa)

(2Ob)
For this model to explain the experimental results
the asymptotic expansions of (18) for large
stresses should fit the experiment in the range
IKTI »1. These expansions are, for T&0,

$Cz J. —pggl 2 H
and

gt =g - (g, gL)l(3KT)-' (21a)

(
IS g=S Z( gH;+SSS,E S~H~)P; (16)

where i, j=x, y, or z, and P& is a projection op-
erator on the orbital state g, of the ith valley.
These two terms combine to produce a Zeeman
splitting of

at = p.,((2a'gL+aag„- a'g, )'pa

~[2 V g,a,a gL -a,'g, pa' —,'(g„-g,)]'0',p"

(g 12rrg ~gl 2II2 )i /2 (17)

where 02 ~2 02 cos 28 and H2 02 82 82 sin2 g

Thus the components of the resulting g tensor g'
become

g) ~

— g I + ++ gt, —+ g1
r — 2 2 2

= (1 —x/Q)(g, —-', g, ) +-,' (I+&/Q)g (18a)

g', = 2W2a. a gL —a,'g, +-,'a'(g„-g, )

where p. ~is the Bohr magneton. The sping tensor
in any valley is slightly anisotropic relative to-the
valley axis because of spin-orbit coupling to higher
bands. ' Thus writing g)~ and g, as the two com-
ponents of the spin g tensor, the spin term be-
comes

g', = g, +2gL/3K—T+ ,'(g, +2gL)/(3—KT)~, (21b)

while for T & 0

g II g J. + 2gL+ (gs gL)l(3KT)

g l= ~g+2gL/~3KT~ --.'(g, +2g, )/(3KT)', (22b)

where g, = —,'(g„+g,) and 6g= ~(g„—g„). Thus, from
measurements of the asymptotic g values and
slopes at large stresses, (KT)2» 1, it should be
possible to determine the parameters of Eqs. (21)
and (22).

D. Random Strains

We have developed a quantitative theory of the
consequences of random strains on the wave func-
tion and g factors. The details of this theory will
be given in a future paper. Here, we give an out-
line of the theory and use the results. We have
considered only (100)-type strains belonging to
the E irreducible representation of the T~ crystal
group, which lift the degeneracies of one or more
valleys, and have neglected any possible effects
of (111)-type random strains (transforming as Ta)
which might mix different valleys. The latter
have also been explored theoretically, but no ex-
perimental indications of their effects have been
identified so far.
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The (100)-type random strains contribute two
terms to the Hamiltonian-one X, which lifts the
degeneracy of the x and y valleys and one $C, which
does not. The latter, which we shall call the
"parallel" strain, is of the form of Eq. (8) and can
be included simply by altering the value of the
coefficient D to

D =D+y 5, (23)

where a second dimensionless strain parameter

o = (E„/x') (e„„-e„) (24b)

measures its strength. This term has an off-di-
agonal matrix element of —,

' ~ g between the states
having M~= +1. The terms K, and K, are partners
in the two-dimensional irreducible representation
E except for a factor of 2u 3 scaling o. Thus, for
random strains of this type the average values of

and o are related by

&o') =12«') .
In general, for a resonance to be experimentally

observable, the contributions of the random strains
to the Hamiltonian must be small compared to the
energy separations between the two lowest dou-
blets which these strains couple. Hence, by basing
our calculation on assumptions about the small-
ness of only X„we can obtain solutions which are
valid for any system in which the resonance can
be measured. e observe in Fig. 2 that for most
values of stress two levels lie close together with
a separation of 5E =g, while the third level moves
away with increasing I T I with a separation of 5E
= 3 I D I . Hence, we have treated exactly the in-
teraction between the two closer levels and in-
clude the remaining level by perturbation theory.
Thus, for positive D (T & 0) the two highest energy
levels, E, and E, of (lla) and (lib), are treated
exactly and their mixing into the lowest level, the
ground state E, is calculated by perturbation the-
ory For ne.gative D (T& 0) the two lowest levels
Eo and E are treated exactly with the admixture
of the third E, determined approximately.

For either positive or negative stress T the
solutions corresponding to Eqs. (12) (but with the
random strains included) may be written

y ~rq
—o, I0, +—')+ pI al, v —')+yI+1, +~), (26)

where the coefficients are functions of ~, D, and
cr. The components of the g tensor calculated from
the Zeeman Hamiltonian for this pair of functions
are found to be the following functions of n, P, and

where the dimensionless strain parameter 5 is de-
fined in accordance with Eq. (9). The former, which
we shall refer to as the "perpendicular" strain,
may be written

(24a)

g,', = (2n' —1)g, + 6g+ 2(p ' —y') g~
and

g~ = —(g &+ g&+ kg, cos2p)' ',
(2Va)

(2Vb)

where the signs are chosen to agree with (18) and

g&= ot g, —5g+2W2npg~,

g, = 2Pyg, + 2v 2 nyg, ,

(2Vc)

(2Vd)

and tang = H, /0„.
We have determined the coefficients of Eq. (26)

and have shown that the inclusion of the random-
strain Hamiltonian does not alter Eqs. (21), the
average g values for 7 & 0. For T & 0, however,
Eqs. (22) are modified and give values (averaged
over Gaussian distributions of 5 and v) of

I 1
gi+ &gz,

' ~ ~&' 'SSCr)~'
(

where

E'g~ 1 g
~3 4 (3K')a +gp cos2$, (28b)

The analysis also predicts a very broad line (for
g„KT« —1) having a width of 4g, = 0. 2. Hence,
for KT« —1, g, cannot be measured directly, but
its value can be deduced from the angular depen-
dence of the g factor as the field 8 is rotated
through a small angle 0 away from the z axis.

III. EXPERIMENTAL PROCEDURE

The single gallium phosphide crystal used in this
study was grown by the liquid-encapsulation Czoch-

j technjquelz, la using a boric oxjde encapsu-
lant. Nitrogen at about 900 psi was used as the
ambient. The tin-doped crystal was prepared by
the direct addition of elemental tin to the gallium
phosphide charge. Net carrier concentrations of
n = 4&& 10"was indicated by Hall measurements.
The EPR measurements were all carried out at
4. 2 'K in an X-band apparatus. The sample was
placed in a piston made of Teflon which is suf-
ficiently hard at 4. 2 K to transmit the stress.
Lever arms were used to obtain mechanical ad-
vantage and keep the weights used to manageable
levels. External uniaxial stresses were applied
along the [001], [112], [110], and [ill] directions
in the (110) plane and variations of the g values
were studied as functions of the magnitude and di-
rection of the stress and the orientation of the
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Sec. IID. As the externally applied stress is in-
creased, the g values become less sensitive to the
internal strains and the linewidth approaches a
limiting value which is probably principally due to
the unresolved hyperfine interactions of the donor
electron with the P" nuclei within its orbit.

B. Strong Tetragonal Distortion: [001] Stress
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I
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FIG. 3. Variation of the linewidth of the resonance
signal with the magnitude of a uniaxial stress applied
along the [112]axis.

magnetic field. All stresses were applied in the
vertical direction while the magnetic field was
kept in the horizontal plane.

IV. RESULTS AND DISCUSSION

A. Introductory Remarks

In this section we deduce the various param-
eters in the spin Hamiltonian from our experi-
mental results. Throughout this procedure we
assume that the "parallel"-internal-strain param-
eter fi in Eq. (23) is negligible compared to the
applied strain. This is a reasonable assumption
because the internal parallel strain deduced from
the data is about 190 times smaller than the applied
strain.

One noticeable feature of the observations is the
improvement of the EPH signal as the stress is
increased. The narrowing of the line is shown in
Fig. 3 for a stress applied along the [112]direc-
tion. The broad lines at low values of externally
applied stress are due to the presence of internal
random strains in the crystals as described in

2.000
GaP (Sn)

[00i] STRESS

1.995

0

1.990-

For the stress applied along the [001] direction
the parameter D defined in Eqs. (9) and (10) is
positive (y, =1). In this case, the energy of the
z valley is lowered while that of the x and y valleys
is raised and, as shown in Fig. 2, in the absence
of spin-orbit interactions the orbital triplet is
split into a lower singlet and a higher doublet.
The ideal model (Sec. IIB) is adequate for the ex-
planation of the stress dependence of the observed
g factor. The observed g factor is g„and its
variation is described by Eq. (21b). The inclusion
of the random strain in the Hamiltonian does not
alter this equation. As expected, the spectrum
for this case is isotropic with respect to the ori-
entation of the magnetic field in the horizontal
plane. Figure 4 shows the variation of the g fac-
tor versus the magnitude of a [001] stress with an
arbitrary direction of the magnetic field in the
horizontal plane. Figure 5 is a plot of the observed
g values against I/T . The linearity of this de-
pendence shows that the term in 1/T is negligible
compared to the term in I/T~ in Eq. (21b), which

9'

1.998

1.980—
/

GaP (Sn)

~O~O~O~Q

gO

cv'

tT
„[ooi]

0 Q

1.985-
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FIG. 4. Variation of g~ measured in the (001) plane with
stress applied along the [001]direction.
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] I

2 4 6
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8 IO

FIG. 5. Variation of g~' measured in the (001) plane vs
1/T for a [001] stress.
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FIG. 6. Variation of g with orientation of magnetic
field in the (112) plane for a stress of 1780 kg/cm applied
along the [112]direction.

means that the parameter g~ is very small. The
zero intercept of Fig. 5 gives g~=1. 996+0.001,
and the slope gives (—,'g, + g~)/(3K) = (3.8+0. 1)
&& 10' kg'/cm'.

C. Weak Tetragonal Distortion: [112] Stress

For this direction of stress the parameter D is
again positive although half as large as the [001]
case (y, = —,'). This means that a [112]stress is
in effect a compression along the [001]axis. The
appropriate formulas for this direction of stress
are, therefore, Eqs. (21). When the magnetic

2.000

I.990

Ga P(Sn)
[II2] STRESS

field is along the [110]direction the observed g
factor is g, of Eq. (21b), whereas with the mag-
netic field along the [1f1] direction the observed
g factor is (-,'g, + —,'g„)", where g, is given by
Eq. (21a). The spectrum should therefore be an-
isotropic. The experimental anisotropy is shown
in Fig. 6 for a fixed value of applied stress. Fig-
ure 7 shows the variations of the observed g fac-
tors as functions of the magnitude of stress for
the two directions of the magnetic field correspond-
ing to the extrema of Fig. 6. The two curves in
Fig. 8 are the plots of the g values versus 1/TP.
Again, the linearity of these plots show that the
1/Ta terms in Eqs. (21) are dominant over the
1/T terms because of the smallness of gz. The
intercept of g, (curve I) gives g, =1.997+ 0.001
and the slope gives (-,'g, +g~)/(3K)2 = (l. 5 +0. 1)
&&10' kg /cm4. These values are in agreement,
within the experimental uncertainty, with those
of Sec. IV 8. The slope of the [112]case is about
four times the one for the [001] case as expected
since K,ppgg=2K[»z, . The results from [112]stress
are more reliable because the smaller value of K
for this direction makes the second-degree term
in 1/T even more important relative to the first-
degree term, and the g values are observable over
a wider range of stress. Curve II in Fig. 8 is
(—,'gP+ —,'gP)"~. The zero intercept of this curve
gives (3 g, + —,'g~)'~2 = l. 995+ 0.001 and the slope
gives (3 g, + —,'gz, )/(3K)~ = (1.9+ 0. 1)&&10' kg /cm4.
From a comparison of the two intercepts in Fig.
8 we deduce a value for g„=1.991+0.003.

The isotropic g value observed for group-VI
donors is go 3g + 3' Using our values for g,
and g„we calculate the isotropic g factor at

2.000
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FIG. 7. Variation of g' measured a&ong the [110]axis
(curve I) and along the Pll] axis (curve II) with the mag-
nitude of stress applied along the [112]direction.
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FIG. 8. Variation of g' measured in a [112]plane vs
1/T with stress applied along the [112]direction and field
applied along [110] (curve I) and along [11K] (curve D).
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I.980-
GaP (Sn)

= 3I40 kg/cm2

as for the group-VI donors (the conduction-elec-
tron value).

D. Orthorhombic Distortion: [110] Stress

, ,
[IIO]

1.975—

[ITO

I I ] I I97' -Io -5 0 5 Io Is
ANGLE OF MAGNETIC FIELD IN DEGREES

IN (IIO) PLANE FROM [001]AXIS

FIG. 9. Variation of g' with orientation of the mag-
netic field in a (110) plane for a stress of 3140 kg/cm
applied along the f110] direction.

4. 2'K, g~= l. 995+0.002. The g value for group-
VI donors is given as' 1.9976+0.0008. The data
of Ref. 7 were obtained at 77 'K. To make a better
comparison we measured the g value for GaP(Te)
at 4. 2' and obtained g= 1.9935+ 0. 0005. The dif-
ference between the isotropic g value for infinite
stress and the free electronic value of 2. 0023 is
due to the admixture of other bands into the con-
duction band by sp&n-orbit interaction, and one
expects that the infinite-stress value of go 3g
+ —,.'g, for the group-IV donors should be the same

1.990—

Ga P(Sni

[IIO] STRESS

I.985

For this direction of stress the x and y valleys
are depressed and the z valley is raised. This
is equivalent to a tension along the [001] axis and
the parameter D is negative (y, = ——,) [see Eqs. (9)
and (10)]. The ideal model (Sec. IIB) predicts
Eqs. (22) for the high-stress variations of the ob-
served g factors. The spectrum is anisotropic
and only g is observable. Figure 9 shows this
anisotropy for a fixed value of applied stress.
The g, was not expected to be observed since from
Eq. (22) g, - fIg= 0. 003. However, from the val-
ues of g (8) in the neighborhood of g (9 & 15') we
can deduce g, = l. 9 using the formula g (0)

g]~ cos 8 + gg sin 0" . Here L9 is the angle between
the magnetic field and [001]. This large value for
g, and its lack of observability are both explained
in terms of internal random strains in the crystal
(Sec. IID). Figure 10 is a plot of g versus the
stress, and Fig. 11 is a plot of the g„versus I/T~.
Again the latter is linear, which indicates the
dominance of the second-degree term in 1/T of
Eqs. (22a) and (28a) and, hence, the smallness of

g~. The zero intercept of Fig. 11 is 1.989+0.001.
According to the ideal model (Sec. II B) in the ab-
sence of random strains this number should equal

1.988
Gap (sn) I.980-
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t:001j
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FIG. 10. Variation of g~f measured along the f001]
direction with the magnitude of a stress applied along the
fll0] direction.

FIG. 11. Variation of g, f measured along the [001]
direction vs 1/T2 with the stress applied along the [110]
direction.
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g~ —2'. Based on this model, therefore, g~
= 0.004+0. 001. However, because of the random
strains [Eq. (28a)] this value should be modified
and to do this we need an estimate for the internal-
random-strain parameter c. We estimate this pa-
rameter by using the experimentally deduced value

g, = 1.9 in Eq. (28b) and obtain e = 0. 39 d: 0. 02. The
corrected value for g~ is therefore g~ =0.010
+ 0. 002. Our theoretical evaluations which will
be described in a future paper show that the major
contribution to the parameter g~ is due to the ad-
mixtures of the excited-d-envelope functions into
the ground state by the local fields caused by the

impurity. "
From the slopes of the plots in Fig. 8 we de-

termine the parameter K:

K[ppt i= D[pp ]t/& = (1.7 d: 0. 1) && 10 ' cmo/kg

The parameter X has been measured independently
by Dean et al. ' and is ~ =1.40+0. 07 meV. We
can thus calculate D:

Drooti bo d t t = (2.4d:0. 2)&&10 meVcm /kg .
This compares with Balslev's~P value for the con-
duction band:

D hopl 1 conduction bund
= (2. 9 + 0.3) x 10 meVcm /kg.

The deformation potential =„*calculated from

D(ppy ~
is =*= 5. 2 +0.4 eV for the bound state. The

reductions in the value of the deformation potential
from its band value is also caused by the admix-
tures of the d envelopes into the ground state and
will be discussed in a future paper. From the pa-
rameter & deduced above we can determine the
rms value of the perpendicular internal-random-
strain parameter o: (g) = 1.8+0. 2. The corre-
sponding rms value for random strain from Eq.
(24b) for the value of the deformation potential de-
duced above is (strain) = (4. 8 + 0. 7) && 10 '.

E. Trigonal Distortion: I 111]' Stress

For this direction of stress no resonance signals
were observed. This indicates that the deforma-
tion potential for this direction of stress is ex-
tremely small and as a result there is no apprecia-
ble intervalley mixing or splitting in the energies
of the three valleys.

F. Summary of Results

We compile the measured and calculated param-
eters in this study. For the sake of completeness

we include the relevant parameters measured by
other workers:

g() 1 991+ 0 003 gJ: 1 997+ 0 001

g, = —,'(g„+g, ) = 1.994 d: 0. 002,

go(calc) = —', g, + —,
' g„= l. 995 d: 0. 002,

go (from group-VI donors at 77 'K)

= 1.9976 d: 0. 0008 (Ref. 7),
go [from GaP(Te) at 4. 2 'K] =1.9935d: 0. 0005,

gL,
= 0. 010+ 0. 002, & = 0. 39 + 0. 02,

(o ) = 1.8 d: 0. 2,
(internal random strain) = (4. 8d: 0. 7)&&10

A.
' = 1.40 d: 0. 07 me V (Ref. 19), :-*„=5. 2 d: 0. 4 eV,

=„=6. 2d: 0. 6 eV (Ref. 20) .

G. Conclusions

We have shown that the experimental observa-
tions in the strain-dependent EPR of GaP(Sn) can
be explained in terms of an orbital-triplet donor
state which is associated with the three conduction-
band minima with X3 symmetry. The three valleys
at the X points are mixed by external- and internal-
strain, spin-valley, and Zeeman-intervalley in-
teractions. From the variations of the spectra
with the magnitude and the direction of the applied
stress we have deduced the parallel and perpen-
dicular one-valley g factors, the intervalley g fac-
tor, the magnitude of the internal random strain,
and the deformation potential for the bound state.
These quantities are useful for the investigation of
the nature of the band and bound states. In par-
ticular, the large intervalley g value and the reduc-
tions of the bound-state deformation potential be-
low its band value indicate a large admixture of d
states into the ground-state envelope function.
These points will be further discussed in a future
paper.
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