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The modulation of the ionic, rather than the electronic, contribution to the crystal polariza-
bility by the atomic displacements is the dominant mechanism for scattering light when the in-
cident light is in the infrared, and it is the ionic Raman effect that is studied in this paper.
The problem considered is the effect of the second-order dipole moment on one- and two-pho-
non scattering spectra, in addition to the effect of the first-order dipole moment. An expres-
sion for the scattering efficiency is obtained and an order-of-magnitude estimate is included
for the case of one-phonon scattering and for the case of two-phonon scattering in a crystal that
possesses no first-order dipole moment. In the case of a crystal which also possesses a first-
order dipole moment, there are additional contributions to the scattering efficiency, but these
contributions are discussed qualitatively.

I. INTRODUCTION

The Raman scattering of light by the phonons in
a crystal arises from the modulation of both the
electronic and ionic contributions to the crystal
polarizability by the displacements of the atoms
from their equilibrium positions. For incident
light in the visible region, the dominant scattering
mechanism is the electronic one because the fre-
quency of the incident light is large compared with
the transition frequencies between vibrational
states of the crystal corresponding to the electronic
ground state. ' However, a previous study indi-
cates that for incident light in the infrared region,
the ionic mechanism is the dominant one, and as
we now have available infrared lasers which emit
at frequencies comparable with the vibrational
transition frequencies, the observation of the ionic
Raman effect should be possible.

The reason for this is that the scattering effi-
ciency is proportional to the fourth power of the
scattered frequency. In going from the region of
visible frequencies to the infrared this factor can
decrease by as much as five orders of magnitude.
The electronic contribution to the Raman tensor is
largely independent of frequency for frequencies
of the incident (and scattered) light well below the

frequency of the lowest electronic transition.
Thus the intensity of infrared radiation scattered
by the electronic mechanism will be as much as
five orders of magnitude lower than the intensity
of visible light scattered by this mechanism. How-
ever, in the ionic Raman effect, this fourth-power
proportionality can be overcome due to the exis-
tence of resonances in the Raman tensor for fre-
quencies of the incident light close to the frequen-
cies of the optical vibration modes.

In a recent paper, Wallis and Maradudin con-
sidered the contribution to the ionic Raman effect
from the first-order dipole moment. In this paper
we supplement their results by including the ef-
fect of the second-order dipole moment on one-
phonon scattering spectra. In addition, we con-
sider the case of two-phonon, or second-order,
processes both in crystals which lack a first-order
dipole moment and in crystals which possess a
first-order dipole moment. We present expres-
sions for the scattering efficiency for one-phonon
and two-phonon scattering processes in the case
of crystals which lack afirst-order dipole moment.

II. EQUATIONS OF MOTION FOR SECOND-ORDER
DIPOLE MOMENT

The scattering efficiency per unit solid angle,
per unit frequency interval for scattering by the
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ionic Raman effect is given by

1 (~(u )3 =—
~

—P
~

Q n, npi yp~(Q)np~„.(c )
(2. 1)

(2. 2b)

Here 1Yi,(t) is the o. Cartesian component of the
crystal dipole-moment operator in the Heisenberg
representation. From Eqs. (2. 2) we find that the
operator P,p(8 I a&o) obeys the relation

P~p(& I&o) = —Pro(&
I

~o) ~ (2. 4)

which serves as a useful check on the determina-
tions of this operator in what follows.

Equation (2. 1) is obtained from Eq. (1) of Ref,
4 on dividing it by the average rate of energy flow

in the incident beam. The latter is given by

I, = (cA/2zz)E'Z-,

where E' and E are defined in terms of the unit
vector no by

E'=noE', E =noE

Equation (2. 1) is a general expression applicable
to all types of crystals and all scattering angles,
subject to the qualifications concerning scattering
by infrared-active modes discussed in Ref. 3. At
the conclusion of Sec. III, we will specialize our
results to the case of GaAs in order to obtain an
estimate of the integrated scattering efficiency.

The expansion of the n component of the crystal
dipole moment in powers of the displacements of
the atoms from their equilibrium positions is
given by

M = Q M (lK)u (lK)+ Q Q M „(lK'l'K')

In this expression, A is the cross-sectional area
of the incident beam; co, is the frequency of the
scattered light; 0 = ~, —coo is the shift in the fre-
quency of the incident light on scattering, where
+0 is the frequency of the incident light; no and n
are unit vectors which specify the polarization in
the incident and scattered light, respectively; and
c is the speed of light. The tensor i „p~(Q) can be
expressed as

i,„„(Q)= (1/2zz) f ds 8 ""(P„(s
~
(vo) P'„„(0

~
(oo) ),

(2. 2)
where the angular brackets denote an average with
respect to the canonical ensemble described by the
vibrational Hamiltonian of the crystal, and the
operator P~p(8 !&up) is defined by

Pyg(8
~
(dp) = f 8 o Pgp(8

~
t) (2. Sa)

where
P„(s

~
t) =(1/a} [M„(s —t), M, (s) j .

Agg=bgg+b „-)=A g

Bp) = b~ —b. p~
= —B„g] ~

t.
(2. Va)

(2. Vb)

We proceed to substitute Eq. (2. 6a) into Eq.
(2. 5), and obtain the expression

M~ =Q M„(j)Ao&+ & Q p M~(kj; k'j')A&Ay. &i,

(2. 6)
where

8 (Kloj)
M, (j) =

(~) ~
QM„„(K)

) KfM K

(2. 9a)

(lK. ~ i)K8(K lkj) 8,(K' Ik'j')
&.. i ~. p

" ' (M„)'"(M„,)'"

The coefficients fM, „(lK)].are the transverse ef-
fective-charge tensors of the atoms, and the
(M „„(lK; l'K')j are the second or-der dipole-mo-
ment coefficients. In addition to considering the
first-order dipole-moment term, we are con-
cerned with the second term in the expansion which
describes the contribution of the second-order di-
pole moment to i „p„(Q).

It is advantageous to carry out the normal coor-
dinate transformation from the atomic displace-
ments and their conjugate momenta to the corre-
sponding phonon operators:

8„(KIlg), g. „-&,)u (lK) =) P [ (g)jzyp
8 Apg

(2. 6a)
1/2

P («) = —.
l ~" Z [(o,(k) j'"8„(K

~
kj) 8'"' "'"II„;,

(2. 6b)
where M„ is the mass of the Kth atom, x(l) is the
position vector defining the location of the lth prim-
itive unit cell, and N is the total number of primi-
tive unit cells in the crystal. &u, (R) is the frequen-

cy of the normal mode of vibration defined by the
wave vector K and branch index j, and 8 (K I R~} is
the corresponding unit polarization vector. If
periodic boundary conditions on the displacements
are assumed, the permitted values of the wave

vector k are distributed densely and uniformly
throughout the first Brillouin zone of the crystal.
The phonon field and momentum operators A„-& and

Bp& are defined in terms of b+ and b&, the crea-
tion and destruction operators for phonons in the
mode (Rj), by

lKQ lKlt, t'K'V

x u„(lK)u„(l'K') + ~ ~ ~ . (2. 5)
x exp[zk x(l)+if' ~ x(l')]=M, (k'j';kj),

(2. Qb)

In this expansion u (lK) is the a component of the
displacement of the zth atom in the lth unit cell.

because

M~ p(lK; l'K') =M~p„(l'K; lK) . (2. 10)
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It should be noted that the coefficient M, (kj; k'j )
vanishes unless 4+k' = 0.

Using Ell. (2.6), we find that the operator
Pka(s I f) is given by

Pka(s
~

f) =—ZM1(j)M2(j') [Agj(s —t), Ajfj. (s}]+—~ .& Mk(j)M2(kl jli ka ja) [Agf(s —t), Ak»1(s}Akaja(s)]25

Pr2)2

+—Q QM, (lr,j„k,j,)M, (j)[A„-„,(s —f)A„;„(s t), A—jfj(s)]+ ~ ~ ~ . (2. 11)1

4&1

k2~2

All the terms given in this expression contribute
to one-phonon or first-order ionic Raman scatter-
ing. The contribution to Pka(s l f) from the first
term has been obtained by %allis and Maradudin,
who showed that it is necessary to evaluate the
commutator to the first order in the cubic an-
harmonic force constants of the crystal to obtain
a nonzero first-order ionic Raman effect. The
second-order dipole moment contributes to the
one-phonon spectrum in the harmonic approxima-
tion for lattice vibrations. However, in this sec-
tion we will also determine the contributions to the
commutators in the second and third terms of Eq.
(2. 11) linear in the cubic anharmonic force con-
stants, since these will be needed in the discussion
of two-phonon scattering in a later section.

The operators Akj(s —f} and Akl»(s —t)Akaja(s —f)
can be expanded in Taylor series in powers of t.
These expansions have the advantage that they en-

able us to evaluate equal time commutators only
in Eq. (2. 11).

The Hamiltonian of the crystal through cubic
anharmonic terms is given by

H=ZK(d s& ps& as+2 Z Z V(pl Sl,'paS2,'paS3)
pS p1$1 p2S2 p3S3

&&A;„,A;„P;„,. (2. 12)

Using the Heisenberg equations of motion

N —Ak j ——[Ak j,H] = R(uf (kl)Bklf1, (2. iS)

~ d
aif —Bk, —[Bk, , H] = If(O j (kl)Ak j

+ 6 Q Q V(- klan li P3S3i P4 S4) sasa 34s4
p3s3 p4s4

(2. 14)
we proceed to calculate the derivatives of the oper-
ator Akl j,(s)A~„(s):

d'
0 &1j1 g2g2 g1&1

1&1 2~2k jl k ja jl( l)~klj kpj ~j (ka} k j Bk j

(2. 15a)

(2. 15b)

2 Ak j Akafp [+f (kl) +~f2(ka)]Adolf lAkajp 2+f1(~1)~fa(ka)Bkl f1 Bkpja—
6(u j,(k,} Z V(—kljl i p3 a ip4 4)

p3S3
w

p4S4

6(uja(ka)
&A;3,3A;,4Akafa —

@
2 V( Ka ja i paS3,' p4S4) Ak»1A "3,3A.4,4

P3s3

p4s4

(2. 15c)

In arriving at these results, we have made use
of the fact that the Fourier-transformed cubic
anharmonic force constant V(kj; k j; k j ) is com-
pletely symmetric in the indices (kj), (k'j'), and
(k", j"). If we retain the terms linear in

t

V(-kljl, Isa, p4s4) and V(-kaj„pas„p4s, ), we
discover that the even- and odd-order derivatives
have different structures, and the general expres-
sions take the following form:

6(oj,(k, )
gSan (AklflAkaja} +an kljlAkafa+ 52n Bklf1 Bkaja + ~ V( 12k1 piaS3 i p4 4} (eanAyasaA3444 kafa

p3s3

p4s4
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6(uj2(k2) ~+f2n By3s3Ay444 Btt2j2+&8nAy3s3By4s4Bft218+ ~8n~y3s3 By4s4Ai j ) +
@

s'-t ~( k2~2t P3S3 t P4S4)
~3BS

~4B4

X(i2+8 j,Ay s A
y~ s+j2nB8,j,A; s B", , +j32nA.„,j,B; „B;„+l2B

8~ jB~, A;, ), (2. 16)

d2n+ 1
63&0jl (kl)

dS2n+1 ( irljlAft2j8j = C2n+1AftljlB82j2+d2n +1B81jlAft2j8+
@

„s'-t V( k121t p3S3t p4S4) (Q2 +n1Att3 3Asyss4B82j2
&3B3

94&4

6iu) j2(k2) ~+ Q 1B 3 3A 4 4Aft2j2+ Y2 l A
3 3B 4 4Aft2j2+ 62 1B 3 3B 4B 8j8) @

~ +( k2$2 p3s3 p4s4)
&3B3

P4s4

( 12n+1 Itljl y3S3 y4S4 P2n+1BkljlAy3sp y4s4+ P2 +1nAkljl y3s3 y4s4+ 2ntl~ttljlBy3s3By4s4) (2. 17)

In these expres ns» &2n» b2n) 2n+1) and d2n+,
have the argument (k,j» k8j8). Similarly, each
of the remaining coefficients has the argument
(klan 1 t k2j2 p3s 3 t p4s 4) . This dependence is not
indicated in order to simplify notation.

The recurrence formulas relating the coeffi-
cients in Eqs. (2. 16) and (2. 1V) are obtained by
equating the time derivative of Eq. (2. 16) to the
expression for

d2n+1

~ 2n+1 (A„ljlA„2j8)

given by Eq. (2. 17), and by equating the time de-
rivative of Eq. (2. 17) to the expression for

d2n+2

dS2n+8 (Aftljl tt818)

obtained from Eq. (2. 16). The results of the first
operation are

c»„=—z(u, b2„- z&2a2„,

d2n, 1= —Z fp2n Z+2b2n )

+2 1 ~2 j+1 ltt2S2 ~3f8 &4%

P2 +1 = &3e8 —&2f2, —~4118, ,

'Y2„1= —+4&2„—+2@2„—co 3IZ2„,

62n+1 +4f2n ltj3g2n &2132n t

2 1= —(d Z2

l 2 +1 ~2 I&8 ~li2 &4j2 %3f2„

P2n+1 d 3Z2n 4~2n d 2i2n»

0'2 +1 = —3 j2 —(d1&2 —4~2

(2. 18a)

(2. 18b)

(2. 19a)

(2. 19b)

(2. 19c)

(2. 19d)

(2. 19e)

(2. 19f)

(2. 19g)

(2. 19h)

+2n+2 —ZCg 2C2n+1 ZQ)1Q2n+1»

b2n+2 = —Z(O1C2n, 1 —Z&2d2n+

(2. 2Oa)

(2. 2Ob)

e2n+2 3~2n+1 f+1+~2+2n+1+ ltt3P8n+1+ +4Y2n+1 t

(2. 21a)

The second operation yields the following relations:

f2n+2 &3+2n+1+ ltj21 2n+1+ &462ntl t

g2n+2 4+2n+1+ 82n+1+ 4 3~2n+1»

@2n+8 &4P2n+1+ ltd 3Y2n+1+.ltj268n+1 t

(2. 21b)

(2. 21c)

(2. 21d)

2n+8 C2n+1 j ltt8+&412n+1+&lP'2n+1+ ~3P2ntl t
(2. 21e)
(2. 21f)j2n+2 1~2n+1+ +4~2n+1+ &3+2n+1 )

~2n+2 3~2n+1+ 4~2n+1+ d1+2n+1 ) (2. 21g)

(2. 21h)

ao —1)
o=o

co=0»

f3=0 t

a'o=O»

ho=0,

zo=O )

jo=0,
ko=0 )

Eo=0,

i' 2 2N
2

——A)1+(g)2)» C1 ——Z(g)2»

b2 = —21N»

82= —1 )

f2=0 t

g2=0 )

h2=0»
Z2=-1

j2=0 )

k2 —-0,
l2=0»

d1 ——Bd1 )

n1 ——0,
Pl=0 t

51=0 )

q1= 0,

P1= 0,
01=0 .

(2. 22)

(2. 23)

The method of generating functions is employed
to solve the system of equations (2. 18)-(2.23).
We will first solve Eqs. (2. 18), (2. 20), and (2. 22),
which constitutes considering the second-order
dipole-moment contribution to P18(s I f) in the har-
monic approximation and which are the necessary
contributions to one-phonon, or first-order, Ra-
man scattering. We eliminate c2n„and d,„„from
Eqs. (2. 20a) and (2. 20b) by the use of Eqs.
(2. 18a) and (2. 18b), and the result is the pair of

i2n+2 +3~2n+1+ 1 P2n+1+ 42n+1

Here +j,(k,), ~j2(k2), +,3(p3), and &u,4(p4) have been
abbreviated by w1, &2, co„&4, respectively. The
initial conditions to be satisfied in solving this set
of equations are
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coupled difference equations
2 2K

+2n+2 2td1~2f 2n (+1++2)+2n

2 2l
2n+2 (+1+1d2l~2n 2ld1~2C2n

(2. 24a)

(2. 24b)

&(&1A'k2j2 ix) +(k2j2 kl j»x) ~

Consequently, it follows that

c2 +1(kljl i ~2j2) d2 +1(k2j2 i kl jl)

(2. 33)

(2. s4)

We proceed to introduce the two generating func-
tions a(k, j„k2j„x)and $(k,j„k2j2,' x) give~ by

@(kljl ~2 j2 x} + 2 (~1jl i k2 j2}x
n=o

(2. 25a)

~(~ljl; k2j2 x} @(k2j2 ~1jl
$(kl jl i ~2j2 i x} $(k2j2 i kljl i x} &

it follows thai

~2 @ljl i k2 j2} 2 (k2j2 1jl) p

~2 (~ljl ~2j2) ~2 (~2j2 kljl)

(2. 28a)

(2. 28b)

(2. 2ea)

(2. 29b)

We next introduce two more generating functions

&(kljl, k2j2, X) =2 c2 1( 1jlik2i2) '"",
n=0

(2. SOa)

&(&1jl,'k222 x) Z d2.+l(kl jl k222)x
n=0

(s. sob)

Multiplying both sides of Eqs. (2. 18a) and (2. 18b)
by x "' and summing on n from 0 to ~ as before,
we obtain the results

e(x) = —i(u2X a(x) —i(u,x $(x), (2. Sla)

n(x) = —i(d,xn(x) —i(u2X$(x) . (2. slb)

Substitution of the solutions for 8(x) and $(x) yields

$(kl jl i k2 j2 i x) z I 2 (kl jl i k2 j2)x ' (2' 25b}
n=O

Multiplying both sides of Eqs. (2. 24a) and
(2. 24b) by x ", summing on n from 0 to ~, and

making use of the initial conditions, we arrive at
the following equations for 8(x} and $(x):

(1/x'+ &d', + (u2) 8 (x) + 2(d, (u2 $(x) = 1/x', (2. 26a)

2(o,(u2 & (x) + (1/x'+(u2, + u)22) $ (x) = 0 . (2. 28b)

The solutions of these equations are given by

)
1 + ((d 1 + &d 2)x

1 ljt 222 & [1+(~ + 1d )2X2] [1+ (~ 1d )2X2]

(2. 27a)

$(k '
R

' x)=
[1+(~ +~ )2X2] [1+((g (g )2X2]

(2. 2Vb)
Also, because

In the following sections, we will use these re-
sults to obtain expressions for P12(s I ~2) needed in
the evaluation of the scattering efficiency.

III. SECOND-ORDER DIPOLE-MOMENT CONTRIBUTION
TO ONE-PHONON SCATTERING

(a) ))) 0)

We begin by using the preceding results to ob-
tain the expression for P,2(s 1 ~2) describing the
contribution of the second-order dipole moment to
one-phonon scattering processes. The three pro-
cesses which occur in the first-order ionic Raman
scattering are shown in diagrammatic form in Fig.
1. In case (a), the incident photon interacts with
the lattice through the first-order dipole moment
M'" to create a phonon. The phonon created de-
cays into two phonons via the cubic anharmonic
terms in the potential energy of the crystal, de-
noted by t/'3 in the figure. One of these phonons
leads to the emission of a photon with scattered
frequency v, through the crystal's first-order
dipole moment. Anharmonicity is required in this
process because, in the harmonic approximation,
even crystals possessing a first-order dipole mo-
ment cannot scatter light inelastically by a one-
phonon process.

In case (b), the incident light directly excites
two phonons through the second-order dipole mo-
ment of the crystal, M' '. One of the phonons
created in this way leads to the emission of a pho-
ton with scattered frequency &, through the crys-
tal's first-order dipole moment. Case (c) illus-
trates this process with the roles of the first- and

second-order dipole moments reversed. The lat-
ter two processes occur in the harmonic approxi-
mation for the lattice vibrations, although they
require electrical anharmonicity in the form of a
second-order dipole moment. It should be noted

~ I 2 2 2 2

(g
. ~ .

)
Z(d2X(ldlx —)'d2X —1)e ljl; k2j2 x

[1 ( )2 2] [1 ( )2 2]

(2. 32a}

(c)
td

M

We see that

)
i(dlX((d2X —(dlX )

2 '- 2X2-IL

[1+ ( , + ,)' '] [1+ ( , — ,)' ']
(2. 32b)

TIME

FIG. 1. Processes contributing to the first-order ionic
Raman effect described in Sec. III. Photons are described
by wavy lines and phonons by solid lines.
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that infrared-active phonons are necessary for a
first-order ionic Raman effect to be exhibited, and
a crystal such as diamond would not display this
effect.

In a previous paper, Wall, is and Maradudin' ob-
tained the expression for the contribution of the
first-order dipole moment to P,z(s I +0) to terms
linear in the phonon field and momentum operators.
This is the contribution associated with Fig. 1(a).
Here we determine the additional contributions due
to the second-order dipole moment, and associated
with Figs. 1(b) and 1(c).

The result obtained in Ref. 3 for the first-order

dipole-moment contribution to P,z(s I f) is given by

P„(s I t) = g—
, P M, (j)M,(q')

1 " (-1)"f"
, .-o n!

x [A/'(. ), A&, ,(.}], (3.1)

where (zz) denotes the nth derivative with respect
to argument.

Evaluation of the operator P „~(s I f), and conse-
quently P,z(s I &u, ), yields

Pie(s
I &0) = z~ [ is (jI &0)B5&(s) —P„'z'(j~ ~o)A6&(s)],

(3.2)
where

(,) .
~

)
48(do g M)(j')Mg(j")(0, (0)(u,"(0)(d,(0)V(oj';Oj"; oj)
fzz ),. [(o~z (5) —(ozo] ( [(o,"(0) + (o, (O)]z —(uQ ( [(o, .(5) —(o, (t))]z - (ozo]

(3.3a)

z) .
~

24 g M, (j')M (j")(o,.(0)(o,"(0)[(o,' (0) —(u, (0)-(uo]V(0j';Oj";Oj)
~g~g ~ [(/zan (|t) Q)0] ( [QP~a ~ (t})+Q)~(5)] (go]'[ [(d~e ~ (5) (og(5)] Q)0)

(3.3b)

We now consider the contribution P~(s I t) from both the first- and second-order dipole moments which is
linear in A+ and 8+. We have two types of terms to evaluate:

P'~' "(s
~
f) =—Q, 2 M, (j&) 2 M, (Rpj2,'Rzj )[zA'5&'z(s), Af, z (s)Af f (s)],

n~o n' fg &a&a

~s&s

(3.4a}

PIzz"z" (s ~It) =—„Q Q M, (k,j„k,j,)Z M,(j,) „[Af, „(s)Af, (s)],A6, (s)
n 0 ' ksjg 1

n ka j2 ks)s

ksjs

(3.4b)

First we consider the operator 'Pg
"z(zs If). From Eq. (3. 5a) of Ref. 3 we see that in the harmonic ap-

proximation the commutator [Af &
(s),Af & (s)Af z (s)] vanishes, and to first order in the cubic anharmonic

&3

force constants it is quadratic Af~ and Bf . Using Eq. (3. 5b) of Ref. 3 for Af„"' (s), we find that in the
harmonic approximation,

as
[A)-, , (s), AP, (s)AP, (s)]= [-z(u„(k,)] [2&(k, +&,) 5„„Af,„,+2~(f, +R,)5„„Af„,],

A'„-',,""'= [-z~, (k,)]'"'B;„,.
1

(3.5)

(3.6)

Substitution of Eq. (3. 5) into Eq. (3.4a) yields the expression

00 n+1

P~&"&'(s
~
t) = 2, , Q 2 M, (j,)M, (k,j„k,j,) [-z(o,,(O)]'""[2a(R,)5„„A„-„,+2S(R,)5...,A„;„]M „0 (2zz+1! q, f )

~s&s

=2i ~p+t

=—Z )M(j,) M(jzzj, ) (sin(uz(0) t}Aoz, (3. 'f)

where Mdz(jz j,) =-Mz(Ojf jz Qfz), and'the oPerator
P'"z"&' (s I &uo) is given by

Ql9 &(0)x, - —, A5, . (3.3)
(op 0} ~0

'"P" z&(sz~v, ) = —Q M„(j')M,(j'j) We next consider the contribution from P~zfz" z'(s I f).
From Eqs. (2. 16) and (2. 1'7) we find that
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2„(A~j Ak j ), Ak f = b2„[2 (k2+kl) 5f j Bk j
7 d &n+1

d 2n+l (Ak2f2Akof2)R Aklfl [2+ ( 2+ l) fofl k2f2

+ 26(k2+kl) 5f j Bk j ],
(S. 9a)

+ 2&(k2+kl) &fpflAkof2] ~ (3 Qb)

The operator P'"22 l'(s It) then takes the form

t ~tl

P'ko
" '(Sl t) = —Z Mk(kpgp, 'kpyp) Mo(gl) Q b2„[2b(k2) 5f j Bk j +26(k2) 5f f B„j]

|r.2gg n=o

k3j3
&x

t 211+1

0 1, [cP„.~ [00 (k~ ) 5g g A; g ] + 0P„.~ [00 (k~ ) II g g A," g ]]) . (0 10)

From this it follows that P',2"l) (s I (do) is given by

P"2"l) (sl ojp)=- Z M, (jpj,)M,(j,)Xg

—42(dp off l(0) (A) j2(0) Bojp —22(A)fl(0) [QPp+ (d f22(0) (d jl(Q)] A()fn

[I~I (o)-~0(0)l' —~]H[~s(0)+ nÃ)l'- 0] [[~J~(o") -~n(0)l'-~]][[~I (o) +~A(0)]'-~]]
(S. 11)

where we have made use of the generating functions

&(kljl;kpj2;&), e(kljl,'kpj2 ~) and +(kljl kpj2 k)

and necessarily have set I/x= 2(dp.
Combining the contributions P'"»'(s l(dp) and P'"2"2'(s

I ojp) with the result for P'"l l'(s I ojp) obtained by
Wallis and Maradudin, we arrive at the following expression for Pk]](s I (dp):

P.o(s
I
~o) = 2 ~ [P'2) (jl ~o) Bof(s) —Pv" ( jl ~o) Apf(8)] (S. 12)

where
48(do v(o j', oj";0j)

Pk(f'(jI(do)= @2 ~Mk(j )M (j )(df (o)(d, -(0)(d (0)
[ (0) ]{[ p)+~ (0)] ] ([~,(0) & (0)] & )

«do M . «M» &j"(0)(df(0)
) Mo(2 ) ([ (g) (0)]2 2] j[ (0 (0)]2 2] 1 (3

(df (0) 2 „„off„(0)[oj()+off(if) (df„(0)]'«)- o' @ - '" '' 6 -(&)+ (0)]'- 'Hl: -(&)- (0)]'-,') '

(S. 13b)

The expressions given by Egs. (3. 13) satisfy rela-
tion (2. 4).

The group-theoretic selection rules governing
the first-order ionic Raman effect obtained by
Wallis and Maradudin3 are not altered by the ad-
ditional contributions to the coefficients P~~' and
P~q' given here. If we use the expression for
i,„()k(Q) given by E(I. (2. 2), we find that in the har-
monic approximation this tensor is given by

ok(Q) = jl(Q)~ Pko(jl Ojo Q)» (jl(do Q)

&& [5(Q —(df (0)) —5(Q + (d f(0))], (3. 14)

where
P~(jl ~o, Q) = l«~f(0)] Pk(2) (jl ~p)+P~(') (jl ~p) .

(3. 15)
In this expression, P)(()) (j I o)p) and P)((R) (j l(dp) al"e
given by Eqs. (3. 13a) and (3. 13b). The first term
on the right, -hand side of E(I. (3. 14) describes the
anti-Stokes scattering processes, while the sec-
ond term describes the Stokes processes.

We conclude this section with an order-of-mag-
nitude estimate of the scattering efficiency [E(I.
(2. 1)]for ojp in the vicinity of 2ojz, for GaAs. To
simplify this calculation we neglect the small dif-
ference between the frequencies of the k= 0 trans-
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verse- and longitudinal-optical modes ((or = 273
cm, ~I, = 297 cm ),

' and equate all optical-mode
frequencies to ~~. Then, labeling the three op-
tical branches by j=1„2, 3, we obtain for &p=2&~,

PPa (j I &o) = —P(Is (jl(do) ~ (3. 16b)

Combining Eqs. (3. 15) and (3. 16) yields the result
that the coefficient P~(j I (d„Q) is given by

P((o (Jl(uo)=4 s s ~ 2 M((j )Ms(j )4h)y —h)p 8 )ogre

V (D( ' 0( ' 0(')+ E M(j ( (ilk( ())
yl

(3. 16a)
With the same approximations we find that

P)s(j I (up, 0) = (0/(ur —1) P(Is' (j I (op) . (3. 17)

This result in Eq. (3. 14) enables the scattering
tensor i, s~(Q) describing Stokes scattering to be
written as

i sx(Q)sty =4ln((dz, )+ 1]

x ~g P4'(jl ~o»('-'(jl ~o) &(fl+ ~r)
(3. 18)

To evaluate the coefficient P~("(j I ~p) we must
obtain expressions for the first- and second-order
dipole-moment coefficients M„(j ) and M(,(jj ), and

the cubic anharmonic coefficient V(0 j;0j;0j ).
The latter is given by'

y(0. 0., -.. 1 1 »,i «e (vlj) es(s'Ij') e„(z"Ij")
' ' ' ' ' ) 6 2x I

I g) ,, (") :g)]"' , , - "( ' ' (M.)"' (M„ )"' (M.-)"' '

(3. 19)

M„(l)=(aX/2I, )'~' *, ~,(j), (S. 24)

where e~& is the transverse effective charge of the
ions in the crystal.

In determining the second-order dipole-moment
coefficient M„(jj ), we require its sign relative to

where C,s„(ls; l ((; l z ) is a cubic anharmonic
force constant. At this point it is convenient to in-
troduce the coefficient f, (see ((: ) defined by

C,s„(lK; l K; l K") =Nf~s„(KK K ) . (3.20)
~ ~o~lt

Infinitesimal translational invariance and the T„
symmetry at each ion site in the zinc-blende struc-
ture have the consequence that f, (swiss; ) can be
written as

f s„(KK K ') =(sgnz) (sgnz') (sgn((")
I
e s„lf,

(3. 21)
where sgng = +1 when z= +, and &~~„ is the Levi-
Civita tensor. With the assumptions we have
made, the eigenvector e (vI j) can be shown to be
given by

e (Kl j) =(sgnz) ((L(/M„) ~
$ (j), j= 1, 2, 3

(3.22)
where p. is the reduced mass of the two ions in a
primitive unit cell, and the ($(j)j are any three
mutually perpendicular unit vectors. Combining
Eqs. (3. 19)-(3.22), we obtain for V(oj; Oj; Oj ),

3/2
V(Oj;Oj';Oj )=6 its

~
I ...I .(j)&,(j')~,(j").

(3.23)
In the same way the first-order dipole-moment

coefficient M„(j) is found to be given by

I

that of V(0j;0j'; Oj"), as well as its magnitude. We
find that M~(jj ) can be expressed as

A lattice-dynamical calculation of the coeffi-
cients f and m appearing in Eq. (3. 27) has been
carried out for GaAs by Humphreys and Maradudin

recently in another context. ' For the details of the
model used, and the calculation, the reader is re-
ferred to their paper. The values obtained are

f= 78. 5189x 10 erg/cms,

m = (4. 0431x 10 ) e~r cm ' .

(S. 28a)

(S. 28b)

The second-order dipole-moment contribution to
the coefficient P(IP(j l(dp) is of the same order of
magnitude as the cubic anharmonic contribution,
and has the same sign. For p in the vicinity of
2h)~ for GaAs, an order-of-magnitude estimate of
the integrated scattering efficiency for the Stokes
portion of the spectrum at 0 K, per unit length
per unit solid angle is obtained by combining Eq.
(S. 27) with Eq. (S. 18) and substituting the result
into Eq. (2. 1). The estimate is

I
~

I
&..sl &-(j) &s(j'»

4(dr) as (3 25)
where the coefficient m is defined by

Q M(„s(iK' l K ) = x(sgnK) (sgnz')
I ~((((s I

m
(3.26)

With the preceding results, P(((('(j I (dp) becomes
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J S (fl)sgogMg dfl =
2 2 cm sr (3.29)

1 33&& 10
2 —&o &r

for incident light polarized along the y direction
and scattered light along the x direction. The re-
sult for the integrated scattering efficiency pre-
sented here is an order of magnitude greater than
those obtained previously by Wallis and Maradudin
and by Humphreys. This is attributed to the use
of a more realistic model of Gahs in obtaining the
estimates given by Eqs. (3.28). An integrated
scattering efficiency of po cm ' sr ' for one-
phonon scattering is at the limits of detectability
at the present time for incident light in the in-
frared. The result given by Eq. (3. 29) indicates,
therefore, that the first-order ionic Raman ef-
fect can only be observed for frequencies of the
incident light in the immediate vicinity of the res-
onance frequency, i. e. , within about 10% or
27 cm ' of 2(d~. For such frequencies the inte-
gratedscatteringefficiencyexceeds 10 "cm ' sr '.

IV. SECONDARDER IONIC RAMAN EFFECT

(b)

(c)

(e)

~M /(I)

Vy

M"

— fdl
—(dp

fdI

Cdp

(d

2
(ds

(dl

The processes describing two-phonon, or sec-
ond-order, ionic Raman scattering are shown in
Fig. 2. In what follows it will be shown that the
general expression for the operator P„'P(01~o) de-
scribing the second-order ionic Raman effect is

P~o&(0l ~o) =Q 2 [q,'o"(kj; k'j')A-„, A-„, ,
kg

+ q~g'(k j;k j ) A- B-, , + q~o'(kj; k j ) B-„A„-, ,

+ q~a'(kj ' k j ) B~ B-„, , ] (4 1)

Thus, unlike the situation for the electronic con-
tribution to the second-order Raman effect, where
only the first term on the right-hand side of Eq.
(4. 1) appears, in the second-order ionic Raman ef-
fect the operator P~(01+o) is modulated by second-
order terms in the atomic momenta as well as in
the atomic displacements. We make use of Eq.
(2. 4) to determine the required relationships
among the coefficients (q„'o'(kj„k'j )). We find

q"'(-kj'-kj l~o)*= -q't"(kj'k j l
-~o)

(4. 2a)
qu" (-k j ' -kjl ~o)*=q~s'(kj'k j I

—~o)
(4. 2b)

I

FIG. 2. Processes contributing to the second-order
ionic H, aman effect described in Sec. IV. Photons are
described by wavy lines and phonons by solid lines.

q ' '(- k j;—kj
l

(uo)* = q ' ' (kj; k j l

—~o),
(4. 2c)

q ' (-k~; -k'j'l, )*= —q„",'(kj;k'j'l —,) .
(4. 2d)

We now turn to the determination of the coeffi-
cients fq&'(kj; k'j')) for two types of crystals.

The first case we consider is case 2(c) which
exhibits the contribution from the second-order
dipole-moment alone. In the absence of a first-
order dipole moment in a crystal, e. g. , for di-
amond, this would be the only second-order pro-
cess. The incident light excites two phonons
through the second-order dipole moment M' '. One
phonon of frequency ~& is created and the second
phonon interacts with the lattice again through the
second-order dipole moment M' ' to create a pho-
non of frequency ~& and emit a photon of frequency

This process occurs in the harmonic approxi-
mation for lattice vibrations.

In this process, the operator P~(s 1 t) is given by

P~(s
l
f) =—2 Zi 2 M~(kq j» k2 ja) Mo(ks js; k4 j4) „[A-„~&,(s) Af2&o(s) l Af3»(s) A"„,&,(s)

1 " (- I)"~" d
48 o pg! 8 33~ 4

Ii a "3~4
SgSp

(4. 3)

To evaluate the commutator in Eq. (4. 3) we use
the expressions for the even and odd derivatives
of A» A» given by Eqs. (2. 16) and (2. 17). We

I

combine these equations, perform the integration
over t, and arrive at the following expression for
the operator P,8(s I wo):
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1/ bs
I'&s(sI o&o) =~+ ~ ~ Ms(ks jsiksjs) Ms(ks jsik4 j4) ~

I
~

( sn [2~(ks+ks) 5ysgs Bisy&Ai4y4
kgb Qk4
fafa fsf4

+ 26(ks+k4) 5~ ) Bi ) A„) + 26(kg+ks) 5~ ) Ai ) Bi ~
+ 26(kg+k4) 6) ~ Ai ( Bi ) ]

(. "s„,s [2b,(ks+ks) 5~ ( Ai ~ Ai ) +2&(ks+k4) 5~ ) Ai g Ai ) ]
nA

. '"s„'., [2a(k, +k, ) Gq, ~, Ai q Aisles+ 2&(ks+k4) &g,y, Aisles Aisles]) ~ (4. 4)

In writing this equation, we have assumed that ~0 has a small negative imaginary part which has been
omitted here to simplify the notation. We perform the summations in the above equation by utilizing the
generating functions given by Eqs. (2. 2Va), (2. 27b), (2. 32a), and (2. 32b) in which we have set x= 1/io&p.
We make use of the fact that M, (ks j» ks js) vanishes unless ks= —k„and obtain the final result for P&d&(Olo&p)

given in the form of Eq. (4. 1), where

k 4) +~ k —4) k
Q&t&& (kj' k '

) 'Z Ms(kj kj )Ms(k
' kj )I

([ ( ) ( )] s}([

o&g (k) [o&p+ o&y(k) o& k

„s}([ „-) „- ]s s}, (4. 5a)
fg

Q„",&(kj; -kj') = ——'

Q„", (kj; -kj')= (4. 5c)

( a&p(g~ (k) p&~ (k)
jl j ) s( j js)

~ ([ (k) (k)]s s}([ (k) ( )]s s} ~ ( ~ 5b)

o&o ~g, (k) (og(k)

([ (k) + (k)]s 2}([ (k) (k)]s s}

Q~4&(kj; -kj') -=o. (4. 5d)

Due to the restrictions on the dipole moment, the coefficients (Q„'s&(kj; k j )}vanish unless k'= -k. We
"ave written Q»s (k ji —k j ) in symmetric form as this is the form in which it contributes to p

We obtain an exPression for the tensor i „s„(Q)as given by Eq. (2. 2) in terms of the coefficients (Q~ &(kj
—kj )}by evaluating the necessary correlation functions. We find that

i „s»(Q) =2 Z (ni&+ 1) (n i&. + 1) 5(Q+o&&(k)+to&, (k)) [(q&+qs+ qs+ q ) (q +q*+q*+q's)]
off'

+2 ~ n-ignis'5(II —o&q(k) —
o&q (k)) [(qs -qs —q, +q4) (qs —q*, —q,*+q4)]

&ff
'

+ 2 Xi (ni&+ 1)n-„&, 5(II+ o&&(k) o&&,(k)) [(q& qs+ qs q4) (q& qs + qs q4 )1

+2 Z n -„& (n I(.+1)5(II —o& (k)+~, (k))[(q +q q q ) (q +q q q4)] (4 6)
~ff'

We have simplified notation in this expression by
defining

q„= Q '"'(kj; —kj ), (4. Va)

(4. Vb)

(4. 8a)

q„* =Q„'".&*(kj; —k j') .
In Eq. (4. 6), we have used the following relations:

Qu"&*(kj' -k j') = Qss'*( kj kj»-'
Q~s&*(kj; -k j') = Q~s" (- kj'; kj),

Qs&&'*(kj; -kj ) = Qsss'*(- k j'i k j) .

(4. 8b)

(4. 8c)

(4. Sd)

In view of the complexity of expressions (4. 5a)-
(4, 5d), it is difficult to make more than a crude
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estimate of the scattering efficiency for the sec-
ond-order ionic Raman effect. If we make the ap-
proximation of the absolute zero of temperature
for diamond, we find

i „~,(n) = Z 5(0+ +, (k) + &u, .(k)) ~
(qg+ qg+ q3) ~

' .
(4. 9)

For the incident light polarized along the y direc-
tion and the scattered light along the @direction,
the integrated scattering efficiency for the Stokes
portion of the spectrum is given by

0

s (0) dQ = 4 2
i

qadi

[&go —(g)y(k) —(dy (k)]
» OO 4

(4. 11)
We integrate k over the first Brillouin zone and

substitute the expressions for the second-order
dipole-moment coefficients obtained in Sec. III for
GaAs. We set (do = 2+„and all other frequencies
equal to the Haman frequency. The resulting ex-
pression for the integrated scattering efficiency
per unit length per unit solid angle is given by

f V2 1 em~'
~CO S. vg c j (4. 12)

where v, is the volume of a unit cell, rn is the sec-
ond-order dipole-moment contribution, and I is
the diamond mass. An order-of-magnitude esti-
mate is

J S (0) dQ-'7. 234&& 10 cm sr (4. 13)

If we divide this by 2~~ = 2664 cm, we find that
the average scattering efficiency per unit length
per unit solid angle per unit frequency interval is
1.44' 10 cm 'sr 'sec. If the spectrometer ac-
cepts all the radiation scattered into a frequency
range of d~, = 5 cm ' (= 9.4 x10 ' rad/sec), the av-
erage scattering efficiency for scattering into this

s (0) dQ 4 dfl fagged(fl) ((d0+f1)
1 1

w 00 A c4

(4. 10)
If we assume that ~0 is somewhat greater than 2~~,
where» is the Haman frequency for crystals of
the diamond structure, none of the denominators in
Egs. (4. 5) can vanish. We make the approximation
that the q&„& each contribute equally to the scatter-
ing efficiency and choose q,» which has the most
simple form. We substitute Eg. (4. 9) into Eq.
(4. 10) to obtain

frequency interval is 1.35x10 ' cm 'sr . The
results given by Eq. (4. 13) and the average scat-
tering efficiency are about three orders of magni-
tude greater than those obtained in a previous pa-
per. This is due to the use of the value of m giv-
en by Eq. (3. 28b) in Eq. (4. 12), rather than the
smaller value used in Ref. 8.

In the case of a crystal which also possesses a
first-order dipole moment, there are additional
scattering mechanisms that contribute to the two-
phonon or second-order ionic Raman effect. These
processes are shown in Fig. 2. Figures 2(a) and

2(b) display contributions from the first-order di-
pole moment alone. Figure 2(a) exhibits contribu-
tions proportional to the squares of the cubic an-
harmonic force constants, and Fig. 2(b) exhibits
contributions proportional to the quartic anharmon-
ic force constants. In addition, there are the con-
tributions proportional to the product of the cubic
anharmonic force constants and the second-order
dipole-moment coefficients that are shown in Figs.
2(d) and 2(e). The general form for P'„z'(0 I eo)
given by Eq. (4. 1) is still valid with the coefficients
fQ„'q'(k j;k j )j modified to include these processes.
However, the expressions for these coefficients
and operators describing these processes are ex-
tremely lengthy and cumbersome. It is reasonable
to assume, however, that the scattering efficiency
for scattering by these mechanisms is comparable
to that for the second-order ionic Raman effect in
crystals without a first-order dipole moment. We
have estimated this to be a small effect and con-
sequently, we will present the complicated ex-
pressions elsewhere.

In this paper, we have presented a theory of the
first-order ionic Haman effect from infrared-in-
active optical modes of crystals, as well as a the-
ory of the second-order ionic Haman effect in
crystals possessing a first-order dipole moment
and in crystals lacking a first-order dipole mo-
ment. Numerical estimates of the magnitudes of
the scattering efficiencies obtained indicate that
the first-order ionic Haman effect is on the limits
of detectability, but that the second-order ionic
Raman effect is too small to be observed at the
present time.
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