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A theory is presented of the inelastic scattering of monochromatic infrared radiation by the
long-wavelength acoustic vibration modes of an arbitrary crystal possessing infrared-active
optical modes. Central to the theory is a lattice-dynamical calculation of the ionic contribu-
tion to the photoelastic constants of a crystal, i.e. , the fourth-rank-tensor coefficients which
relate the change in the dielectric tensor to the parameters describing a homogeneous de-
formation of the crystal. The results of this calculation show that the photoelastic tensor is
not symmetric in the second pair of indices, in general, in agreement with recent predictions
of Nelson and Lax. The general expression for the ionic contribution to the photoelastic ten-
sor has a resonant character for frequencies of the incident light close to the frequencies of
the infrared-active optical modes of the crystal. This general expression is specialized to
the case of diatomic cubic crystals, and the magnitude of the ionic contribution to the photo-
elastic constants is estimated for GaAs and KC1 on the basis of simple lattice-dynamical
models. From these results the scattering efficiencies for these two crystals are determined.
It is found for each of these crystals that the integrated scattering efficiency for Stokes (or
anti-Stokes) scattering exceeds 10 cm ~ sr for frequencies of the incident light within 5%
of the frequency of the transverse-optical mode.

I. INTRODUCTION

The ionic contribution to the Raman, or inelas-
tic, scattering of light by the optical phonons in
a crystal has recently been shown to dominate the
electronic Raman effect when the incident light is
in the infrared region. ' This raises the question
of the significance of the ionic contribution to the
inelastic scattering of light by the long-wavelength
acoustic phonons (Brillouin scattering) when the
incident light is in the infrared. In this paper we
present a theory of the ionic Brillouin effect.

The phenomenological theory of the Brillouin
effect has been given by Born and Huang who
derive an expression for the intensity of scattered
light. If their result is expressed in terms of a
scattering efficiency [the ratio of the number of
photons scattered into unit solid angl. e in the fre-
quency interval (w„~,+ d~, ) to the number of in-
cident photons], it can be written

where
x[&(II—,( )) &(n, ( ))], (I. I)

f(qj)= Q n no„k „„„e„(qj)q„.

In these expressions, L is the path length of the
light in the crystal, 0 is the frequency of the in-
cident light, c is the speed of light, k~ and 1' are
the Boltzmann constant and absolute temperature,
respectively, and p is the mass density of the
crystal. &u&(q) is the frequency of the normal mode
of vibration defined by the wave vector q and branch
index j, q=k, -ko, where k, and ko are the wave
vectors of the scattered and incident light, and the
summation on j runs over the three acoustic modes
of the crystal. The first term on the right-hand
side of Eq. (l. 1) describes anti-Stokes scattering,
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while the second term describes Stokes scattering.
In Eq. (1.2), no and n are unit vectors which specify
the polarization of the incident and scattered light,
respectively, the coefficients {k»„)are the photo-
elastic constants, and e, (q j) is the unit polariza-
tion vector for the acoustic mode (q j). The har-
monic approximation has been employed in obtain-
ing the results expressed by Eq. (1.1). The small
difference between the frequencies of the incident
and scattered light has also been negl. ected in ob-
taining Eq. (1.1).

In general, the photoelastic constants contain
both an electronic and an ionic contribution. In
the past, Brillouin scattering experiments have
been performed with the incident light in the visible
region. In this region, the electronic contribution
is the dominant one and the ionic contribution is
usually neglected. However, there are now avail-
able lasers which emit at frequencies in the in-
frared region where the ionic contribution be-
comes important. Therefore, in this paper, we
consider the theory of the ionic, in addition to
the electronic, Brillouin effect and estimate the
relative importance of the two scattering processes.

In a recent paper, Nelson and Laxs have pre-
sented a very general theory of the photoelastic
effect. Although this theory appears to be general
enough to contain the dispersion of the photoelastic
constants in the infrared as a special case, this
topic is not discussed by Nelson and Lax.

II. MICROSCOPIC THEORY OF THE PHOTOELASTIC
CONSTANTS

In this section, we derive an expression for the
electronic and ionic susceptibilities of a homoge-
neously deformed crystal, and from them the cor-
responding contributions to the photoelastic con-
stants. We then specialize our theory to the case
of cubic crystals containing two inequivalent ions
in a primitive unit cell, such as crystals of the
rocksalt and zinc-blende structur es.

For generality, we consider initially an arbi-
trary crystal consisting of N primitive unit cells,
each of which contains r ions. We begin our anal-
ysis by expanding the potential energy of the crys-
tal in powers of the displacements of the ions from
their equilibrium positions, and in powers of the
components of the macroscopic field:

4 =cp+ 2 Q Q c~g(lK l~K ) $~(lK) $g(l IC )+6 Q g g 4 +g~(lKl I K &I K ) $+(IK) )g(l IC ) $&(l I )+
lKQ l K 8 l Kol l' K' 8 &

' ' K' ' r

-Q E~[ Q M~~(lz) $ (ltd)+ —,
' Q Q M„~q(it&; l i( ) $,(4') gq(1 z )+ ~ ~ ~ ]

lKQ lKO. l'K'0

——,
' Q E,E, [P,"„'+Q P„(la) g (br)+ ~ ~ ~ ] —~ ~ ~ ~ (2. 1)

In this expansion C'0 is the potential energy of the
static lattice in the absence of a macroscopic field,
$ „(le) is the o.' Cartesian component of the displace-
ment of the zth atom in the lth primitive unit cell,
and E„ is the X component of the macroscopic elec-
tric field. The {O„~(lz;l v )] are the short-range
atomic force constants, which include the contribu-
tion from the Lorentz field, but not from the macro-
scopic electric field. The latter contribution has
been separated off explicitly in Eq. (2. 1). The
{O„~„(la;l z; l z )] are the cubic anharmonic force
constants. The coefficients {M~,(la)), {M~~(lz;
l a )3, . . . , are the first-, second-, etc. , order
dipole-moment expansion coefficients, and the
coefficients {P~'~0' j, {P~„(la)),.. . are the coef-
ficients in the expansion of the electronic polariza-
bility of the crystal in powers of the atomic dis-
placements.

In our treatment we will ignore the frequency dis-

I

persion of the various coefficients appearing in Eq.
(2. 1). This means that all frequencies entering the
present discussion will be well below the frequency
of the lowest electronic transition in the crystal.

We now assume that the displacement $ (4) is
compounded of two displacements: The first de-
scribes a homogeneous deformation of the crystal,
and the second gives the displacements from the
new equilibrium positions in the homogeneously
def ormed crystal:

$, (lg) =gze z xz(ltd)+ v (la')

-=s,(l~)+ v, (lK) .

The displacement gradients {e,~= 8$„/sxg are the
components of a second-rank tensor, which is not
assumed to be symmetric. When we substitute
Eq. (2. 2) into Eq. (2. 1}we obtain for the equa-
tions of motion of the crystal

—M„v (la) = = Q C ~(lz; l'a'} [s,(l'a')+ v, (l'~'}]
sv& lK ~. „.g
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4'~„(lK; l'K';l"K")[s~(l'K')+v~(l K )][s„(l"K")+v„(l"K ')]+ ~ ~ ~

l' ic' g l' ' ~' ' y

—Q E„Mi (lK) —Q Ei Q Mi ~(lK; l'K') [s~(l K )+ v~(l K )]- ~ ~ ~ ——,
' Q E~E~ P),„(lK)—~ ~ ~, (2. 8)

where M„ is the mass of an atom of type v. At the same time the macroscopic polarization is given by

g M~ (lK) [s (iK)~ v (lK)]+ —,
' Q Q M»~(lK;l K ) [s,(lK)+ vm(lK)]

J~o 8EX J~O ~.e le:e l' ~'8

x[sg(l'K')+ v~(l' K')]+ + Q E„Pp~ + Z P~~~(lK)[s~(lK)+ v~(lK)]+ ~ ~ ~ . (2. 4)
l fee

In this equation, JVp is the volume of the deformed
crystal, where V~ is the volume of the undeformed
crystal and J is given by

0= Z C'~q(lKq l K ) s8(l K )

+ Q @ ~(lK; l'K') ds(l'K') (2. S)

j'=det(I+Z) =1++ e„,+ 0(& ). (2. 6)

In the presence of a static external strain the
displacement v (lK) can be written as the sum of a
static contribution and of a dynamic contribution,
which is also varying in space:

v (lK) = d, (lK) + u (lK; f) . (2. 6)

4', (lK; l 'K') = C', (lK; l'K')

+ 2 @„q„(iK;lK;l K )s„(l"K")
l''x''y

+ Z @ g„(lK;l K';1 K")d„(l"K"),
l''e''y

(2. 8a)
M „(i'K)= M,„(lK) + Q M, ,(lK; l'K') ss(l'K')

r'~'g

+ g M„~z(lK;l K ) d~(l K'). (2. 8b)

The static displacements ld, (lK)] are the inner
displacements of the ions (more correctly, of the
sublattices) induced by the static strain, and the
{u (lK; t)] are the vibrational displacements of the
ions about their new equilibrium positions. Be-
cause div$ = 0 for that part of the macroscopic
polarization arising from the static deformation of
the crystal, the macroscopic electric field in the
crystal is that set up by the long-wavelength vibra-
tions of the ions, and therefore has the same time
dependence as that of u„(lK; f).

When Eq. (2. 6) is substituted into Eq. (2. 8),
and only terms of first order in the dynamic dis-
placements and the dynamic macroscopic field on
the right-hand side are retained, the equations of
motion of the crystal take the form

—M„u, (lK) = Z ~(lK; l K ) us(l K ) -Z E~Mi, (lK),
l' x' 8

h
(2. l)

is satisfied. This equation expresses the condition
that no force act on any ion when all the ions are at
their equilibrium positions in the absence of a dy-
namic macroscopic field. It relates the inner dis-
placements ld (lK)f to the deformation parameters
to the first order of accuracy.

When Eq. (2. 6) is substituted into Eq. (2.4), the
macroscopic polarization can be expressed as the
sum of a static contribution and a dynamic con-
tribution. It is only the latter which is of interest
here, and it is given by

Q M,.(lK) u. (lK)+ Q P„.E„
0 l~a, 0 y.

(2. 10)

where M„(lK) is defined by Eq. (2. 8b), and P» is
given by

P~ =Pi~'+ g Pi„(lK) [s (lK)+d (lK)]. (2. 11)
lKC

The coefficient M„(lK) is seen to be the coef-
ficient of the term linear in the atomic displace-
ments in the expression for the dipole moment of
the deformed crystal in the absence of the macro-
scopic electric field. By definition it is therefore
the transverse effective charge tensor for the de-
formed crystal.

Inasmuch as we have assumed that the macro-
scopic field is uniform, the preceding results are
applicable only to the long-wavelength vibrations
of a crystal, in which the constituent sublattices
vibrate rigidly against each other, and the dis-
placement amplitude u (lK) becomes independent
of the cell index l. If we take this last fact into
account explicitly by replacing the amplitude
u, (lK) by u (K), we can rewrite Eqs. (2. 7) and
(2. 10) in the forms

The equations of motion take the form given by
Eq. (2. 7) only if the subsidiary condition

—M„ua, (K) = Z f~g(KK ) ug(K ) —Q EgM), ~(K)
tc' f3

(2. 12)
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where

ZM„.(»)u. (»)+ Zf „„z„, (2. 12)Xc 0 Jy ggf

Z c~«(»» I~ )w«(»)= —ZE„I g, I M,.(»)

e'g M„
(2. 15)

f,(»»') = Z 4' «(l»; l'»') (a. i4}
l«

and v, is the volume of an undeformed primitive
unit cell. In writing these equations we have also
used the fact that since a homogeneously deformed
crystal is still perfectly periodic, the coefficient
M„,(l») is independent of the cell index l, and we
have consequently denoted it by M„(»).

If we assume a harmonic time dependence for
the atomic displacements, we can write the time-in
dependent equations of motion of the crystal as

d. (l») = Z Z r.,(1»; l'»') G~, (l'»') ~„„
l' lc' 8 y5

where

G~«„(1») = - Z C'~«(1»; l'» ') x„(l '» '),

(a. i9}

(a. ao)

and F is an effective inverse to the matrix 4'. '
It follows from infinitesimal translational invari-
ance as expressed by the conditions

The first term on the right-hand side of this equa-
tion is the electronic contribution to the suscepti-
bility, while the second term is the ionic contribution.

To obtain the photeoelastic constants we must
now expand each of these contributions to first
order in the deformation parameters.

The solution of Eq. (2. 9} can be written formally
as

where w (») =M'„u (») and Z @„«(1»;l'»') = Z @~«(l»; l'»'} = 0, (a. ai}

c «(»»
I
+)= s.» 0 «~ —

i/« .f «(»»)
M~

Solving Eq. (2. 15) for & (»), we find that

~.(»)=- Z E, c-.'«( I~') "-,/« . (2 17)
g' gX

If we substitute Eq. (2. 17) into Eq. (2. 10) and use
the relation P~=g „y,„E„,we find that the suscep-
tibility p~„ is given by

x,„(~)=- I'„„-
0 ~g

M„(») C (»» i&a )M (»').n '«(M&g )'"

that

(2.22)

G„«„(l»)= Z @~«(l»l l » ) xq(l»; l » ), (2.23}

where x, (l»; l » ) =x, (l »')-x (l » ).
We can combine the preceding results to write

@„«(I»;1'»') = @,«(1»; l'»')+Z @,«„«(l»; l'»') e„«,

(2.24}
(a. as)M), ~(») = M)~(»)+ Z M)o„«(») t„«,

where

ZG „(l»)=o .
le

From Eq. (2.21) it also follows that we can write
G,«„(l») in an equivalent form, which is better
suited for its calculation:

+ Z Z Z 4' „(l»; l »'; l"»")I'„„(l"»";l'"»'") G, (1"»"), (2. 24')
l' 'e' ' l" 'ic'" yv

(»)= ZM (l» l»)x, (l»')+ Z Z Z M (iI «l»»)I'«„(l»;l » )G„„,(l » ) . (a. as')

We see from Eqs. (2. 24') and (2. 2S ) that the
strain-induced changes in the harmonic force con-
stants and the transverse effective charge, de-
scribed by the coefficients @ «„,(l»; l » ) and

M„,»(»), respectively, consist of iwo contribu-
tions. The first describes the change due to the
homogeneous deformation of each sublattice, while
the second describes the change due to the inner
displacements of the sublattices induced by the

z-'=I —Z & «e «+ ~ ~ ~ .
ag

(a. as)

homogeneous deformation.
We now obtain an expression for the electronic

contribution to the susceptibility to first order in
the deformation parameters. Starting with the
first term on the right-hand side of Eq. (2. 18),
we expand J',
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~e use this expansion, combine Eqs. (2. 11) and

(2. 19), and substitute the results into Eq. (2. 18).
If we write the electronic susceptibility as

photoelastic constants:

(e) &Oe ) Y (1e)
4g 4g + ~ ~x,ape ~pfy~

po

we find that

&
((» P (&»f~Xg Xp 0~

(1e) ~ (0) g
0 lK

(2. 27)

(2. 28a)

0 le

+ Q 2 Q P&,„,(lK) I'„«(lK; l'K') G«k, (l K )].
ll(. l' 4 y6

(2. aS)
We next consider the second term on the right-

hand side of Eq. (2. 18}which is the ionic contribu-
tion to the susceptibility. From Eqs. (2. 14),
(2. 24), and (2. 24 ) we see that we can expand the
matrix f ~(KK ) to first order in the deformation
parameters as

Q g P,„„(lK)1"„«(lK;l'K') G«k(l' K')] .
lac l'((" t5

(2. 28b)
Using the relation kx, p, =4mXx', )... we obtain the
final result for the electronic contribution to the

f k«(KK ) =f ~g (KK ) + Q f ~gy«(KK ) e&,«+ ~ ~ ~

y5

where

f",,' («') = P @~«(lK; l'K'),

(2. 30a)

(2. 30b)

f&S„«(«)= 2 @!k«„«(lK;l K) = Q Q C'„«„(lK;1'K'; l"K")x«(l K )l' l'

+ Q Q Q Q 4', «„(lK; l K;l K ) I'„„(1 K;1 K ) G„„,(l K ) =f~«„'«(KK')+f &«~'~(KK') .
q««r

(2. 30c)

Combining Eqs. (2. 16) and (2. 30) we see we can
expand the matrix C «(KK ~

~«) to first order in the
deformation parameters in the form

&0)

C!k«(KK
I ) k!!' !k«(/2((» & «« f~ (KK)

M„M„.
(2. 31b)

(2. 31c)
C„(KK'~ ~') = C",' (KK'~ ~')+ C "«&(KK'~ ~«)+ ~ ~ ~,

(2. 31a)
where

The expansion can now be used to obtain the follow-
ing expression for the inverse matrix C,'«(KK [ & ):

C ', (KK
~

&"')= C"' '(KK ((u') —Q g C"' '(KK
~

u)') C&'&(K".K ~(u') C"'-'(K K ~(u')P. . .
gllygtl lg

(2.32)

In these expressions, the superscript denotes the
order in the deformation parameters. We also
consider the ionic susceptibility to be given by

(2.33)

and combine Eqs. (2. 24)-(2. 26) with Eqs. (2. 31)
and (2.32) to obtain

((», &, 1 ~~ M, (K) C",' '(KK'[&«}M~(K')
X)tlat, % j— 1/2(, „.„., (M„M„,)

(2. 34a)

(&&&
( )

1 g g Mk~(K) C e«(KK I
&!& ) M„«(K ) 1 g g M&!!kkk(K) CIk«(KK ( (& )Mk«(K )

~~M„()C( ' '( '~ )M„„( ) 1 M ()C',„' '(K
I )f„",', ( )

g/2 S/2
~k kO! k'«( k k +k kmk «k''&'k 6 ( k k ')

C(,«& -'(K'"K'
[ u ') M.,(K')

(2 34b)(M„„,M„.)"'
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If we introduce the eigenvalues and eigenvectors
of the matrix f(J~(««)/(M„M„, )'~ by

we can write C,"8' '(««
~

&3) as

C(o) ( li„a. ~ V («ij) Vs(« lj) (2. 37)

j =1,2, . . . , ar (2. as)

(2. 36a)

(2. 36b)

where

Z V, («
~
j) V («~j ).= &» ~,

ZV. ( ~j) V,('~j)=&,. &.„
1 g M„(j)M„(j)

XXg v ( 2-N2
Va

(2. as)

and for the ionic contribution to the photoelastic
constants,

When we substitute this result into Eqs. (2. 34a)
and (2. 34b}, we obtain for X„'0"(&o)

(o (, 4v gM„(j )M (j) 47r gs" M„(j )M„(j) 47r sg M, (j )M„„(j)
v —(de )=1 e &=1 )a1

4t( Q Q Mx(j) f (jji) (j )
(2 39)

where

(.} + M„.(«) V.(« i j)
(M„)'" (2. 4Oa)

, , ~ M„...(«) V. («~ j) (2. 4Ob)

P„M„.(«) =o,

g„M,.„(«)= o,

(2.41a)

(2.41b)

which are consequences of infinitesimal transla-
tional invariance, and because V,(«[j)/(M„)' ' is
independent of x when j refers to one of the three
acoustic branches (j = 1, 2, 3), the coefficients
M„(j) and M~, (j) vanish for j=1,2, 3. Thus, in
fact, only the optical branches of the phonon spec-
trum contribute to the sums on j and on j on the
right-hand side of Eq. (2. 39).

The photoelastic constant k»„ is the sum of the
expressions given by Eqs. (2. 29) and (2. 39).

In a recent note, Nelson and Lax' have pointed
out that, contrary to the traditional formulation of

(2. 40c)
Because the coefficients M„,(«) and M„,„( )«obey

the conditions

the photoelastic effect, the photoelastic tensor

k»„ is not required to be symmetric in the in-
dices po, although it must be symmetric in the
indices X and p, . In addition, they have shown that
the part of k»„which is antisymmetric in p and

o can be expressed simply in terms of the dielec-
tric tensor of the undeformed crystal. We con-
clude this section by showing how these results
of Nelson and Lax are contained in the results given

by Eqs. (2.29) and (2. 39).
In the notation of this paper the result of Lax

and Nelson is that the part of k~~ which is anti-
symmetric in p and o is given by

(0) (0) (0) ( 0)
k „(„)=»(&,„X„+&kk X,„—&„,X„, —&)„X,„'),

(2. 42)
where y~~'= X~~"+ y'~" is the dielectric suscepti-
bility of the unstrained crystal. The brackets
around the indices p and o denote that the corre-
sponding tensor is antisymmetric in these in-
dices. We now show that the results given by
Eqs. (2. 29) and (2. 39) yield precisely Eq. (2.42).

For this purpose we need four results, which

are consequences of the transformation properties
of the harmonic and cubic anharmonic farce con-
stants, second-order dipole-moment coeff icients,
and first-order poj.arizabilities when the crystal
is subjected to an infinitesimal rigid-body rota-
tion':

Q @~~(l«; l'«') x„(l'«'} —Q @,„(l«; l'«') x~(l'«') = 0,
l'ff e l f(l

(2.43a)

,@,(l«; l'«'; l "«")x,(l "«")— Q @ ~(l«; l'«'; l "«")x„(l"«")
lii „ii l''~"

= 5~„4,(l«q l K ) —5~, @~„(l«jl'«') + &~„c',(((1«; l «') —&~, @„~(l«;l «' ), (2.43b}
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Q M„~R(lK; I K ) xr(l K ) —Q Mp~r(IK; I K ) x0(l K ) = 5~2Mpr(K) 5grM pR(K)+ 5pRMr~(K) 5prMR~(K) i

Q p„„.(IK) x,(IK) -gp„„,(&K) x.(IK}=5„.p„',"-5„,P„.+ 5„.p,'„"- 5„,p."„'.

(2.43c)

(2. 43d)

We also note from Eq. (2.23) that because
4' 0(IK; I K ) is a function of the cell indices I and

l only through their difference, the coefficient
G ~„(IK) in fact is independent of the index f. Con-
sequently, in what follows we will denote this coef-
ficient by G &(K). From Eq. (2.43a) it follows that

G~R„(K) is symmetric in p and y.
We now consider the electronic contribution to

the photoelastic constant k,„.From the explicit
expression for it, Eq. (2. 29), we see that the
first and third terms are symmetric in p and o:
Only the second term can contribute to the anti-
symmetric part of k~~'p&„. Using Eq. (2.4M) we can
can write the antisymmetric part of Qgg p as

k»'1p, &=
V [ Q P1„p(IK)x,(IK) —Q P„„,(EK) xp(EK)]

0 le gfC

( 5 p(o& 5 p(0& 5 pt0& 5 p(0&}
~o

10& 5 (0& 5 X10) 5 (0&)

(2.44)
where we have used Eq. (2. 28a) in going from the
second to the third line of this equation. Thus,
Eq. (2. 44} for the electronic contribution to k„„&„&
has precisely the form of Eq. (2. 42).

We now turn to the ionic contribution to k,„„.
From Eq. (2. 39) we see that the contribution to
k, „„which is antisymmetric in p and o can only
come from the second through fourth terms on the
right-hand side, and has its origin in the contribu-
tions to the tensors M», (j) and f„(jj ) which are
antisymmetric in p and 0.

The antisymmetric part of k~"„'„ is therefore
given by

4 '" M„„„(j)M„(j) 4 ~ M, (j)M„„„(j) 4 g g M(j) (.. ) (j )

v, && -+& v, Vg )=1 y'=1
(2.45)

If we combine Eqs. (2. 24'), (2.40b), and (2.43c),
we find that

y (
M„„,(j)= —

l 5»M. (q) — 5M, (j) Q+' „,M„,(K). (M„)"'

f [p &(jj') = 2(& /
—&

/ )~ v. (K
I j) v, (K

I j )

—v, (Kl j) v, (Kl j)]. (2. 47)

Similarly, if we combine Eqs. (2. 24 ), (2. 40c),
(2.43b), and use Eq. (2. 35), we obtain the result

We now decompose the last term on the right-
hand side of Eq. (2. 45) by partial fractions, and

substitute into the resulting equation Eqs. (2.46)
and (2.47). Grouping terms appropriately, we can
write the result as

2 " M„(j)M.(j) M.(j)M„(j) 5 M, (j)M, (j) 5 M.(j)M.(j)
~ gp, )pfy) ~ pg 2 2 + Xp ~2 2 ge 2 +2 Xfy ~2 ~2 co —co

Va x

V, (KI j) () 2» g g. M„(j) V, (K( j)
( )

20 Z P M1(j) V,(KI j) M ( )
2w g ~P M&, (j}

(M )1/2» + ~2 0&2 (M )1/2» K -/ 0&2 0&2 (M )1/2 pp +
0&2 102

Rr Sr Rr 3r

"M /' M.,(} —'~ ~ „. '„. V.(lj') &M,(j)v.(lj}-—'& ~„."'.- V.(lj'')ZM, (j)v,(lj)
p g' =1 1 Va j-"1

3r 3r
+ —' EQ„R'' 2 v, (Klj) z M„(f')v.(Klf')- —"z z,' '„, v.(Klj) z M„(&')v,(Klf'). (2.46)

fc j=1

If we now use the result that
3r
g M„(f) v.(Klf) = M,.(K)//(M„) /2, (2.49)

I

which follows from Eqs. (2. 36b) and (2. 40b), we

find that the last eight terms on the right-hand side
cancel in pairs, We are therefore left with the
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result that

&»(&I&] =2))( II Xit + )IP Xs&, & a X)II
'

)Ie XII ) I

(2. 5o)

where we have used Eq. (2. 38). Adding Eqs. (2.44)
and (2. 50), we obtain finally Eq, (2.42), as as-
serted.

We note that for cubic crystals for which X»(~)
is isotropic, X»((o) = &»X(~), k»(„& vanishes,
and the photoelastic tensor /gyp is symmetric in p
and (T,

III. PHOTOELASTIC CONSTANTS OF CUBIC DIATOMIC
CRYSTALS

and

Q j„(KK')= O = g g„(KK') (3. 1)

g Q.,(K}=0.
k

Consequently, for the diatomic crystals with which
we are concerned we have that

(3.2)

The results of Sec. II are general, and apply to
an arbitrary crystal. In this section we specialize
these results to cubic crystals containing two ions
in a primitive unit cell. The results obtained here
therefore apply to crystals'of the rocksalt, cesium
chloride, diamond, and zinc-blende structures.
However, it should be pointed out that in the case
of diamond, which is a homopolar crystal, unlike
the others mentioned, the only contribution to the
photoelastic constants is the electronic contribu-
tion. As long as spatial dispersion effects are ne-
glected, as is the case in the present work, there
is no ionic contribution to the photoelastic constants.
These results will be used in Sec. P'f as the basis
for estimates of the ionic contribution to the photo-
elastic constants of crystals of the rocksalt and
zinc-blende structures.

In what follows we will label the two ions in a
primitive unit cell by ~=+, —.

We first consider the ionic contribution to the
photoelastic constants. It follows from infinitesi-
mal translational invariance that quite generally

where M, =M, +M .
We substitute Eqs. (3. 6) and (3.8) into Eq.

(2. 34a) and obtain the result that

&o() „, (er)'
X)&g ( )» ~ ~2 ~2T- (3.9)

We now use Eqs. (2. 14), (3.3), and (3.4) to write

)II I

= (sgnK") (sgnK'") j„~",„
(3.10)

where f„&(„),=f"„",),.(++) and

M», ,(K) = (sgnK) M, », , (3. 11)

where M»„=M»„(+) .
We substitute the above results as well as Eqs.

(3.6) and (3.8) into Eq. (2. 34b) and find that the
ionic contribution to the photoelastic constants is
gi.ven by the expression

( f ) )i. llDC )Ill D(ya b
~»pv( ) (gR &d2 (Q ~3)R

. T
where

(S. 12)

I, II II — '" + "'-) (3 IS)
g 2

e*p.vg T

4~(e+)' f„"„'..b„„ (3.14)

and e~~ is the transverse effective charge. Com-
bining Eq. (S.5) with Eqs. (2.16) and (2. 30), we
obtain

5,~(sgnK} (sgnK') (IL~r

(3.7)
The inverse of C'0~)(KK I (0 ) is found to be given
by

(zz ~,i&+ gC(Q) ( ( &( ~2): (" II II ) nB

C

(sgnK) (sgnK') 6,
(3 8)

(M„M„,)"'

f N(KK') =f"
&) (sgnK) (sgnK'),

M ()(K)=M () (sgnK),

(S.3}

(3 4)
It is worth pointing out that for crystals of the
kind considered in this section

where sgn~ = ~ 1 for z = +, respectively.
The cubi.c symmetry of each crystal structure

yields the results that7

4(&(eT) 2 2 2= e „(&u ~ —(dr) = &u r(e&) —e ),
Wva

(3.15)

Z 4' ()(lK; f 'K') = 5~(sgnK) (sgnK'} (((d~~ (3.5)

and

M)&~ (K) = 5)&~ (sgllK) e r . (S.6)

In these expressions, p, is the reduced mass of the
two ions in a primitive unit cell, ~ is the infinite
wavelength transver se optical-mode frequency,

where +z, is the frequency of the longitudinal opti-
cal mode of infinite wavelength and eo and e are
the static and optical frequency dielectric con-
stants, respectively.

Each of the fourth-rank tensors j&„'„)„andM» ~
is invariant under the operations of the point group
of the crystal, viz. , T„ in the case of crystals of
the zinc-blende structure, and 0„ in the case of



L. B. HUMPHREYS AND A, A. MAR ADUDIN

crystals of the rocksalt, cesium chloride, and
diamond structures. An arbitrary fourth-rank
tensor t, possessing no intrinsic symmetry, which
is invariant under T„and O„has four independent
nonzero components, which are obtained by cyclic
permutations of the indices from tx x, t„„», t„,„„
and f„„„.However, the tensor f„"~~is required to
be symmetric in the indices ~ and LU, , due to the
symmetry of the atomic force constants

@~(lz; I x ) =8„(l z;lw).

Consequently, this tensor has only three indepen-
dent nonzero components,

J xxxx ~ J xxyyt & xyxy t (3. 16)

In this section we use the results of Sec. III to-
gether with simple lattice-dynamical models to
obtain estimates of the photoelastic constants of a
typical alkali halide crystal of the rocksalt struc-
ture, KC1, and of a typical III-V semiconductor
of the zinc-blende structure, GaAs. These re-
sults will be used in Sec. V to estimate the scatter-
ing efficiency for the ionic Brillouin effect for these
two crystals.

A. Electronic Contribution to Photoelastic Constants

The electronic contribution to the photoelastic
constants is the only contribution at frequencies
of the incident light much greater than the lattice
dispersion frequencies {&~)defined by Eq. (2. 35),

and, in fact, possesses the symmetry properties
of the second-order elastic constants belonging to
the crystal classes T„and 0„. The tensor M„„,
on the other hand, has no intrinsic symmetry in
general. However, for crystals of the zinc-blende
and rocksalt structures (in general, for crystals
whose transverse effective-charge tensors either
vanish or are multiples of the unit matrix) infini-
tesimal rotational invariance, as expressed by

Eq. (2.43c), requires that M„„„besymmetric in

p and 0. Thus, for such crystals M„„also has
only three independent nonzero components,

~xxxx& ~xxyy & ~xyxy ~

and also possesses the symmetry properties of the
second- order elastic constants.

By similar arguments the electronic contribu-
tion to the photoelastic constants of crystals of the
rocksalt and zinc-blende structures can be shown

to have only three. independent nonzero components,
viz. , k„'„'„'„, k„'„",„and k„'"„and to be symmetric
in both the first and second pairs of subscripts.

In Sec. IV, we will obtain estimates for the
quantities appearing in Eqs. (2. 29) and (3. 12).

IV. PHOTOELASTIC CONSTANTS OF KCl AND GaAs

but below the frequencies of the electronic transi-
tions in a crystal. It is this contribution which is
obtained from conventional measurements carried
out with the frequency of the incident light in the
visible range. Consequently, instead of trying
to devise a microscopic model for the electronic
polarizability of a crystal, and evaluating the
electronic contribution to the photoelastic constants
from Eq. (2. 29), we will obtain this contribution
from experiment. (For an attempt at construct-
ing a microscopic model of the electronic polariza-
bility of a crystal, the reader is referred to the
paper by Maradudin and Bur stein. ~)

What are usually tabulated in the literature,
however, are not the photoelastic constants, but

related quantities, the Pockels elasto-optic con-
stants {p»„). Thelatterrelatethe change in the
dielectric permittivity tensor e -' to the deforma-
tion parameters {e,~),

)z~ = ~ pzvnsens ~ (4. 1)
pa

The relation between the photoelastic constants and

the elasto-optic constants is'

&„„=- Z(&),„p„„,(&)s„,
y6

(4 2)

where e is the dielectric tensor at the frequency of
the incident light. In the case in which we are
interested, p is the electronic contribution to the
photoelastic constants and e is the optical-fre-
quency dielectric tensor. For cubic crystals the
dielectric tensor is equivalent to a scalar, and

Eq. (4. 2) becomes

2
~kg pe ~ ~kg pe ' (4. 3)

In addition, there are only three independent non-
zero components of the tensors k»„and P»„ for
such crystals, as we have seen at the end of Sec.
III. In the contracted Voigt notation these are

~xxxx ~11 t Pxxxx P21 t

&.~~ = A'12

~xyxy = ~44 )

Pxxyy P12 s

Pxyxy ~44 '

(4. 4)

In Table I we present values of the {P;~]for KC1
and GaAs, the wavelength X of the light used in
their determination, the optical frequency dielectric
constants for these two crystals, and finally, the
values of the electronic contributions to the photo-
elastic constants, the {kI&'), derived from these
data by the use of Eqs. (4. 3) and (4.4).

We now turn to the ionic contribution to the photo-
elastic constants. Since the physics underlying
the dynamical models is different for alkali halide
crystals from what it is for the predominantly cova-
lently bonded III-V semiconductor compounds, we

will take up these two crystal types in turn.
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TABLE I. The electronic contributions to the photoelastic
constants of KCl and GaAs.

KCl

4 z„(lr(; lr(; I'r(') = 4~e„(lr(; l r(; lr() =4'err„(l r(; lr(; lr()

= —4' &(1 r(; l r(; lr() = —O e„(l r(
&

lr(; I r( )

Pii
Pi2
p44

ii
~ &e)

i2
~ (4I)

44

0.182'
0.134

-0.026
435.8 nm
2.13'

-0.826
-0.608

0.118

-0.165"
—0.140"
—0.072"

1150 nm
10.9e

19.60
16.63
8.55

4„e„(lr(;lr(; lr() = Q y e„(lr(;l x ),
ltf(, '( Ale)

where

p,„(lr(; I'r(') = [Ax„x,x„+B(x,6(r„

(4. 6b)

= —4 ~„(lr(; l r(; l r( ) = —y,e„(lr(; l r( ), (lr() ee (l r( )

(4. 6a)

~K. S. Iyengar, Nature 176, 1119 (1955).
'll. W. Dixon, J. Appl. Phys. 88, 8149 (1967).
'R. Burstein, in Ref. 17, Table I, p. 296, Table II,

p. 297.

with

0

rr 'Yrx x (xrr)J t~%(1 xrl'k 'r (4. 6c)

(4. 6d)

B. Ionic Contribution to Photoelastic Constants of Alkali
Halide Crystal

The short-range force constant 4' ~(lr(; l r( ) enter-
ing the present theory is the sum of the fox'ce con-
stant derived from the short-range repulsive inter-
action p(r) between ions arising from the overlap
of their electronic charge distributions, and the
force constant associated with the Lorentz field in
the crystal. " It is a good approximation to assume
that only the former potential contributes signifi-
cantly to the anharmonic force constants, '~ and we
make this assumption here.

In the case of an alkali halide crystal, y(r) is
usually assumed to have the Born-Mayer form

p(r) = Ze (4. 6)

and is assumed to act only between nearest-neigh-
bor ions. The values of the constants X and p for
the alkali halide crystals of the rocksalt and cesium
chloride structures can be found, for example, in
the book by Born and Huang. '3

The cubic anharmonic force constants (4
(lr(; l r(; l r( )f obtained from a nearest-neighbor
central-force potential such as y(r) can be written
in the form

~' (~or ——, c '(~,)) .
0

(4. 6e)

(4. 7)
%e can use the infinitesimal translation invariance
condition

4' e„(lr(;1'r('; l r( ) = 0
~CC+ CC

(4. 8)

to rewrite f,"'„' t( er()r(in a form better suited for its
evaluation,

gt gtt hatt

x x,(l r(; l"r(") . (4. 9)

If we consider the tensor f„"e'„re(++) —=f "e'„re, then
from Eqs. (4. 6), (4. 9), and our assumption of
nearest-neighbor (nn) repulsive interactions we
find that this tensor is given by

Here r0 is the nearest-neighbor separation.
For crystal. s of the rocksalt structure, in which

every ion is at a center of inversion symmetry, the
third-rank tensor G z„(r() vanishes identically for
each value of ~. Consequently, the only nonzero
contribution to the tensor f,"'„e(er(r)(defined by Eq.
(2. 80c) is

nn nn

f'~'„'e = Q (I(rorr„(l+; l -) x, (l+; l —)= Q [Ax~xrr x„xe+B(x~xe 6~+ xt xe 6„+x x, 6 )jt ~(, , rrt

= A g x xrr x xe ~ "="(r+;r-r + 2Br(r(8 e 8(r„+ 8(re 6„+6„e fr rr) .
~t

(4. 10)

Consequently, we obtain the results that

f„"„„'„'= 2Ar e(r+ 6Br s(r,

(ia) (la) 2fxxxx fxxxx 2Br
(r '

(4. 11a)

(4. 11b)

For the particular choice of y(r) givenby Eq. (4.6)

it is the case that

(4. 12R)

(4. 12b)
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In Table II the values of xp, p, and X for KCl are
presented. The results for g"~„', obtained on sub-
stituting these values into Eqs. (4. 11) and (4. 12)
are a1.so presented in Table II.

We now turn to the determination of the coeffi-
cients (M~»,). If we assume that the effective, or

I

local, field acting on an ion is the sum of the ma-
croscopic field R and the Lorentz field (+~ 7c)P,

where P is the polarization, we can formally ex-
pand the dipole moment of the crystal in powers of
the ionic displacements and the components of the
macroscopic field as

M~ = g M„,(lK) u~(l«)+ —,
' 2 2 M~&(l«; l K ) u, (l«) uz(l K )+ ~ ~ ~ +Q [P„„+2 P», (lK)+ ~ ~ ~ ][E„+3 7cP„].

lKQ lku l'K'g p lKQ

(4. 13)

P„=M„/V„ (4. 14)

where Vo is the volume of the (undeformed) crys-
tal, together with the fact that P„„(l«)vanishes
identically for crystals of the rocksalt structure
because every ion is at a center of inversion, and
that for such crystals the tensor P„„is a multi-
ple of theunit matrix,

The coefficient M„(l«) is the Szigeti effective-charge
tensor" for the ion (l«), while P„„is the sum of the
atomic polarizability tensors for all the positive
and negative ions in the crystal. If we use the fact
that the polarization P„.is

effective field the dipole moment of the crystal is
the sum of two contributions: that arising from
the displacement of the static charge on each ion,
and that arising from the distortions of the charge
distributions on the ions due to the changes in their
relative separations accompanying the displace-
ments of the ions from their equilibrium positions.
It seems to be a good approximation to assume that
the static charge on a positive (negative) ion is
+ e (- 8) for alkali halide crystals, where e is the
magnitude of the electronic charge.

We consequently express the crystal dipole mo-
ment in the absence of an effective field as

I I
Pp. v= ~p. v P,

we can solve Eq. (4. 13) for M, to obtain

(4. 15) M„= Q e (sgn«)u, (l«)
lk

M, = Q M„,(lK)u~(l«)+ 2 Z Q M, „q(l«;1 K )
l KS l KCL' l K

xu (l«) uq(l K )+ ~ ~ ~ + Q (P,„+ ~ ~ ~ ) E„.

(4. 18)

The coefficients in this expansion are those appear-
ing in Eq. (2. 1). They are related to the coeffi-
cients in Eq. (4. 13) by

M„.(l«) = S"'M'„„(1«),

IP~ S PIMP P

where
I

(p) 4 FP oo+ 2'
3V. 3

(4. 17a)

(4. 17b)

(4. 17c)

(4. 17d)

4m P ~.-1
3 Vp e' + 2

(4. 18)

To obtain the coefficients (M, ,(1«)] and (M„,z
(l«; l K )]; we assume that in the absence of the

The last equation follows from the Clausius-Mosotti
relation"

Ql (( I) x~(l«~l K )+u„(l«j l K )
Ix(l«; l K )+u(l«; l «')

(

x m(~ x(l«; l'«')+ u(l«; I K') I) ("")

$(KK ) =+1 if K=+,
I

K

=0

I
1f K= —

q
& =+

otherwise. (4. 19b)

The physical content of the second term on the
right-hand side of Eq. (4. 19a) is that the contribu-
tion to the dipole moment of a crystal arising from
the deformability of the ions is the sum of dipole
moments associated with each nearest-neighbor
bond. The distortion dipole moment m(r) between
a positive and a negative ion is a function of their
separation z, and its sign is chosen to be positive
if the moment is directed from the negative to the
positive ion, and negative if the reverse is the
case.

When Eq. (4. 19a) is expanded in powers of the
ionic displacements,

M„= Q M„,(l«)u, (l«)+ 2 Q g M„,c,(1«; l K )
lke l' k'8l KR

In this expression the second sum is over all near-
est-neighbor pairs of ions, the prime excludes the
terms with (l«) = (l K ), and
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rp

(AL

es

KC1

3.139 A

0.324 A

3.63 x 10 erg~

4.85"

2.13b

142 c~-~b

214 cm ~b

0.Sle

1.115le

3.0595 x 10 g

C»

C44

4.06x 10~~ dyn/cm e

0.67x 10 dyn/cm '
0.629 x 10'~ dyn/cm2 o

1.9928 x 102

2. 8638e&

—0.3261e&

—0.3261ez

-4.1646 x 10' erg/cm'

0.47308 x 10 erg/cm

0.47308 x 10 erg/cm2

axed 12.859m)g

a„~y -4.494~~

a —1.774')$

&ex~ 51.626(A) z

&~y —5.8787(gg

~sexy
—5.8787~g

~M. Born and K. Huang, Dynamical Theory of Crystal
Lattices (Clarendon, Oxford, England, 1954), Table 9,
p. 26.

W. Burstein, in Ref. 17, Table I, p. 296.
'G. B. Benedek and K. Fritsch, Phys. Rev. 149, 647

(1966).

x u, (lx) u«(l'a')+ ~ ~ ~,

we find that the coefficients are given by

nn

M„(lx) = &„(sgnx}e+ -', Q [ $(m') —&(z'z)]

(4. 20)

x f„,(le; l z ), (4. 21a)

TABLE II. Values of the physical constants and de-
rived quantities entering the calculation of the ionic con-
tributions to the photoelastic constants of KC1.

where

f„,(I~;IV)= "I ' m (r,) -')
0 ro

(4. 21c)

m(r«)
(4 22)

ro - f I lfc;l'ff ' )

f„«(lx; l a' ) = [Mx„x~x«+ N(x„5III«+ x~5„«

with
+ x5«la )cI]r x(l IIl)' I'I) I (4 23a)

m" (r«) 3m'(r«) 3m(r«)M—
0 0 0

(4. 23b)

m'(r«) m(r«)
2 3ro ro

(4. 23c)

For the distortion dipole moment m(r) we assume
the expression

m(r) =m«erce " '. (4. 24)

The parameter p appearing in this expression is
the same as that entering the short-range repulsive
potential Ip(r), Eq. (4. 5), because the physical
origin of the distortion dipole moment and the
short-range repulsive interaction between ions
is the same, namely, the overlap of the electronic
charge distributions on neighboring ions.

For crystals of the rocksalt structure, Eq.
(4. 21a) simplifies to

(1&) =M„(v}= &„(sgnx) fe+ 2[ m'(r&)

+ 2m(r«)/r«]). (4. 25)

Consequently, the Szigeti effective charge is given
by

e~« = e+ 2[m'(r«) + 2m(r«)/re]

= e[1-2moe "&~' {(r«/p) —2}],

(4. 26a)

(4. 26b)

where the second form obtains when the expres-
sion for m(r) given by Eq. (4. 24) is used. Equa-
tion (4. 26}, together with experimental values of
the Szigeti effective charge serves to determine
the coefficient mo entering the right-hand side of
Eq. (4. 24). The value of eg for KC1 and the value
of mo obtained from it are presented in Table II.

For crystals of the rocksalt structure the only
nonzero contribution to the tensor M «»(z) defined
by Eq. (2. 25 ) is

nn I
M~~«(lK) 1K)= «Q [ $(KK ) —$(K K)]f„I„«(lKll K ) )

l' g' {Olfe )

M~~«(lK) l IC ) = —«[ $(KK ) -$(K K)] f~(g«(1K~ l K ), M«), (~) = Q M~„(lx; 1'x') (lx'~').
l«fc s

(4. 27)

(lx) y(l g ) (4. 2lb) We can use the infinitesimal translation invariance
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condition

Q M~„(12;l 11 ) =0
)t fC«

to rewrite M'&, (11) in a more convenient form as

(4. 28)

M. „«(~)= Q M.~(1»; 1'~') x«(1~; I'~') .

If we consider the tensor M "«'„,(+)
—=M "@',, then

from Eqs. (4. 1V), (4. 21), and (4. 22) we find that
this tensor is given by

««= «(egg+ 2) [M ~ xgÃ«x1 x«[ 2=2(1+', 1 )

+ 2Nrt(~, ~«„+ ~ „&«,+ ~ «5„«)] ~ (4. 30)

Consequently, we obtain the results that

M1'„„'„=—,
' (e + 2)(2Mr«+ 6Nro), (4. 31a)

(4. 13b)

For the particular choice of m(r) given by Eq.
(4. 24), it is the case that

r 4«M = e m«e "«~' [ (r«/p) + 3 (r«/p) + 3], (4. 32a)

r 2«N = —em«e "&~'[ (r«/p) + 1]. (4. 32b)

In Table II the values of M "~„,for KCl obtained in
this fashion are presented.

Finally, if we rewrite the expressions for the
coefficients a„„„and b»„give bny Eqs. (3. 13)
and (3.14) in the forms

b....= —("-e-) (f11!' /p~«r) ~4r,
(4. 33a)
(4. 33b)

the results of this section yield the values of these
coefficients for KCl given in Table II. Combining
the latter results with the results given in Table
I, we obtain finally the following expressions for
the components of the photoelastic tensor of KC1,
including the ionic contribution:

&m &n
q«(r)= a ' —b '„, m&n.y" ' (4. 35)

The first term describes the repulsion between
the atoms due to the overlap of their charge dis-
tributions, while the second term describes the
attractive force which stabilizes the static lattice.
A more realistic model would undoubtedly include
interactions between more distant neighbors, as
well as noncentral. angle-bending forces to repre-
sent more accurately the covalent character of the
bonding in these crystals. However, the present
simple model should yield results for the photo-
elastic constants which have the correct order of
magnitude, even if the details of the dynamical
properties of these crystals are described in-
correctly.

The equilibrium condition

y'( )r«0 —ma/r«+ nb/r«

yields the relation

b= (m/n) a.
The compressibility is given by

1/P = «~(1/v, ) am(m —n),

(4. 36)

(4. 3V)

(4. ae)

be applied to III-V compound semiconductors of
the zinc-blende structure. In the first place, there
is evidence that the static charges of the atoms
constituting such crystals are zero, i.e. , that the
atoms are neutral. ' In the second place, the
effective electric field acting on any ion is the
macroscopic field: The Lorentz field vanishes. '~

Consequently, the existence of a nonzero transverse
effective charge on the atoms in such crystals is
due entirely to the deformation of their electronic
charge distributions as their relative separations
change due to their displacements from the equili-
brium positions.

In the absence of a Lorentz field, we assume
that the short-range force constants ( 4 «(la; I 2 )]
entering the present theory are derived from a
nearest-neighbor interatomic potential which we
write in the form

12.859~2, 51.626~',
11 ' + &2 ~2 + (~2 1d2)2T r

(, 4. 4941dr 5. 8787~4r
12 ) ' ~2 ~2 (~2 ~2)2T

(1d) 0 118 1 774 1 5 8787 +r
44 '

1d2 1d2 (~2 ~2)2T

(4.34a)

(4. 34b)

(4. 34c)

p~2r =~2(a/r'2) m(m-n) . (4. 39)

The relations (4. 38) and (4.39) are not indepen-
dent, however. Their quotient predicts the rela-
tion

16 r«/P
~3 l1urr

(4. 40)

while the transverse-optical mode frequency +~ is

C. Ionic Contribution to Photoelastic Constants of III-V
Compound Seiniconductor of Zinc-Blende Structure

for our model, where we have used the fact that
the volume of a primitive unit cell for a crystal
of the zinc-blende structure is

The model used to describe alkali halide crys-
tals has to be modified substantia'. ly before it can v, = —,'a', =(16/3 3) r««. (4.41)
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If we substitute the values of r2, p, It(, &ur appro-
priate to GaAs into the left-hand side of Eq. (4.40)
(see Table III), we find that

16 ra/P
~ (02 (4. 42)

m=9, 9
2 (4. 44)

The values of a and b obtained in this way are pre-
sented in Table III.

We now specify the zinc-blende structure by pos-
tulatingthat the origin of coordinates is occupied by

which is in satisfactory agreement with Eq. (4.40),
particularly in view of the simplicity of our model.

From Eq. (4.38) we obtain the coefficient a as

(4.43)

To define this model completely we (somewhat
arbitrarily) set

a positive (e.g. , Ga) ion, while the four nearest
neighbors at aa (1, 1, 1), —aa (-1,—1, 1), aa2
(1, -1, -1), and —,

' a (-1,1, -1) are negative (e. g. ,
As) ions.

Vfe begin the determination of the ionic cont;ribu-
tion to the photoelastic constants of a typical III-V
compound of the zinc-blende structure, GaAs, by
determining the tensor G~„(l)() -=G 2„()(). From
considerations of symmetry and translational. in- .

variance it follows that G,2„()() has only one in-
dependent nonzero component, and can be written
in the form

G,I„()()= l
e ~„l (sgn)() G, (4. 4Sa)

where
G -=G„„(+), (4. 45b)

and e~ is the Levi-Civita tensor. From Eqs.
(2. 23) and (4.45) we see that we are thus led to
evaluate the expression

G = Q C'„,(1+; l &( ) x, (l+; l &( ) = —Q ((&„a(l+; l -)x, (l+; l -)

(r2) ——p (xj&) g x„(l+;l -) x, (l+;l -) x,(l+;l -) =3 3
9& (r2)- —y (r2) =

3
—. (4. 46)

1 II 1 I " I I I 4' II 1 I 54 a

0 0 0

f (la& &g& 4+4B& 2

f (la) ~f (la) 2gI.4+2 B~ 2
xxyy xyxy 9 0 3 0 &

(4.47a)

(4. 47b)

The value of 6 obtained in this way is presented in
Table III.

We can now obtain the elements of the tensor
f"I)„,()()( ). For crystals of the zinc-blende struc-
ture we see from Eq. (2. 30) that this tensor is the
sum of two contributions, f "()„&,(x&( )+f ")»'„()()o( ), of
which the first has been discussed in Sec. Dt' B.
The result for f('I'„', =f~'z„), (++) g-iven by Eqs. (4. 6)
and (4. 10) in the case of crystals of the zinc-blende
structure becomes

(ill
II ill l III)

l'I I

= 5» (sgn)(") (sgn)("')
T

(4. so)

When Eqs. (4.45) and (4. 50) are substituted into
Eq. (4.49), we find that P'2~', is given by

f"a".s =- 2 ~ ~ I'.,41@ 2.«+'I+'I -) ~P p )I gII

(4:51)
It follows from the T~ symmetry at each site of the
zinc-blende structure, and from infinitesimal trans-
lational invariance, that

where, for the present model,

& j&A = —(3159/4) (a/r()), (4. 48a)

4 2„(l)(; l )(; l )( )
)I )II

2 l
(sgn)() (sgn)(') (sgn)(")f . (4. s2)

roB= 2 a/&'(&. (4.48b)

The second contribution to f "&al viz. , f ~(l„'I&,

is given by

Thus, we have that

(4. s3}

For crystals of the zinc-blende structure we have
the result thate

The independent elements of this tensor are
"(is&f „„=0,

(15)
faaa&I = 0 I

f(la& Gf /~~2

(4. 54a)

(4. 54b)

(4. 54c)
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We see from Eq. (4. 52) that f is given by

f= —Z C„„(l+;l'+; l" —)

TABLE III. Values of the physical constants and de-
rived quantities entering the calculation of the ionic con-
tributions to the photoelastic constants of GaAs.

=Z y, (L+; l
' —) GaAs

=A 5 x„(l +; l ' —)x, (l +; l ' —) xg(L +; l ' —)

4 3 1053 a=-3~ r', A= ~
Values off „'„'„'„,f „' ~„~and f„'„'„'„calculated for GaAs
are presented in Table III.

If the static charge on an atom of a III-V semi-
conductor compound of the zinc-blende structure
vanishes, and the effective field acting on an atom
is the macroscopic field, we find from the results
of Sec. IVB that

(4. 55)

M~~g(LK; LK) = ~ 5 [$(KK ) —$(K K)]f„~g(LK; l K ),
(4. 57b)

where M, (lK) is the transverse effective-charge
tensor, and f„(lK; l 'K') and f„~(LK; l 'K') are given
by Egs. (4. 22) a,nd (4. 23).

For crystals of the zinc-blende structure

(+) —= M ~ (l +) = 5~ 3 [m '(rc) + 2m(rc)/ro]

(4. 56)

We choose for m (r), in this case,

M~~(LK)=p Z [$(KK ) —$(K K)]fg~(LK; l K ),
(4. 56)

Mg(gg(LK; l K ) = 2 [$(KK ) $(K K)]f,~g(LK; L K )

(LK) e (l'K'), (4.57a)

1p

E'p

ep

C(2

C44

QZ p

(S)

(1b)fx~

2.448k

0.755 x 10'2 dyn/cm

12.9"

10.9b

273 cm-'"

297 cm-1 b

2.2e b

5.9935 x 10"23 g

1.188 x 10 dyn/cmmo

0.538x 10 dyn/cm~'

0.594 x 10 dyn/cm o

1.8947x 10 ~2 erg

3.7895 x 10 erg

24. 1303x 10 erg/cm

78.5189x 10 erg/cm,

—0.2357

(4.0431x 10 )ez cm

'-5. 9754 x 10 erg/cm

—9.3900 x 10 erg/cm

-9 3900x 10 erg/cm
m(r) = me erco/r, (4. 59)

which has the same functional dependence on x as
the short-range repulsive potential, and find that

e g = —T'moe ~
8$ (4. 6O)

/0M = 120mo e, (4. 62a)

The results of Bennett and Maradudin show that
the sign of the transverse effective charge is posi-
tive for Ga atoms in GaAs. This result, together
with the magnitude of e ~ obtained from experiment,
enables us to obtain mc from Eq. (4.60). The
value so obtained for GaAs is presented in Table III.

The coefficients M ~„, for crystals of the zinc-
blende structure are the sums of two contributions,
M~&'„&+M~&'„„ the former of which has been dis-
cussed in Sec. IVB. In the present case we find
for the independent nonzero components of M '~'„„

M„„„„=gy'OM+4y'OA, (4. 6la)
4) (a) 4 4

Mggyy Mgygy 9 7'OM + 3 go 1V (4. 61b)

where

(N, )

(5)
Max~

4s)Mx~
5)

Meggy

M~
o)

a~„
assay

a

11.9548 x 105 erg/cm

—1.4288eg

—4.2858e~

—4.2858e~p

6.1557ez

—7.7152~p
—19.1432~g~

7.4796~~2

7.5405~p

ll. 8495~~

-3.2366~p

aA. S. Cooper, Acta Cryst. 15, 578 (1962).
W. Burstein, in Ref. 17, Table II, p. 297.
I. E. Bateman, H. J. McSkimin, and J. M. Whelan,

J. Appl. Phys. 30, 544 (1959).
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t'pA = —10mpe .2 (4. 62b) V. CALCULATION OF SCATTERING EFFICIENCY

The second contribution to M 8„„M"~'„, is ob-
tained from Eq. (2. 25b) as

MaBy6 ™aBy6(+) ~ ~ K M Baa(l +; l K )
l'~' 1''x'' gv

~r, „(f K; l K')G„„,(l"K"). (4. 63)

With the aid of Eqs. (4. 45) and (4. 50) we can re-
write this expression as

M B'„6= —
2 Z ~ea„6iMaB„(l+; l ' —). (4.64)

P. (dz

We conclude this paper by utilizing the results
obtained in Sec. IV to obtain an estimate of the
scattering efficiencies of KC1 and GaAs as functions
of the frequency of the incident light, when the lat-
ter is in the vicinity of mT .

We assume that the incident radiation is directed
along the x axis and is polarized in the z direction,
while the scattered radiation is observed along the

y axis and is polarized in (a) the 2 direction; and

(b) the x direction. The unit vectors n6 and n in
these two cases therefore are

The T„-site symmetry in the zinc-blende structure,
coupled with infinitesimal translational invariance,
yields the result that

case (a) n =(0, 0, 1), iT=(0, 0, 1),
case (b) n =(O, O, i), n=(1, 0, 0).

(5. 1)

ZMaBa(lK; f K ) = ~E aB„(SgnK)(egn K')m .
(4.65)

Thus we have that q =kp+k, , (5. 2)

For such a 90 scattering geometry the magni-
tudes of the vectors q, ko, and k, are related by

so that

(4.66) while conservation of energy in the scattering pro-
cess yields the relations

(b)
Mxxxx = 0 r

(o)
Mxxyy = 0 ~

(b) 2M„,„,= Gm/p. idr .

(4. 67a)

(4. 67b)

(4. 67c)

From Eq. (4. 65) we see that the coefficient m is
given by

&d, = id6 +&di(q), (5.3)

where the upper (lower) sign refers to Stokes (anti-
Stokes) scattering processes. The dispersion
relation for the long-wavelength acoustic modes
from which the scattering takes place can be ex-
pressed as

m=-ZM„„(l+; f' —) =— (4.68) (d, (q) = C, (q)q, (5.4)

The values of M,xx„, M„„», and M„,~ calculated
in this way are presented in Table III for GaAs.
From these values and the values of f„'„'„'„,f„'„",„
and f i~„', obtained above, we calculate the tensors
a„,~ and b„„on the basis of Eqs. (4. 33). These
results are also presented in Table III. With these
results we obtain finally for the photoelastic con-
stants of GaAs

kii(id) = 19.60 — '
+

' r (4 69a)
&dr —(d ((dr —Cg ) ks=ko=k (5.6)

where c&(q) is the speed of sound for the jth branch
of the acoustic spectrum for elastic waves propa-
gating in the direction of the vector q. Dividing
Eq. (5. 3) by c, the speed of light, we obtain

k, =k, +[c,(q)/c ] q. (5.5)

Since the speed of elastic waves is typically small-
er than the speed of light by four to five orders of
magnitude, it follows from Eqs. (5.2)-(5.5) that
to a very good approximation

7.4796(dr 3. 2366(ur4
(4. 69c)

r x 19 1432(dz' 11 ~ 849
&dr —id ((dr —(d )

(4. 69b)

Thus we have in the present case that

k, =(k, o, o), k, =(0, k, o),

q=(-k, k, 0),
(5.7)

It is interesting to note that our results for GaAs
show that the coefficients f„'„~i and M„,'„'„which
describe the changes in the harmonic atomic force
constants and in the transverse effective charge
due to the strain-induced inner displacements of the
sublattices, respectively, are of opposite sign to,
and are larger in magnitude than, the coefficients
f„',„", and M„,'„'„which describe the changes in these
physical quantities due to the homogeneous deforma-
tion of each sublattice at zero inner displacement.

so that the scattering vector q is in the [110]direction.
The speeds of sound, and the corresponding

polarization vectors (e, (q, j)]for elastic waves prop-
agating in the [110]direction in a cubic crystal areiB

ci (q) el(qj) e2(qj) e3(qj)

C 44/p 0 0 1

2 (&„-&„)/2p 1/W~ 1/W O

3 (c„+c, + 2c )/2p —1/W2 1/~2 0 ~

(5. 6)
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In these expressions cqq, cqa, and c44 are the three
independent elastic constants of the crystal. The
branches j = 1, 2 are clearly the transverse branch-
es, while the branch j = 3 is the longitudinal branch.

The quotient f~(q)/&u, (q), which enters the ex-
pression (1.1) for the scattering efficiency, can be
expressed as

f~(q) n„ni, k „„e„(qj)q,.
y'L q ) C) ~Q ) OIy II v

(5.9)

Using the results given by Eqs. (5.1) and (5.7)-
(5.9), we obtain the following results for this
quotient in cases (a) and (b):

(a) (b)
-k44

[2cs4/pl
(5. 10)

3 kg~

[(c»+c&2+ 2c44)/2P]'
0.

case (a) 3=L —a
z

4
~

~

~
~

1
2
2co kg T kgp

c 16m (egg+ cg2+ 2c44)

The scattering efficiencies corresponding to cases

(a) and (b) are obtained as

elastic tensor. The general lattice-dynamical ex-
pressions for the photoelastic constants obtained
here have been specialized to the cases of crystals
of the rocksalt and zinc-blende structures. Simple
lattice-dynamical models of such crystals have
been used to estimate the ionic contribution to the

photoelastic constants of KCl and GaAs, and con-
sequently the scattering efficiency for the Brillouin
effect for these crystals for incident light in the
infrared.

Our results, presented in Figs. 1 and 2, show
that for frequencies of the incident light within 5/p

of the frequencies of the transverse optical modes
of each crystal, the integrated scattering efficiency
for Stokes or anti-Stokes scattering exceeds 10 '
cm 'sr . To compare these scattering efficiencies
with those obtained for frequencies of the incident
light in the visible, we have calculated the scatter-
ing efficiencies for KCl and GaAs taking for ~0 a
value of 20000 cm ', which is essentially the fre-
quency of one of the lines of an argon-ion laser,
and using for the photoelastic constants only the
electronic contribution, given in Table I. The re-
sults obtained are

KCl: (a,) J S(Q)dQ=4. 03x10 8 cm 'sr ~,

(b) f &(Q) dQ = 3.62x 10 cm ' sr ';

x [5(Q ~~ (q )) + 5(Q+ ~,(q))], (5.11a)

case (b) s =I. 40 kg T kg4

C 167I 4C44

x[5(Q —&~(q)+ 5(Q+ (u&(q)) ] . (5. lib)
The coefficients of the 6-function terms in

brackets give the integrated scattering efficiency
for either Stokes or anti-Stokes scattering. These
coefficients are plotted in Figs. 1 and 2 as func-
tions of ~0 for ~o&~~ and (do&~&, for KCl and
GaAs, on the basis of the results of Sec. IV for the
frequency dependence of the photoelastic constants
of these crystals in this frequency range, where
the resonant enhancement of the scattering efficiency
is largest. It has been assumed that L =1 cm and
that T= 300 K.

VI. DISCUSSION

In this paper we have presented a theory of the
Brillouin scattering of light by the long-wavelength
acoustic modes of a nonmetallic crystal, when the
frequency of the incident light is in the infrared.
Central to this theory is a theory of the ionic con-
tribution to the photoelastic constants of such
crystals. We have presented a lattice-dynamical
theory of this contribution for an arbitrary crystal,
and have shown that our results possess the gen-
eral symmetry properties derived recently by
Nelson and Lax" for the components of the photo-

10 e-

"Ip"-

lp Ia

I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I

I
I
I
I
I
I

I
I
I
I

I
I
I

I
I
I
I
I
I

I
I

I

fI
I
I
I
I
I
I
I

I

I
I
I
I
I
I
'I

I
I
I
I
I
I
I
I

1

I

1
I

1

I

I
l

'\

case (a)
case (b)

IP l5 I I I I I I I I I I I

0.5 0.6 0.7 0.8 0.9 1.0 I.I I,2 I.3 I.4 1.5
OIO/III T

FIG. 1. Dependence of the integrated scattering ef-
ficiency on the frequency of the incident light for the ionic
Brillouin effect in KC1. Cases (a) and (b) refer to the two

scattering geometries defined by Eq. (5.1).
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The modulation of the ionic, rather than the electronic, contribution to the crystal polariza-
bility by the atomic displacements is the dominant mechanism for scattering light when the in-
cident light is in the infrared, and it is the ionic Raman effect that is studied in this paper.
The problem considered is the effect of the second-order dipole moment on one- and two-pho-
non scattering spectra, in addition to the effect of the first-order dipole moment. An expres-
sion for the scattering efficiency is obtained and an order-of-magnitude estimate is included
for the case of one-phonon scattering and for the case of two-phonon scattering in a crystal that
possesses no first-order dipole moment. In the case of a crystal which also possesses a first-
order dipole moment, there are additional contributions to the scattering efficiency, but these
contributions are discussed qualitatively.

I. INTRODUCTION

The Raman scattering of light by the phonons in
a crystal arises from the modulation of both the
electronic and ionic contributions to the crystal
polarizability by the displacements of the atoms
from their equilibrium positions. For incident
light in the visible region, the dominant scattering
mechanism is the electronic one because the fre-
quency of the incident light is large compared with
the transition frequencies between vibrational
states of the crystal corresponding to the electronic
ground state. ' However, a previous study indi-
cates that for incident light in the infrared region,
the ionic mechanism is the dominant one, and as
we now have available infrared lasers which emit
at frequencies comparable with the vibrational
transition frequencies, the observation of the ionic
Raman effect should be possible.

The reason for this is that the scattering effi-
ciency is proportional to the fourth power of the
scattered frequency. In going from the region of
visible frequencies to the infrared this factor can
decrease by as much as five orders of magnitude.
The electronic contribution to the Raman tensor is
largely independent of frequency for frequencies
of the incident (and scattered) light well below the

frequency of the lowest electronic transition.
Thus the intensity of infrared radiation scattered
by the electronic mechanism will be as much as
five orders of magnitude lower than the intensity
of visible light scattered by this mechanism. How-
ever, in the ionic Raman effect, this fourth-power
proportionality can be overcome due to the exis-
tence of resonances in the Raman tensor for fre-
quencies of the incident light close to the frequen-
cies of the optical vibration modes.

In a recent paper, Wallis and Maradudin con-
sidered the contribution to the ionic Raman effect
from the first-order dipole moment. In this paper
we supplement their results by including the ef-
fect of the second-order dipole moment on one-
phonon scattering spectra. In addition, we con-
sider the case of two-phonon, or second-order,
processes both in crystals which lack a first-order
dipole moment and in crystals which possess a
first-order dipole moment. We present expres-
sions for the scattering efficiency for one-phonon
and two-phonon scattering processes in the case
of crystals which lack afirst-order dipole moment.

II. EQUATIONS OF MOTION FOR SECOND-ORDER
DIPOLE MOMENT

The scattering efficiency per unit solid angle,
per unit frequency interval for scattering by the


