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The modulation of the ionic, rather than the electronic, contribution to the crystal polariza-
bility by the atomic displacements is the dominant mechanism for scattering light when the in-
cident light is in the infrared, and it is the ionic Raman effect that is studied in this paper.

The problem considered is the effect of the second-order dipole moment on one- and two-pho-
non scattering spectra, in addition to the effect of the first~order dipole moment. An expres-
sion for the scattering efficiency is obtained and an order-of-magnitude estimate is included
for the case of one-phonon scattering and for the case of two-phonon scattering in a crystal that
possesses no first-order dipole moment. In the case of a crystal which also possesses a first-
order dipole moment, there are additional contributions to the scattering efficiency, but these

contributions are discussed qualitatively.

I. INTRODUCTION

The Raman scattering of light by the phonons in
a crystal arises from the modulation of both the
electronic and ionic contributions to the crystal
polarizability by the displacements of the atoms
from their equilibrium positions. For incident
light in the visible region, the dominant scattering
mechanism is the electronic one because the fre-
quency of the incident light is large compared with
the transition frequencies between vibrational
states of the crystal corresponding to the electronic
ground state.! However, a previous study? indi-
cates that for incident light in the infrared region,
the ionic mechanism is the dominant one, and as
we now have available infrared lasers which emit
at frequencies comparable with the vibrational
transition frequencies, the observation of the ionic
Raman effect should be possible.

The reason for this is that the scattering effi-
ciency is proportional to the fourth power of the
scattered frequency. In going from the region of
visible frequencies to the infrared this factor can
decrease by as much as five orders of magnitude.
The electronic contribution to the Raman tensor is
largely independent of frequency for frequencies
of the incident (and scattered) light well below the

frequency of the lowest electronic transition.

Thus the intensity of infrared radiation scattered
by the electronic mechanism will be as much as
five orders of magnitude lower than the intensity

of visible light scattered by this mechanism. How-
ever, in the ionic Raman effect, this fourth-power
proportionality can be overcome due to the exis-
tence of resonances in the Raman tensor for fre-
quencies of the incident light close to the frequen-
cies of the optical vibration modes.

In a recent paper, Wallis and Maradudin® con-
sidered the contribution to the ionic Raman effect
from the first-order dipole moment. In this paper
we supplement their results by including the ef-
fect of the second-order dipole moment on one-
phonon scattering spectra. In addition, we con-
sider the case of two-phonon, or second-order,
processes both in crystals which lack a first-order
dipole moment and in crystals which possess a
first-order dipole moment. We present expres-
sions for the scattering efficiency for one-phonon
and two-phonon scattering processes in the case
of crystals whichlack afirst-order dipole moment.

II. EQUATIONS OF MOTION FOR SECOND-ORDER
DIPOLE MOMENT

The scattering efficiency per unit solid angle,

per unit frequency interval for scattering by the
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ionic Raman effect is given by

4
s=1 (ﬂﬁ) > notgare @oios - @.1)
A\c ) apn
In this expression, A is the cross-sectional area
of the incident beam; w, is the frequency of the
scattered light; Q=w ~ w, is the shift in the fre-
quency of the incident light on scattering, where
wg is the frequency of the incident light; 1, and 1
are unit vectors which specify the polarization in
the incident and scattered light, respectively; and
c is the speed of light. The tensor 7,,(2) can be
expressed as®

ia‘yﬁh(ﬂ) =(1/27) _[: dse” ‘sn< PAB(S | wo) P:«,(Olam)) ’

(2.2)
where the angular brackets denote an average with
respect to the canonical ensemble described by the
vibrational Hamiltonian of the crystal, and the
operator P,s(slw,) is defined by

Prgls|wg) = fow e ot pyls|t) , (2.3a)
where
Pyg(s | 8) = (1/7) [My(s = 1), My(s)] . (2. 3b)

Here M,(#) is the @ Cartesian component of the
crystal dipole-moment operator in the Heisenberg
representation. From Eqs. (2.3) we find that the
operator Py,(s |w,) obeys the relation

P;B(s Iwo) == Pyyls | -wy), (2. 4)

which serves as a useful check on the determina-
tions of this operator in what follows.

Equation (2. 1) is obtained from Eq. (1) of Ref,
4 on dividing it by the average rate of energy flow
in the incident beam. The latter is given by

I,=(cA/2mE'E",

where E* and E” are defined in terms of the unit
vector 1, by
E’-l- ="nOE+ ,

Equation (2. 1) is a general expression applicable
to all types of crystals and all scattering angles,
subject to the qualifications concerning scattering
by infrared-active modes discussed in Ref. 3. At
the conclusion of Sec. III, we will specialize our
results to the case of GaAs in order to obtain an
estimate of the integrated scattering efficiency.

The expansion of the @ component of the crystal
dipole moment in powers of the displacements of
the atoms from their equilibrium positions is
given by

My=23 My, @k)u, (k) +3 25 25 Mg,,(lk;1'k")

17973 tkw Vk'v
Xu, (IK)u, (k) 4+ . (2.5)

In this expansion u, (Ik) is the a component of the
displacement of the xth atom in the /th unit cell.

The coefficients {M,,(Ix)} are the transverse ef-
fective-charge tensors of the atoms, and the
{M,,,(Ix; I'k")} are the second-order dipole-mo-
ment coefficients. In addition to considering the
first-order dipole-moment term, we are con-
cerned with the second term in the expansion which
describes the contribution of the second-order di-
pole moment t0 7,4 (R).

It is advantageous to carry out the normal coor-
dinate transformation from the atomic displace-
ments and their conjugate momenta to the corre-
sponding phonon operators:

7 )”2 e, (k1Kj)
ki [

o (1K) =(W et HD pp
K

wj(E)]
(2.6a)
1/2 »
Pa(lx)=%<2‘v4") § [w;®]/2e, k| ki) ™ P By, ,
(2. 6b)

where M, is the mass of the «xth atom, %(1) is the
position vector defining the location of the Ith prim
itive unit cell, and N is the total number of primi-
tive unit cells in the crystal. w,(K) is the frequen-
cy of the normal mode of vibration defined by the
wave vector K and branch index j, and e,(k|k,) is
the corresponding unit polarization vector. If
periodic boundary conditions on the displacements
are assumed, the permitted values of the wave
vector K are distributed densely and uniformly
throughout the first Brillouin zone of the crystal.
The phonon field and momentum operators Ag; and
Bg; are defined in terms of b'{;, and bg;, the crea-
tion and destruction operators for phonons in the
mode (kj), by

(2.7a)
By =bg-blg=—Bly . (2. o)

We proceed to substitute Eq. (2.6a) into Eq.
(2.5), and obtain the expression

M, =20 M, ()AG; +320 20 M,&j; KAz Az
) ki k'j'

(2.8)
where .
1/2 ;
Mu(j)=<—2——fj—(6—)) D0 = 2.00)
and . 1
MK =38 o B, ©Y 72
) N ]E) Ilﬁl.l)
XD T Ml St
x exp[ik - X() +&k’- X(0")]=M,K""; &) ,
(2. 9b)
because
My o(li; 1K) = MU'k 1K) (2.10)
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It should be noted that the coefficient M, (kj; k")
vanishes unless k+K’=0.

J

Pyls|0)=7 DM gyl = 1), Agy )]+

Zh’

E 27 My Ry jy; Kpjz) My()[ Az, (s = DAg,,(s = 1), Agy(s)]+ -«

Zh B4y J

kai2

All the terms given in this expression contribute
to one-phonon or first-order ionic Raman scatter-
ing. The contribution to P,s(s|¢#) from the first
term has been obtained by Wallis and Maradudin,®
who showed that it is necessary to evaluate the
commutator to the first order in the cubic an-
harmonic force constants of the crystal to obtain
a nonzero first-order ionic Raman effect. The
second-order dipole moment contributes to the
one-phonon spectrum in the harmonic approxima-
tion for lattice vibrations. However, in this sec-
tion we will also determine the contributions to the
commutators in the second and third terms of Eq.
(2.11) linear in the cubic anharmonic force con-
stants, since these will be needed in the discussion
of two-phonon scattering in a later section.

The operators Ag(s —~1) and Ag;,(s - £)Ag,;,(s ~ #)
can be expanded in Taylor series in powers of 7.
These expansions have the advantage that they en-

|

dO

L_i? Aﬁlleigja =A§1!1Al?zjz ’

d
5— Ailj]_Aiziz ==

da

2 AkllekZ"Z - [wfl(E ) + wlg(kz)]AklllAkzja - 2“’11(kl)wiz(k2)3k111 Bkz-fz

’4935314’434'qk212 7

Z; 23 MM (&, G 5 Kyj2) [AGJ(

klil Fi
kada

. > . >
iw 5, (K1) By 5y Ay, — 10 1, Ke)Agy 5, Brysy »
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Using Eq. (2.8),
P,g(s1t) is given by

we find that the operator

1) A1y ($) Ay 5)]

(2.11)

r
able us to evaluate equal time commutators only
in Eq. (2.11).
The Hamiltonian of the crystal through cubic
anharmonic terms is given by
H= Zh‘*’ bx;sbﬁs‘r 23 2 E V By 51; P2 S25 D3 S3)

1’151 Dzsg D383

XA51s1A52szA33ss . (2- 12)
Using the Heisenberg equations of motion
. d
i 7 Agysy = Ay, » H= 105 &) By, (2.13)
d By, H] =T, (€)Az
in — dt Biyiy = [Biysy» H] = 1w, (Ky)Ag, 5

+6 E 2 V(= Kyj1; PsS 35 DeSa)Asgs643,s4 »

9333 P4S4
(2.14)
we proceed to calculate the derivatives of the oper-
ator Ag,;,(s)Ag,;,(s):

(2.15a)

(2. 15b)

Bwj,(k
"'%(_L Z V('klh, PsSs; p4s )
9333
B84
Bwj,(k
_—Z‘L Z) V( EZ]Z s PsSs; p4s4) Ak1}1A9353An4S4 e (2' 150)
”333
5454

In arriving at these results, we have made use
of the fact that the Fourier-transformed cubic
anharmonic force constant V(&j; kK'j’; K'’’’) is com-
pletely symmetric in the indices (&j), (K’j’), and
(K", j'). If we retain the terms linear in

J

dZ

n
6w J(k
(AkmAngz) 2nARyi1 Atig + D2n By, sy Biysy + L E V(=K j1;Ds85; Dass) (€2, 4
)7383

|
V(-Kyj1; DsS3; Dess) and V(= Kyjp; DeSs; Pass), we
discover that the even- and odd-order derivatives
have different structures, and the general expres-
sions take the following form:

9383A94s4 Akzjg

Bysy
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+fan Bigsg Asysy Biysy + 82nAiysyBoys Biysy + han Bigs Biysy Aysy) + 640—’,2(@ SE V(= Kpj2; Dass; PaSs)
froe
X (GonARy 31 Adgsg Asysy +T2n Biysy Asgsy Baysy + RanAtys BigssBigsy + anBiyj  Bigsy Agsy) » (2.16)
dZn-l- 1

ds?*1 (A1 Akpip) = Cane 1 A%y5,Biyiy + Ao 11Biy 5y Atgsy

+ Benn1Bigs3 Asysy Aligin + Van +1A33ssBS4s4A52!2 + 52,,»,13;353354343;212) >

X (772n+ 1 Aﬁljl A5333334s4 + “2n+lBE111A3353A34s4 + P2n+1 AﬁlilBsssa A5434 +02n41Bgy5 1B33saB3434) .

In these expressions, az,, by, Consy, and dpp,,
have the argument (&7, ; K,7,). Similarly, each
of the remaining coefficients has the argument
(K171 ; Kpja; DsS3; DeSs). This dependence is not
indicated in order to simplify notation.

The recurrence formulas relating the coeffi-
cients in Eqs. (2.16) and (2. 17) are obtained by
equating the time derivative of Eq. (2.16) to the
expression for

d2n+1
a—s—m (AE]_JlAﬁafz)

given by Eq. (2.17), and by equating the time de-
rivative of Eq. (2.17) to the expression for

d2n+2

ds?? (A31 Atgso)

obtained from Eq. (2.16). The results of the first
operation are

Copsy = — LWy bz, — Twalls, , (2.18a)
d2n+1 = - iwlag,, - iwgbg” s (2. 18b)

Olzpar == bap /Wy — waeg, — Wsfan— w482, (2.192)

Bans1 = — W3€an = Wafan — Waltan » (2. 19p)
Yani1 = = W4€2y — WaL2n — W3lla, , (2.19¢)
O2ne1 = — W4fon = W3&en ~ Wallay (2.19d)
Nans1 = = Walgy — W1 fan = Wkz, , (2.19e)
Hans1 == ban/Wz = Wilgn = Wefan = Walan . (2.191)
Pans1 = — Walgy — W4key — Wilsy , (2.19g)
O2n41 = = W3fan — W1kay — Wals, « (2.19h)

The second operation yields the following relations:

(2.20a)
(2. 20b)

Onsz = = 1W3Cau41 = (W1dopey
Dansz = = 1W1Cone1 = 1Wolanay 5

Consz == 1aps1 /W1 +Wagnsy + W3Bons1 + WsV2na1
(2.21a)

Biwy (K;) N
+—‘_1—L‘ E V("' El]l 3 p333; p4s4) (aZn +1A53S3A5434Bﬁgjz

53s3
Bysy
Biwss(K,) T
B8 24 V(- Ryjia; DS 53 Dasa)
p3s3
5484
(2.17)
[
Sanse = W3Qzne1 + WaBons1 + Wedzpe » (2. 21b)
&onvz = Wallaney + WY 2ne1 + W3bane1 (2.21¢)
Rgnsz = W 4Bans1 + W3Vans1 + Walanst » (2.210)

Lonsa = — LCaps1 /@a+ @ 4Tanst + Wikhonit + W3Panet

(2.21e)
Jonsa = W1Nans1 + Wabane1 + W30znst » (2. 21f)
Ranse = W3lans1 + WaPanst + W102ns1 » (2.21g)
lzmz = WaMone1 + W1 Panset T Wa0apsg - (2‘ 21h)

Here wj, (&), w;,Ks), wsy(Dg), and w,(Py) have been
abbreviated by w;, wy, ws, w,, respectively. The
initial conditions to be satisfied in solving this set
of equations are

2, 2 ;
ay=1, ay=—(i+wd), ci=-iw,,

by=0, by=-2w,w,, dy=—1iwy, (2.22)
ey=0, e=-1, a;=0,
fo=0, f2=0, P=0,
£0=0, £=0, =0,
fo=0, =0, 0120, (2. 23)
i3=0, i=-1, m=0,
jo=0, j2=0, by=0,
ko=0, ky=0, p1=0,
5,=0, 1,=0, 0,=0.

The method of generating functions is employed
to solve the system of equations (2.18)-(2.23).
We will first solve Egs. (2.18), (2.20), and (2.22),
which constitutes considering the second-order
dipole-moment contribution to P,g(s |#) in the har-
monic approximation and which are the necessary
contributions to one-phonon, or first-order, Ra-
man scattering. We eliminate c;,,; and ds,,; from
Egs. (2.20a) and (2. 20b) by the use of Eqgs.
(2.18a) and (2. 18b), and the result is the pair of
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coupled difference equations
(2. 24a)
(2. 24b)

2, 2
Aaniz = = 201Wab3n = (W1 + W3z,
2, 2
baniz = — (W1 +W3)bay = 2w1WaCay -
We proceed to introduce the two generating func-

tions @ (K, j;; Kpjz; ) and ®(K,j;;K,5; x) given by

a Ky jy; Kodns #) =20 a2, Kydy 5 Kpjp)x®™ ,  (2.25a)
n=0

®(K,jy ;Koo %) =20 by Gy Kadn)x®™ . (2. 25b)
n=0

Multiplying both sides of Eqs. (2.24a) and
(2. 24b) by x*", summing on % from 0 to ©, and
making use of the initial conditions, we arrive at
the following equations for @(x) and ®(x):
(1/x%+ w2+ wd) @ (x) + 2wy, Bx) =1/%%, (2. 26a)
20wz @ (%) + (1/2% + wi+wi)B (x)=0 . (2. 26b)
The solutions of these equations are given by

1+ (wi+wdi?
1+ (wy+ w222 [1+ (wy — wy)?47]

]

a(ﬁdﬁﬁzja;x):[

, (2. 272)
® (K, 7, ;Kpd55%) = 1+ (w, +_wi;%§g]zj[cl (@, - 0%
Also, because (2. 270)
a®,jy; K55 %) = aKedp; Kidy s %) (2. 28a)
®(Kyj1;Kp25 %) = @(Kypdz; Kyjys %) (2. 28b)
it follows that
asn®y 713 Kodz) =z, Kz j 5 K1d4) 5 (2. 29a)
b3, (K113 Kpd2) = 02n(Kadz s Kyjy) (2. 29b)

We next introduce two more generating functions

n+l

e(ﬁljﬁﬁajzs'x)-‘-zo Conn1 (K1d15 Kaja)a®t
n=

- (2. 30a)
(&4, ; Izajz ;%) =27 d2n+l(ﬁlj1 5 Ez]'z)xz"*1 .
e (3. 300)
Multiplying both sides of Eqgs. (2.18a) and (2. 18b)

by %°**! and summing on z from 0 to « as before,
we obtain the results
e(x) = = iwyx @ (x) — iwyx Blx) , (2.31a)
D(x) = - iwx @ (x) = iwx Blx) . (2. 31b)

Substitution of the solutions for @& (x) and ®(x) yields

ey fwax(wix® — wix? - 1)
e(ﬁlh’kzjz’x)_[1+(w1+w2)7x2][1+(w1—wg)zxz] ’
(2. 32a)

iwx(win® — wix® - 1)
1+ (W +we) X2 [1+ (W, — w2 47]
(2. 32b)

D(K,j; 5 Kpiz; %) =»[

We see that

e®yj1;Kphp 5 %) = DEKyjp s Ky dy 5 %) (2.33)
Consequently, it follows that
Conn &y 715 Kpda) = o ®pjz; Ky ) (2.34)

In the following sections, we will use these re-
sults to obtain expressions for Py4(s |w,) needed in
the evaluation of the scattering efficiency.

III. SECOND-ORDER DIPOLE-MOMENT CONTRIBUTION
TO ONE-PHONON SCATTERING

We begin by using the preceding results to ob-
tain the expression for P,,(s |w,) describing the
contribution of the second-order dipole moment to
one-phonon scattering processes. The three pro-
cesses which occur in the first-order ionic Raman
scattering are shown in diagrammatic form in Fig.
1. In case (a), the incident photon interacts with
the lattice through the first-order dipole moment
MY to create a phonon. The phonon created de-
cays into two phonons via the cubic anharmonic
terms in the potential energy of the crystal, de-
noted by V3 in the figure. One of these phonons
leads to the emission of a photon with scattered
frequency w, through the crystal’s first-order
dipole moment. Anharmonicity is required in this
process because, in the harmonic approximation,
even crystals possessing a first-order dipole mo-
ment cannot scatter light inelastically by a one-
phonon process. .

In case (b), the incident light directly excites
two phonons through the second-order dipole mo-
ment of the crystal, M®, One of the phonons
created in this way leads to the emission of a pho-
ton with scattered frequency w, through the crys-
tal’s first-order dipole moment. Case (c¢) illus-
trates this process with the roles of the first- and
second-order dipole moments reversed. The lat-
ter two processes occur in the harmonic approxi-
mation for the lattice vibrations, although they
require electrical anharmonicity in the form of a
second-order dipole moment. It should be noted

( (1) w
a) w, Vz (1)
w
®) wg\fvv@:;
M Ws

0] w
M
c o W_m
(c) w, e wy

—
TIME

FIG. 1. Processes contributing to the first-order ionic
Raman effect described in Sec. III, Photons are described
by wavy lines and phonons by solid lines.
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that infrared-active phonons are necessary for a
first-order ionic Raman effect to be exhibited, and
a crystal such as diamond would not display this
effect.

In a previous paper, Wallis and Maradudin® ob-
tained the expression for the contribution of the
first-order dipole moment to Py4(s lw,) to terms

linear in the phonon field and momentum operators.

This is the contribution associated with Fig. 1(a).
Here we determine the additional contributions due
to the second-order dipole moment, and associated
with Figs. 1(b) and 1(c).

The result obtained in Ref. 3 for the first-order

. 48
P%) (] I (.00) =__’_‘1:_;U_g

dipole-moment contribution to P,4(s | ¢) is given by
(= 1) "

P)‘B(sit =_'

. n=0

Z} M, (j)Mg(5")

X[Afs, (s), Agpe(s)], (3.1)

where (2) denotes the nth derivative with respect
to argument.

Evaluation of the operator P, 4(s!#), and conse-
quently P,g(s lwg), yields

P,LB(s[wo)—zEP‘x (7| wo) Bgy(s) = PAR (j] wo)Ag;(s)],

(3.2)
where
|
My M w e @) o @), O) V73 05”7 07)
7 T - AT O, O -wj{[w,u@)-w,(ﬁ)]’—w%} e
My(5’ MB(J")w,.(O)wju(0)[w,u(0) - w} wo]V(O], ;%) (3.3b)

Pg.s (J|wo) ? 2

oy [w,:(ﬁ) wo]{[w,u(ﬁ +w,(5

‘wo}{[wj" 0-’1(6)] o}

We now consider the contribution Pg(s |#) from both the first- and second-order dipole moments which is
linear in Ag and By;. We have two types of terms to evaluate:

PR.B’.MZ)( lt) 27,[ Eo
n=

P (s|n-L 3 & nll)t" D 1, Bl 2 M,,(h)[ - [Ag(4g, (5], Aa,l(s)]

27 n=0
kafs

First we consider the operator P 1”2)(3 12).

proximation the commutator [A;z;')

- 1)
) E M,(j,) kE My(Ryjs 5 Kgjs) [Aﬁn(s Akz!g(s)Aksls )],
! 22
kgig

(3.4a)

(3. 4b)

From Eq. (3.5a) of Ref, 3 we see that in the harmonic ap-
(s) Agz,a(s)A;m(s)] vanishes, and to first order in the cubic anharmonic

force constants it is quadratic A and By,. Using Eq. (3.5b) of Ref. 3 for A(z"*”(s) we find that in the

harmonic approximation,

@n+1)

(g5, (8), Agys,($)Agyye(s)]=[- ia,y“(l?l)]z”"l [2A(K, +K,) 85,5, Aggsq + 2A(K, + K3)65155Akp55] 5 (3.5)

as

AR < &P By, .0

Substitution of Eq. (3.5) into Eq. (3.4a) yields the expression

DI Mx(h)MB(szz:kst) [ dw,, ©)] [2A(K,)5,, 5, Aggsq + 28(K5)8; 5 Aty j,]

P(MlMa)(s t).____.. Z;
A8 \ | 21 o 2n 1) iy Eada
Egig
ZMx (71)Mp(4172) (smw,(O)t)Au, ’ (3.7)
ﬁ tH] . :
I

where Mg(jyj,)= Mg(Gjy ; 072), and the operator % __Ogio_)_ A ’ (3. 8)
Pg’l”z’(slwo) is given by w,:(O) w} o -

2i N
P{ra(s| wo) =3 20 My(5') Ml '5)
i

We next consider the contribution from P24V (s |¢),
From Egs. (2.16) and (2.17) we find that
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aan - -
[—T (A“zle“a-'s) Ail’l] = bzn[28{0kz +K) 0 1011 Bigss

+20®Ks +%1) 8, Biyyl

(3.9a)
1
Py (Slt)’_ E MKy js; Kq ) Ma(jy) (E
k212
kgdg
N
o t2n+1
'E, (2n+ 1)

From this it follows that P“"a"’ U (slwy) is given by

E M,(j251) Mg(j1)
192

Mo
P (s| wo)

- @)l

|o

d2n+1 - -
[W (AkaJaA"a!a)’ Akm:' =[2a (k3+k1)513!1A32!2

+ 20K, +Ky) 6,50, Aggge) - (3.9D)

The operator P%Z"’ (s |¢) then takes the form

ban [ 24 () 85,5, Bigsy +20(Ks) 8444, Biys,)

{Cznu[ZA(ﬁs)5;311A22j2]+d2n+1 [2a(k,) 612111423;3]}) . (3.10)

( - 4wy w51(0) w 1,(0) By
{[w,l(o) wja(ﬁ) -weHI ‘-011(6) + wiz(o

where we have made use of the generating functions

®(ky 715 Kz jz; %),

and necessarily have set 1/x=14w,.

e (Kyjy; Kejzs

- 27:(-011(6) [O)% + w?z (6) w?1(6)] AOlz )

2 wg} {[w,l(m w,(@)]2 —wo}{wj1(0)+w,20)]a—w§}

(3.11)

x), and D&,j1;Kefz; %),

Combining the contrlbutlons PE2)(s lwy) and P21 (s | wy) with the result for P11 (s | wg) obtained by
Wallis and Maradudin, * we arrive at the following expression for P,4(s | wy):

Pm(slwo)*zz PR (] wo) Bg,(s)

where

. 48w
PR (] w0)=ﬁ—

—é% ,Z": Mx(j;j’,) Ms(jll) {[

- P2 (i wo) Agy(s)] 3.12)

v (@5';04";07)

8 .2 " e e s
20 jz_‘," M,(5°) Mg(§") w;(0) w4#(0) w,(0) [0Z0) - wi{lw, ) + w,0)]

7wt {[w;« @) - w,(0)]° - wi}

(.Uj”(ﬁ) [OF] (6)

Wy (@) +w(0)] - wg} {{ww(@) - wy (@)% -

[w3+(0) — w}(@) - w] V(@j’;05";04)

5 , (3. 133.)
wo}

24 : 1 = "
PRl wo) = Z M) Mali") 00 w,u@) ¢

W '(6)

‘_Z;Mx Ms(]»] 02 (6)

The expressions given by Eqs. (3. 13) satisfy rela-
tion (2. 4).

The group-theoretic selection rules governing
the first-order ionic Raman effect obtained by
Wallis and Maradudin® are not altered by the ad-
dltlonal contributions to the coefficients P‘l’ and

) given here. If we use the expression for
zwm(ﬂ) given by Eq. (2.2), we find that in the har-
monic approximation this tensor is given by

BN (9)) =”(9)‘? Pys(3] wo, ©) Pyoli] wo, 2)

X [6(82 - w, (@) - 8(R+w,0)], (3.14)

] {[wj" )+ (»01(6)]2

w3:0) -

EML(]r] ) Mg(5" ){[

- W& {{w;#0) - w,@)]F - wo}

wju(O) [wo + (.Uj( ) wl"«D]

w0 (0) + ;@))% - wiH[w;# (@) - w, @) - wi}
(3.13b)
I
where
Pys (5| wy, @) =[2/w,@)] P (j|wo) + PE (| wp) -

(3.15)
In this expression, P’ (jlw,) and P& (jlw,) are
given by Egs. (3. 13a) and (3. 13b). The first term
on the right-hand side of Eq. (3. 14) describes the
anti-Stokes scattering processes, while the sec-
ond term describes the Stokes processes.

We conclude this section with an order-of-mag-
nitude estimate of the scattering efficiency [Eq.
(2.1)]for w, in the vicinity of 2w, for GaAs. To
simplify this calculation we neglect the small dif-
ference between the frequencies of the k=0 trans-
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verse- and longitudinal-optical modes (wp =273
cm™, ;=297 cm™),® and equate all optical-mode
frequencies to wy. Then, labeling the three op-
tical branches by j=1, 2, 3, we obtain for wy=2wg,

1

8
PR (| wo) m(g 22 M, (§) Mg(j")

‘qn

XV(O] 0] 0] +—EM,L(]] MB(] )>

(3. 16a)
With the same approximations we find that

(3. 16b)

Combining Egs. (3. 15) and (3. 16) yields the result
that the coefficient Py,(jlwq, £2) is given by

PR (j|wo) = = P (5| wo) -

1

O UL O L4 __l __za/z 1 II Il /1 Ki e(K|
v(05;07305")=¢ <2N> @ o BT 2L 2 @kl —“—r}g —ﬁ—é@(M

Pya(jlwe, @)~ (Q/wr = 1) PR’ (jlwy) (3.17)

This result in Eq. (3. 14) enables the scattering
tensor 7,.,4(9) describing Stokes scattering to be
written as

T0mr(Q)stores= 4[n(wr) +1]

% 25, P3| wo) P2 (3] wo) 6(Q + wr)
(3.18)
To evaluate the coefficient P3(j|w,) we must
obtain expressions for the first- and second-order
dipole-moment coefficients M,(j) and M,(jj’), and
the cubic anharmonic coefficient V(@ j;0;';05").
The latter is given by®

Il II

lko 1'k'B 1"k"Y

where & ,4,(Ix; I'k’; 1"") is a cubic anharmonic

force constant. At this point it is convenient to in-
troduce the coefficient fqg,(kk'k") defined by

Z) q’aﬂr(l’{yl’( l”K”) NfaBy(KK,K”).
,'lzll

(3.20)

Infinitesimal translational invariance and the T,
symmetry at each ion site in the zinc-blende struc-
ture have the consequence that f,4,(kx’k") can be
written as

Fasr(kk' k") = (sgnk) (sgnk’) (sgnk”)| € sy |f
(3.21)
where sgnk=+1 when k=4, and €, is the Levi-
Civita tensor. With the assumptions we have
made, the eigenvector e,(k!j) can be shown to be
given by®

eo(k|j) = (sgnk) (u/ M2 E,(5), j=1,2,3
(3.22)
where u is the reduced mass of the two ions in a
primitive unit cell, and the {£(j)} are any three
mutually perpendicular unit vectors. Combining

Egs. (3.19)=(3.22), we obtain for V(0j; 0;’; 0;"),

T R R f 13 )3/2
v(04;05';05") = g172 <2uwT
x Z; l€aBr| €a(j ) 53(],) 57(jll) .
e (3.23)
In the same way the first-order dipole-moment
coefficient M,(j) is found to be given by

My(§)= (EN/2pwp) 2eX £,(5) , (3.24)

where e% is the transverse effective charge of the
ions in the crystal.

In determining the second-order dipole-moment
coefficient M,(jj'), we require its sign relative to

(3. 19)

|
that of V(04;04";07'"), as well as its magnitude, We
find that M,(jj') can be expressed as

Mx(jjl)=m<2“ )E\emls ) (5 5

where the coefficient m is defined by

E M, oa(l; UK’

(3.25)

)= N(sgnk) (sgnk’)| €,qs| 7
(3.26)
With the preceding results, P (jlw,) becomes
N1/Z n_\E[4feR)?® (_7
L ( ) féﬁz) (
- we

y(:
P (il wo 4w 2uwyp 2pwy

+%meT]Z | €xsal £all) - (3.27)

A lattice-dynamical calculation of the coeffi-
cients f and m appearing in Eq. (3. 27) has been
carried out for GaAs by Humphreys and Maradudin
recently in another context.” For the details of the
model used, and the calculation, the reader is re-
ferred to their paper. The values obtained are

f="78.5189x 10" erg/cm?® , (3.28a)

m=(4.0431x10% X cm™ . (3. 28b)

The second-order dipole-moment contribution to
the coefficient P{3(jlw,) is of the same order of
magnitude as the cubic anharmonic contribution,
and has the same sign. For w, in the vicinity of
2wy for GaAs, an order-of-magnitude estimate of
the integrated scattering efficiency for the Stokes
portion of the spectrum at 0 °K, per unit length
per unit solid angle is obtained by combining Eq.
(3. 27) with Eq. (3. 18) and substituting the result
into Eq. (2.1). The estimate is
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1.33x 10-13

0
f 8 (Q)stokea aQ = (2———5'2 cm™srt

ooy (3.29)

for incident light polarized along the y direction
and scattered light along the x direction. The re-
sult for the integrated scattering efficiency pre-
sented here is an order of magnitude greater than
those obtained previously by Wallis and Maradudin®
and by Humphreys.® This is attributed to the use
of a more realistic model of GaAs in obtaining the
estimates given by Eqs. (3.28). An integrated
scattering efficiency of 107! cm™ sr™! for one-
phonon scattering is at the limits of detectability
at the present time for incident light in the in-
frared.® The result given by Eq. (3.29) indicates,
therefore, that the first-order ionic Raman ef-
fect can only be observed for frequencies of the
incident light in the immediate vicinity of the res-
onance frequency, i.e., within about 10% or

27 ecm™ of 2w,. For such frequencies the inte-

grated scattering efficiency exceeds 10! cm™ sr-t,
IV. SECOND-ORDER IONIC RAMAN EFFECT

The processes describing two-phonon, or sec-
ond-order, ionic Raman scattering are shown in
Fig. 2. In what follows it will be shown that the
general expression for the operator P& (0| w,) de-
scribing the second-order ionic Raman effect is

PRO|wy) =2 2 [QFKj; k') A;, 4, ,

- - 4 H
kl k'j'

+ Q) K) Ay By + QPGS By, A;

kgt g

+ QiK' By, By, ] . (1)

Thus, unlike the situation for the electronic con-
tribution to the second-order Raman effect, where
only the first term on the right-hand side of Eq.
(4. 1) appears, in the second-order ionic Raman ef-
fect the operator P,,(01w,) is modulated by second-
order terms in the atomic momenta as well as in
the atomic displacements. We make use of Eq.
(2. 4) to determine the required relationships
among the coefficients {Q3(Kj; k'j’)}. We find
QR (Kj; ~K'j' [wo)*= - @& K'j'| - wo) ,
(4. 2a)
QR (K'; ~kjl oo = @f & K7 - wo)
(4. 2b)
J

6
(a)
(b)
2) “
(c) W, % wy
M(Z) Wy
(0 w;
M
(d) w, f\'(\m o
M@ Ws
W
(e) W, w
MG 2
w,
N0 s
TIME
FIG. 2. Processes contributing to the second-order
ionic Raman effect described in Sec. IV. Photons are
described by wavy lines and phonons by solid lines.
RF (=K' ; — ki wol* = QB [&j; K'j"| - wy)
. (4. 2c)
Q% (~kj; —K'j" [ wo)* = = @3 (kj ;K" | — wo) -
(4. 2d)

We now turn to the determination of the coeffi-
cients {@%’(j; k'j")} for two types of crystals.

The first case we consider is case 2(c) which
exhibits the contribution from the second-order
dipole-moment alone. In the absence of a first-
order dipole moment in a crystal, e.g., for di-
amond, this would be the only second-order pro-
cess. The incident light excites two phonons
through the second-order dipole moment M®. One
phonon of frequency w; is created and the second
phonon interacts with the lattice again through the
second-order dipole moment M‘® to create a pho-
non of frequency w, and emit a photon of frequency
wg. This process occurs in the harmonic approxi-
mation for lattice vibrations.

In this process, the operator P,(s|¢) is given by

1 & (=1)mn - - - - d"
Py(s| t)=ﬁ Zg (_n)'_ 2 ‘Z_: M)(ky 41 5Kz 52) Ma(ksja§k4j4)[_7 [Agy5,(8) Agyy,(s)] A§313(3)Aiu4(s)] . @3)
n= .

kiky kgky
J1da d3ds

To evaluate the commutator in Eq. (4. 3) we use
the expressions for the even and odd derivatives
of A; ;, Ag,;, given by Eqgs. (2.16) and (2. 17). We

ds

[

combine these equations, perform the integration
over {, and arrive at the following expression for
the operator Pys(s | wy):
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Pgls|wo) = 4ﬁ 2 2 MKy jy 5 Kz o) Me(k3]37k474) (Z 0—"2—[2A(k2+k3) 04y Biysy Atysy
kkp ik
J1dz J344

+28(K, +Ky) 804y Biysy Agsg + 20Ky +Kg) 85 50 Aiyg, Biysy+ 24 (kg +Ky) 8, 4, Aiggq Biysol

Cane - - - -
_Z ——25-2%1 [20Gee+Ks) 8, Aty Ay, + 2802 +Ky) 8,y Aty Ay ]
Z) ——az)'gh[ZA(kl+E3) 81115 Aty 1 Alysp + 2A(E1+E4)6,1,4A;3,3A;2,2]> . (4.4)

In writing this equation, we have assumed that w, has a small negative imaginary part which has been
omitted here to simplify the notation. We perform the summations in the above equation by utilizing the
generating functions given by Egs. (2. 27a), (2.27p), (2. 32a), and (2 32b) in which we have set x=1/iw,.

We make use of the fact that M,(K, j; ; K3j,) vanishes unless k,= ~Kk;, and obtain the final result for P,45(0lwy)
given in the form of Eq. (4. 1), where

g, ) [ + 05 (k) - w8, (®)]
{[wj (k) +w1'(k ‘wo}{ wjl(k Wy (k] —wg},

- = 11 - - -
Q(sj; ~kj")=~7 ?) M,(Kjy; ~kj') My®j ; —Kjy)
1

L 0, [+ 3(E) - o, )]
+% My(-Kkj1; kj) Mg(~Kkj' ; Kjy)| {[w, (k)+w,(k) —wO}{[wjl(E) w,®)F - w2} , (4.5a)
@) (12 = 21 Z: ™. o - - Wo wj (E) wj’(E)
Qi -k )= T i Ml =7 Mtk -k <{ 0-’1 &) +w,o(R)]? - wi Hlwy, (&) - w, ®)]? - w} (4. 5b)
<3 gl 21,2 -, - - . CUO(UJ (E)w,(i{.)
QXB (k]7 _k] )= _; n MA(—kflyk])MB("k] ’k]].) {[w,1(k)+w,(k —wo}{[w,l(k w!(i{’)]g _ wo} (4. 50)
QU (kj; ~kj")=0. (4. 5d)

Due to the restrictions on the dipole moment, the coefficients {Q® (kj; K j i')} vanish unless K'=-k. We
have written Q{,’(k Js -Kj §') in symmetric form as this is the form in whlch it contributes to P,,.

We obtain an expression for the tensor i,,s(Q) as given by Eq. (2. 2) in terms of the coefficients {Q¥ (K j;
-Kkj j )} by evaluating the necessary correlation functions. We find that

(@) =2 2 (ngy+ 1) (ngye + 1) (2 + w,®) + w0 (K) M(g1+g2+ a5+ qs) (qT + g% + 45 + ad)]
kN'

+2 20 ngyngy (R - w,(K) - w; (&) [(g1 — g2 ~ g3+ a) (gt - ¢F - a3 +ad)]

ki
+2 25 (ngy+ Dingye 82+ w,(K) - w,0®)) [(q1 - g2+ 95 - 40) (g — ¢ + 43 — )]

ks’

+2 2 ngy gy +1)6(Q - w,(k)+w,:(k)) [(g1+g2-gs-a) (gf + 43 - 45 - ¢t D . @8
ks
-
We have simplified notation in this expression by ‘2’*(k i —Kj)=QP*(-kj';kj), (4. 8b)
defining

a,= Q"’(kj; —k’j’> , (4.72) QS*(&j; -kj") =@ (-Ki';kj) , (4. 8c)
=Qi*(kj; -kj") . (4.7b) QW*(kj; -Kj') = & (-Kkj';kj) . (4.8d)

In Eq. (4. 6), we have used the following relations: In view of the complexity of expressions (4. 5a)—

QI (j; -Kj') = Q™ (-Kj';Kj), (4. 8a) (4.5d), it is difficult to make more than a crude
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estimate of the scattering efficiency for the sec-
ond-order ionic Raman effect. If we make the ap-
proximation of the absolute zero of temperature
for diamond, we find

i@ = 20 8(2+w, )+ 0, ()| @1+ g2+ g5) 2.

ki1 (4.9)
For the incident light polarized along the y direc-
tion and the scattered light along the xdirection,
the integrated scattering efficiency for the Stokes
portion of the spectrum is given by

0 11 0
f $@)de=—5 —4[ Ay (R) (wo + Q) .

© C -c0
(4. 10)

If we assume that w, is somewhat greater than 2wy,
where wpg is the Raman frequency for crystals of
the diamond structure, none of the denominators in
Eqgs. (4.5) can vanish. We make the approximation
that the ¢, each contribute equally to the scatter-
ing efficiency and choose g, which has the most
simple form. We substitute Eq. (4. 9) into Eq.
(4. 10) to obtain

0
/_, s@a9=7 % T[] lwg - 0, -, B

C &4’
(4.11)

We integrate k& over the first Brillouin zone and
substitute the expressions for the second-order
dipole-moment coefficients obtained in Sec. III for
GaAs. We set wy=2wg and all other frequencies
equal to the Raman frequency. The resulting ex-
pression for the integrated scattering efficiency
per unit length per unit solid angle is given by

0 4
"2 1 [(m 1
[o 'S(n)dﬂ:ﬁ-zva ct (M) (2wg)* ’

where v, is the volume of a unit cell, m is the sec-
ond-order dipole-moment contribution, and M is
the diamond mass. An order-of-magnitude esti-
mate is

(4.12)

L2 s@)da~7.234x 102 cm ™ sr7t . (4.13)
If we divide this by 2w, =2664 cm™, we find that
the average scattering efficiency per unit length
per unit solid angle per unit frequency interval is
1.44%x10°%® cm™'sr-'sec. If the spectrometer ac-
cepts all the radiation scattered into a frequency
range of dw,=5 cm™ (=9.4x 10" rad/sec), the av-
erage scattering efficiency for scattering into this

|

frequency interval is 1.35x 10" cm™sr™!. The
results given by Eq. (4. 13) and the average scat-
tering efficiency are about three orders of magni-
tude greater than those obtained in a previous pa-
per.® This is due to the use of the value of m giv-
en by Eq. (3.28b) in Eq. (4. 12), rather than the
smaller value used in Ref, 8.

In the case of a crystal which also possesses a
first-order dipole moment, there are additional
scattering mechanisms that contribute to the two-
phonon or second-order ionic Raman effect. These
processes are shown in Fig. 2. Figures 2(a) and
2(b) display contributions from the first-order di-
pole moment alone. Figure 2(a) exhibits contribu-
tions proportional to the squares of the cubic an-
harmonic force constants, and Fig. 2(b) exhibits
contributions proportional to the quartic anharmon-
ic force constants. In addition, there are the con-
tributions proportional to the product of the cubic
anharmonic force constants and the second-order
dipole-moment coefficients that are shown in Figs.
2(d) and 2(e). The general form for PE(01w,)
given by Eq. (4. 1) is still valid with the coefficients
{Q% (Kj;k’j')} modified to include these processes.
However, the expressions for these coefficients
and operators describing these processes are ex-
tremely lengthy and cumbersome. It is reasonable
to assume, however, that the scattering efficiency
for scattering by these mechanisms is comparable
to that for the second-order ionic Raman effect in
crystals without a first-order dipole moment. We
have estimated this to be a small effect and con-
sequently, we will present the complicated ex-
pressions elsewhere.

In this paper, we have presented a theory of the
first-order ionic Raman effect from infrared-in-
active optical modes of crystals, as well as a the-
ory of the second-order ionic Raman effect in
crystals possessing a first-order dipole moment
and in crystals lacking a first-order dipole mo-
ment. Numerical estimates of the magnitudes of
the scattering efficiencies obtained indicate that
the first-order ionic Raman effect is on the limits
of detectability, but that the second-order ionic
Raman effect is too small to be observed at the
present time.
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