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Group-theoretical techniques are used to deduce the selection rules, energy splittings, and
~elative intensities of the Zeeman components of the electric dipole absorption I.ines I',—I"„
r, —I „and I"8 I'8 of an acceptor in a group-IV semiconductor. Results are obtained for
three different orientations of the magnetic field B with respect to the crystal axes: Bll [001],
B Il [111], and B II [110]. For a 18- I"8 transition the relative intensities for B Il [001] are ex-
pressed in terms of two real parameters, which are essentially ratios of matrix elements of
the electric-dipole-moment operator. The relative intensities for B II [111]and B II [110]de-
pend on energy splittings as well. When terms quadratic in B are important, the relative in-
tensities for B Il [110]become dependent on B. The results obtained are quite general, being
based on symmetry considerations alone. They are applicable to an impurity located at a site
of tetrahedral symmetry, provided that the Zeeman splitting of a given level is small in com-
parison with its distance from the nearest zero-field level. Our treatment proves particularly
useful for studying acceptor states in group-IV semiconductors. As an example, we discuss
the case of boron impurity in germanium.

I. INTRODUCTION

Several investigators have reported experimen-
tal studies of the Zeeman effect in the excitation
spectra. of single-hole acceptors in germanium.
Fisher and Fan have studied the group-II impuri-
ties copper and zinc' as well as the group-III im-
yurity boron. Shenker, Swiggard, and Moore
have presented results for the group-II impurity
beryllium. Zwerdling, Button, and Lax have in-
vestigated the Zeeman effect of aluminum accep-
tors in silicon.

Theoretical works on this problem have been mo st-
ly devoted to perturbation calculations ba, sed on the
effective-mass approximation. The results
of such calculations represent estimates for shal-
low acceptors only. However, a group-theoretical
treatment based solely on symmetry considerations
proves capable of yielding valuable information.
The symmetry method does not resort to the ef-
fective-mass approximation and as such its valid-
ity is not restricted to shallow impurities. Re-
sults can be expressed in terms of a. few param-
eters which may be adjusted to fit experiment or,
in the case of shallow impurities, estimated from
the effective-mass theory. The usefulness of this
method for studying the Zeeman effect of acceptor
states was first pointed out by Kleiner. In this
work we present a group-theoretical study of the
Zeeman effect in the excitation spectrum of a
single-hole acceptor in a group-IV semiconductor.
The energy splittings and relative intensities of the
Zeeman components are obtained for three crystal-
line orientations of the magnetic field: B II [001],
B II [111], and B II [110]. We also include terms
quadratic in B in the Zeeman Hamiltonian.

Zakharchenya and Rusanov have presented a

group-theoretical analysis of the Zeeman effect in
the optical spectra, of cubic crystals. A substitu-
tional impurity in a group-IV semiconductor is lo-
cated at a site of tetrahedral (T„) symmetry. Many
of the results of Zakharchenya and Rusanov for the
O„group can be simply transcribed to the case of
T„symmetry. The excitation spectrum of a
single-hole acceptor involves the electric dipole
trallsltlons I 8 F6 p

I 8 I 7 and I'8- I'8. ' How-
ever, the relative intensities of the Zeeman com-
ponents of a I'8- I 8 transition have not been treated
in Ref. 9, while those for I'8-I'6 and I'8-I'7 have
been presented only for B II [001]. Recently John-
ston, Marlow, and Runciman" have considered the
relative intensities for I', —I'6 and I 8- l", transi-
tions for B II [111]as well as B II [110]. Unfor-
tunately, contrary to the claim of the authors, their
results lack generality. In fact, they are valid
only for the particularly simple case of a j = —', -like
I', level (i. e. , a, I', level derived from 1',xD"~a').
In general, such relative intensities depend on the
energy splitting of the I"8 level, as will be shown
in the present work. We obtain the most general
results for the I 8 I'6 I'8- I 7 and I"e I e elec-
tric dipole transitions.

Our procedure for calculating the relative inten-
sities of the Zeeman components is based on the
method developed by Rodriguez, Fisher, and
Barra' for stress-induced components. However,
in contrast to Ref. 12, we shall not make use of
any special forms for the unperturbed wave func-
tions. The present approach ensures the complete
generality of the results. In Sec. II we diagonalize
the matrix representation of the Zeeman Hamilto-
nian in the subspace of a zero-field level of each
symmetry type. The zeroth-order approximations
to the wave functions of the Zeeman sublevels are
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obtained, as well as their symmetry classification.
These results are used to deduce the selection
rules (Sec. III) and the relative intensities (Sec. IV)
of the Zeeman components. Section V is devoted
to an application of the theory to the case of boron
acceptor s in germanium.

II. SPLITTING OF IMPURITY LEVELS IN A MAGNETIC
F,IELD

TABLE I. Character table and basis functions for the
point group Tz.

T~ E 8C3 3C2 6S4 6cr~

I'g 1 1 1 1 1

I'2 1 1 1 —1 —1

I'3 2 -1 2 0 0

I'4 3 0 —1 1 —1

Basis functions

x +y+z
x'(y' —z2) +y4{z' -x2)

+z4( 2 2)

{2z -x'-y,2 2 2

&34'-y')}
{x(y'-z'), y(z'-x'),

z(x'-y')}
I g 3 0 —1 —1 1 {x, y, z}

A substitutional impurity in a group-IV semicon-
ductor finds itself at a site of tetrahedral symme-
try. It is assumed that the foreign atom does not
introduce any distortions that might alter this sym-
metry. Then an acceptor (donor) level may be
visualized as a bound state of a hole (electron) of
spin —,

' moving in a potential of tetrahedral symme-
try (T~). Such energy levels can be classified ac-
cording to the double-valued representations of
the double group T„. The characters of the single-
valued and double-valued representations of T~ are
shown in Tables I and II, respectively. The im-
purity levels of the type I 6 or 17 are doubly de-
generate, while those of the type I"8 have a fourfold
degeneracy. The ground state of a shallow accep-
tor in silicon or germanium is known to be a I",
level 13

The application of a magnetic field B introduces
new terms in the Hamiltonian of the particle (hole
or electron). These additional terms constitute
the Zeeman Hamiltonian

B, =v p, s(1+2s) 8+ zmp& [x B —(r B) ], (1)

where p, ~ is the Bohr magneton, m the free-elec-
tron mass, r the position operator of the particle,
1 and s the orbital and the spin angular momenta
inunits of 8, respectively. The upper (lower) signs
hold for a hole (electron).

The symmetry group of H, is C„„, with the direc-
tion of the field as the symmetry axis. The mag-
netic field thus reduces the symmetry of the total
Hamiltonian to the common subgroup of T„and the par-
ticular C„„. For an arbitrary orientation of B, this

TABLE II. Character table for the double-valued
representations of T„.

T~ E E 8C3 SC3

Ig 2 —2 1 —1
1 2 —2 1 —1
18 4 -4 -1 1

3C2, 3C2 3($4, $4 )

0 -~2
0 vY
0 0

3t$4, $ ) 6&„6V,

0
0

0 0

TABLE III. Character table for the double group S4
fr /4)

S4 C, C, S4 S~1
4 4

1 1 1 1 1
I' 1 1 1 1 —1
I'3 1 1 —1 —1
I'4 1 1 —1 —1

1 1 i i M

1 1 i i (d

1 1 i (d

Is 1 1 i i co

3
Q3 CO

3
(x3

M

Q)
3

z
3

CO

is the trivial group C, . For the crystalline orien-
tations [001], [111], and [110]the symmetry groups
are S4, C3, and C», respectively. The irreduci-
ble representations of these groups are presented
in Tables III-V. The symmetry group of the sys-
tem in the presence of a magnetic field is neces-
sarily a subgroup of the Abelian group C„„, and so
all its irreducible representations are one dimen-
sional. Thus, the magnetic field removes the de-
generacies of the impurity levels.

To investigate how a given impurity level will
split when a field is applied, we employ the first-
order degenerate perturbation theory. It is as-
sumed that the unperturbed levels are so well
separated and the field so small that the splitting
of each level can be treated independently. Our
task then is to obtain the matrix representation of
B, in the subspace of the level in question and
diagonalize it.

In order to deduce the most general form of the
matrix in the subspace of a given irreducible rep-
resentation of T~, we make use of the fact that
H, must retain its scalar form (I', ) under the co-
ordinate transformations of the tetrahedral group.
For this purpose it is convenient to classify the
coefficients of various operators appearing on the
right-hand side of Eq. (1) according to their trans-
formation properties under T„:

8, 8, , 8, belong to I'4,.

8 =8„+8, +8,~ belongs to I'&,'

2B, —EP„—B, , v"3 (B„—Bz) belong to I'~;

B,B, , B,B„, B„B, belong to I"5.

It is important to note that the components of B
are referred to the cubic axes (x, y, z) of the crys-
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TABLE IV. Character table for the double group C3
jn /3)

C3

I'(
r2
F3
F4
1"

5

I'6

1
1
1
1
1
1

1
1
1

—1
—1

C3

CO

2

(d
2

C-'
3

1
2

M
2

(d
—1

C3

(d

(d
2

C3

1
2

M
2

M

1

tal.
For a I'6 or I'~ level, the subspace is two dimen-

sional. The representation of H~, being a 2&2
matrix, must be a linear combination of the unit
matrix and the j= —,

' angular momentum matrices
j„, j, , j,. Under T„ the unit matrix transforms as
I', , while j„, j, j transform as I"4. A compari-
son with (2) then leads to the most general form of
the Hamiltonian matrix:

g&l) (B. I) ~ (i)B? (3)

where i=6, 7 corresponds to I'8, I",. The param-
eters g"' and q"' depend on the unperturbed wave
functions of the particular impurity level in ques-
tion. For the usual phase convention for the eigen-
functions of j, , we have

0 1 0 —i 1 0

2 1 0 ' ' 2 j 0 ' ' 2 0 —1

(4)
The spinors

& 'i') a =fo(r) I ) q' '
s'( o =fo(r)

I p &

form a. basis for the representation (4) [fo(r) is a
normalized s function]. An alternative set of
basis functions for (4) is given by

q",,'„= (I/&3) [(x+ f Y) p) + gl &&]

q ",'„=(I/WS) [(X- f Y)
I

o ) —Z
I p)],

where X=xf(r), Y=yf(r&, Z= zf(r) are normalized

p functions. It is easy to see that the sets (q'„o']
and (cp„'7'}, respectively, generate the representa-
tions I'6 and I'7 of T„.

The matrix for the Zeeman Hamiltonian in the
four-dimensional subspace of a I"8 level is neces-
sarily a linear combination of 16 linearly indepen-
dent 4&&4 matrices. Starting with the j= —,

' angular
momentum matrices J„, J, , J„Luttinger' has
constructed a set of 16 linearly independent ma-
trices, having definite transformation properties
under T„:

I'q.' 1;
I'2: ~.JyJg+ Jg~y~~ y

2JP JP J2

I'4.'J„, J~, Jg, J„,
I', : fJ, ; J,)=—FJ„,

vs(J„'- J,');
3 3 ~

7J, J~;
fJ„J„]=U, , f-J„;J,)= U, , -

+ Ws(B'„- B,') Ds (J„' - J,' ),
B„J„+B,J, + Bg,. ,

B„J„+:B,J,'+ B,J, ,

(B B,)U„+ (B,B„)U + (B„B)U

(B,B,)V„+(B,B„)V,+ (B„B,)V, .

However, the last term changes sign under time
reversal and is, therefore, incompatible with the
quadratic term in the Zeeman Hamiltonian. So the
most general form of the Hamiltonian matrix for
a I'8 level can be expressed as

B z~ = po g&(B J)+ pa go(B„J„+B J + B J,)+ q&B

+q2(B J) +qo(B„J„+B J + B,J ), (8)

where the parameters g» gz, q&, qz, q3 depend

on the unperturbed wave functions of the level. We

shall use the following representation' of the
angular momentum matrices:

fJ„;(J, —J,)}-=V„, (J, ; (J,—J„))=V„,

(J, ; (J„—J~)) = V

where fP; Q)= 2(PQ+ QP).
Combining (7) with (2) we obtain the tetrahedrally

invariant forms

B2

(28, —B„B,) (2J,——J„—J,)

0 43 o 0i 0 v'3 0 - 0 3 0 0 0

J
2

2 0

0 v'3

v"3 O

2 0 2

2 0

o v'3

0 1 0 0

2 0 0 —1 0

0 o —Ks o 0 0 vs 0 0 0 0

TI~e functions

P+ o y o
= (I/W2 ) (X+ f Y) I

+ )

q", ,'„=(f/~6) [(x ~Y)l p&-»I~&],

q ",'„=(I/W6) [(x- f Y) I
~ &+ 22'I p &]
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TABLE V. Character table for the double group C&„.

I'g

I'2

F3
r,

1
1

—1

y "3&/2 = (i//~2) (X —2 r)
~ P ), (10)

V&& &2&, &7& QD&&/2& ( p 0)+ &2&i &7& (11a)

form a basis for the representation (9). The set
(V&&2&} also generates the irreducible representa-
tion I B of T„.

So far nothing has been said about the unper-
turbed wave functions of an impurity level, except
that they belong to a particular irreducible repre-
sentation I', (3=6, V, or 8) of the group T~. Of
course, they are the basis functions of the matrix
H~' representing the Zeeman Hamiltonian. The
following labeling scheme suggests itself: The un-
perturbed functions for a X', level are denoted by
~P„"', where p, =+ —,', ——,

' for i=6 or V and p=+ —,',
+ —,', ——,', ——', for i=a. A closer examination re-
veals that this labeling scheme has a definite mean-
ing. By choosing the explicit forms of the angular
momentum matrices, E&ls. (4) and (9), we have
also chosen the matrices representing various
operations of T„ for each of the irreducible repre-
sentations 1B, I', , and I'B. Thus we have implicit-
ly chosen the functions Q„«&}in such a way that the
matrix generated by them for a given operation of
T~ is the same as that generated by the angular
momentum eigenfunctions (&/&„«&}. In other words,
g~~" and &/&„"' belong to the same row of the irre-
ducible representation I', . (This is explicitly
demonstrated in Appendix A. ) Clearly, this par-
ticular choice of the transformation properties of
&)„«' does not imply any loss of generality. The
labeling scheme turns out to be particularly con-
venient for classifying the Zeeman sublevels ac-
cording to the irreducible representations of the
appropriate symmetry group ($4, C$, or C,„). The
following discussions will clarify this point.

Let the orientation of B be given by the polar
angle P and the azimuthal angle n. That is, B
= Bpg with

n„= sinP coen, n, = sinP sinn, n, = cosP .

Now consider a rotation of the functions y„") by the
Euler angles (&2, P, 0). The rotated functions are
given by

~~&2&, n&=+Du/2&(n p 0)~&2&'&7
gl

y«3& Q D&3/2& (~ P 0y&3&

(14a)

(14b)

It should be noted that Q„'"' is not necessarily the
rotated version of &J&„&I &. Nevertheless, (g'„"&} trans-
form like (&/&'„«&} under the operations of T~, This
is very convenient. &/&„'&'&, being an eigenfunction
of yg ~ J, has simple transformation properties un-
der symmetry operations about B. In fact, cp„'"'
belongs to a definite double-valued representation
of the appropriate symmetry group ($4, C$, or
C&„), and so does g„'"'. Thus, in the new basis
Qi„'«&} the Hamiltonian matrix H2"' will be com-
posed of blocks belonging to distinct irreducible
representations. Thi s transformation necessarily
accomplishes the diagonalization of H ~

' '~' and
simplifies that of H~ '. At the same time one ob-
tains the symmetry classification of the Zeeman
sublevels. Let us now proceed to discuss each
orientation of B separately.

A. Magnetic Field along [001]

The symmetry group of the system is $4, with
four double-valued representations: I'~, I'B, I'7,
and I', (Table III).

We have 8„=8, = 0, 8, = 8; the Zeeman Hamilto-
nian H2&'& [E&ls. (8) and (8)] referred to the basis
(g~& '} is already diagonal. Splittings of the impurity
levels are described below.

g. Splitting of a I'& Level

The symmetry decomposition is I'2(T~) =I', + I'2.
The energies of the Zeeman sublevels are given by

g(B) (B)8 + (B)82= p&g p. +q

where g =+ -,', ——,'. The wave function g', ,'/2 be-
longs to I'z, as y,'&'&z belongs to I'&. Similarly
p&$&/&2 belongs to I'2 of $4. Thus, the symmetry
classification of the Zeeman sublevels can be listed

D&/ &( P 0) (+&2&, 7
~

-& I -&&&12~+2, 7

(12a)
and

D"'" (&2 P 0) = (q
"'

~
e ' "8 ""

~ q "') (12b)

where J,' and J, are angular momentum operators.
The explicit forms of the matrices D" '(&&&, P, 0)
and D&3/2&(&2, p, 0) are obtained in Appendix B. Be-
cause of the unusual phase convention for (&/&~& &}

[E&l. (10)], D&$/2&(&2, p, 0) turns out to be different
from the j = —, rotation matrix available in the liter-
ature. Clearly,

(~ . g) ~1&&& (18)

Let us now define

&&&&
&2& g D&$/2& (& P 0)+ &3&

Here,

(11b)

+ 2(1'3), —2(1'g) (16)
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2, Splitting of a I"7 Level + —,'(r, ), ——,'(r, ) . (23)

z„")= p.,g")ap. +q")8', (17)

The symmetry decomposition is r, (T„)= r3+ I'8.
The energies of the Zeeman sublevels are

2. Splitting of a I"7 Level

The symmetry decomposition is r, (T~) = I'4+ I",.
The transformation

where p, =+ -,', ——,'. The wave functions &I)'„'/2 and

&j ', /2 have the symmetry assignments
y' &» =P D &'/»

[111]&1)&» (24)

(18)

3. Splitting of a I'8 Level

We observe that r3(T~) = I', + I'8+ I, + I, de
scribes the splitting. The Zeeman sublevels are

PB(all +g2) ')B+ [q& + (q2 + //3)/1']B', (19)

where p, =+ —,', + —,', ——,', ——,'. The symmetry class-
ification of the wave functions Q& )}is given by

+-', (I,), +-,'(I, ), —-', (r,), --,'(r, ) . (2o)

B. Magnetic Field along [111]

The symmetry group of the system is C3, with
the double-valued representations I'4, I', , and I'8
(Tal le Dr).

Here B„=B, = B,= (I/WS)B, that is, &&&
= —,'-&& and

P= cos '(1//3). We shall use the notation

D"'[111]=—D'/'[ ', &&, cos '(I/—/3), 0],
where g

=
p

1. Splitting of a I'6 Level

(21)

The symmetry decomposition is 1 8(T„)= I'4+ 1'3.
The functions

y& (8) Q D &1/2) [111]g(8) (22)

are such that g', ', /'2 belongs to I'4, while g' ', /2 be-
longs to l"5. This. follows from the transformation
properties of the rotated angular momentum eigen-
functions &//', /2 and V&','/'2, which are easily seen to
belong to I"4 and I'„respectively. The Zeeman Ham-
iltonian referred to the transformed basis (P„"„'}is

+ 3(r4), —3(r3) .
3. Splitting of a I'8 Level

(25)

We have r8(T„)= I'4+ I', + 2I'8. The functions

yl (8& Q D(3/2) [111]g(8) (26)

are such that &j1,1/2 belongs to I"41 0-1/2 belongs to
I', , while both &I&',3/2 and g'3/'2 belong to I"8. Thus
the Zeeman Hamiltonian may mix only &I)', 3/2 and

I.et us now derive the explicit form of H2
in the transformed basis Qr,'(8)}. We first rewrite
Eq. (8) as

H2'= 132/, 2BJ&P(n J)+(n„j„+n,j,+n,j,)

+ [S1+S2(n J) +S (3n„j„+n, j, +n, j)] B},

(27)
where

(g&/g2), s-, =- q, /i1&3g2 (k = 1, 2, 3) . (28)

For 8&I [111], Eq. (27) yields

B"'=/1 g'BJ&P(&3 J)+(I/~&)(j„'+j„'+j,')
+ [»+s2(n' J) +4 s3]B} (29)

In the basis I&j&',(8)}we obtain

H &3& D&3/2& [111]B&8&D&3/2& [111]
= /1, g,'B[fj,+(I/Ws) (j„"+j,"+j,")

+ (s1+ s2 j,'+ 4 s, )B], (30)

diagonalizes the Zeeman Hamiltonian Hz '. The
energies of the sublevels are given by Eq. (17).
The wave functions ~P', '&/z and $' f/'2 have the symme-
try assignment

B 1'8' = D "/2' [111]B"&D"/ '[ll].]
As D" 2'

(&3 j)D" '= j, , we find that

+ i (8) .&8)~ + (8)~2z —
LL(a R

is diagonal, as expected. The energies of the
Zeeman sublevels are again given by Eq. (15). The
wave functions &t&', ', /2 and g' ',~/'2 have the symmetry
classification

where
J'=D' 2' [111]JD' '[111] .

Explicitly,

J„' = (I/v 6 )j„—(I/v 2 )J + (1/v 3 )j, ,

J ' = (I/v 6 )j„+(I/O 2 ) J + (1/Ws)j
j,'. = —(W2/v s)j„+(I/v s)j, .

%e obtain

(31a.)

(slb)

(sic)

O O (I/&2)3

(s2)

—(1/v 2)3 0 0 Rk
8
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Thus

&z = ~ag2&

(-,
'

p + ~8) + o B

—(1/v'2)i

(-,
' p+~8)+o'a

—(-,' p+ ~)+,'B

(I/v 2)2

—(-,
' p+~8)+ca

(33)

where 0'=—s&+4—s2+4 ss and o =—s&+ —,s2+4s3. It9 1 1

should be noted that the matrix Hz' ' has the ex-
pected form.' The only nonzero off-diagonal ele-
ments are those between g'.3/2 alld $ 3/2 The
diagonalization of Hz' ' is accomplished by the
unitary transformation

g' 8» =Z D 1/2& [110]g' & (42)

The Zeeman Hamiltonian is diagonal in the basis
g', '1/'2 belongs to I'3, and g' '1/2 belongs to

I'4. The energies of the Zeeman sublevels are
again given by Eq. (15). The symmetry classifica-
tion is

c(y) = 1 0
(34)

+ 2(r3), —2(r4) .

2. Splitting of a l 7 Level

(4s)

0 1

gy 0 0
1

—(1+r')'" (1+r2)1/2
where

r = ~2 &(l p+~) —[(l p+~)'+-.']'"}. (35)

gi ()) Q D(l/2) [11p]y(v) (44)

We note that r7(F~) = I"3+14. The transforma-
tion of basis

E4 1/2 —[+ (2 P + 8 ) + (Sl + 4 S2+ F3)B]PS g2B .

The wave functions are given by

The energies of the Zeeman sublevels are

E 3/42
—(+ [(2 P + 8 P + 2] + (Sl+2"S2+4 S3)B}'Ills g2B i

(s6a)
(seb)

diagonalizes the Zeeman Hamiltonian. ~t),",
& ~ be-

longs to I"4, while ~b "&&'~ belongs to I'3. The ener-
gies of the Zeeman sublevels are given by Eq.
(17). The symmetry assignments are

(45)

e„"'=Z c,, „(y)q', ('& . (37)
3'. Splitting of a P8 Level

Equation (37) can be rewritten as
e('& =Z s„,„(y)y„'!&,

where
S(y) = D [111]C(y) .

(ss)

(s9)

C. Magnetic Field along [110]

The symmetry group of the system is C», with
two double-valued representations: I'3 and F4
(Table V).

Now B„=B„=(l/W2)B, B,=o; that is, (2= —,'v and
p= —2'&(. The relevant rotation matrices are

D"'[11.O]-=D'"(-'8 -'v O)

where j=-,', —,'.
1. Splitting of a l ~ Level

(41)

The symmetry decomposition is r8(T, ) = I'3+ I'4.
Let

The symmetry assignments of the Zeeman sub-
levels are, clearly,

+ 2(r8), + 2(r4), —2(r8), —2(r8)

The symmetry decomposition is r8(T„)= 2r,
+ 2I'4. Let

qt (8) Q D(3/2) [110]q( )8 (46)

+[S,+S2(i) J)'+-,'S3(~4- J')]B}. (4"/)

In the transformed basis, this becomes

a ~ (8) D(3/2) [1 10]a(8)D(3/2&[lip]

=
& 8 g2B[P&. + (I/~&) (&„"+J,")

+ [sl+s2&.'+-.' s3(4i- J,")]B}, (43)
where

J' = D / ' [110]JD' / ' [110]

Then ()).'3/2 and ())' ', /2 belong to 1'3, while (t)', '1/'2 and
())'. 3/2 belong to I'4. The Zeeman Hamiltonian in the
basis I(I&'(8&/ will, therefore, be composed of two
uncoupled 2&&2 blocks. Let us now derive this
matrix. For 8 II [110], Eq. (27) gives

ff(8& = )1,g'2B(P(n J)+ (I/~2) (&„'+J'„)
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Explicitly, we have

Z„' = —(1/W2) (Z, -Z.),
Z,' = (1/WZ) (Z, +Z,),

We obtain

(4Oa, )

(4ob)

{4Oc)

-', v3

0 --', W3 0

--', W3

3
(so)

(-', p+3)+ pa

H' )= —'~3(3~28 B)

(2 p+4)+ p'B

——,'v 3 (3 —2sRB)

—,'v 3 (3+2s,a)

—(-,' p+ +) + p' a
—g s (3 -282B)

—(-', p+3)+ pa

(51)

where p =s&+4—s~+&s&, and p'=s&+-,' s2+s3. Clearly, this matrix has the expected simple form. The
diagonalization of H," ' is accomplished by the unitary transformation

C(el, 52) =

1
62)1/2

(1 ~ SR)l/2

1
(1 ~ SR)1/2

5g

(1+s')"'

1
(1 ~ SR)1/ 2

—52
(1 + S

2 )1/ 2

(s2)

6p

(1 4, 62)1/2 (1 + 62)1/2

Here

where

—& + [4 —~ (3+2s B) ]
—.'&3(3+2s, B)

—~ + [~'-~(3 —2s, a)']"'
~3(3 —2s, B)

(S3a)

(s3b)

6 = (6/3 g3 )( (p + 12) [(p + 11)2 +u ]1/2].

The energies of the Zeeman sublevels are

(ss)

E+~$ R/i 8g2B(6+ (2 P+ &)+ [81+4 (82+82)]a]' i

(sea)
@~1/2 i BgRB(+ (2 p+ 2 )+ [sl+4 (82+82)]a]' ~

(56b)
B 1/2 / jl gRB( -6++ (2 p+ & ) + [sl+4 (82+ 82)] B]

(sec)
=/1 g'a( —(-'P+-')+- [ + ( + )]B] .

(sed)

&g-(([p+ 21+ [82+4 82]a) +24 (3+282B)Q'
(s4)

It is interesting to note that 5, and 52 are functions
of B. This field dependence of the wave functions
is a consequence of the quadratic terms in the
Zeeman Hamiltonian. If s& = ss = 0, then &s = &a =

is field independent:

1

The wave functions of the sublevels are

4»' '=Z C. »(6»512)$»' ' . (sv)

This can be written as

@(2) Q g (6 6 )y(R)

where

S(el, 52) = D' ' [110]C(51,52) . (so)

The symmetry assignments of the sublevels are

+l(~,), +l(14), --.'(1',), --'. (14).

III. SELECTION RULES FOR ELECTRIC-DIPOLE
TRANSITIONS

M, .= {x."'(4 QIx, ) (61)

where Q is the electric-dipole-moment operator of
the system, and the unit vector g describes the
polarization of the incident radiation. The wave
functions g„"' and X„'~', respectively, belong to the
irreducible representations I', and E', of the sym-

Let us consider the transition of a system from
the state g„"' to the state g ~', induced by the elec-
tric vector of some incident radiation. The transi-
tion probability is proportional to the square of the
magnitude of the matrix element
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TABLE VI. Symmetry classification of the components
of Q (2' ll B).

TABLE VII. Selection rules for the Zeeman components
with B II [001].

Group

S4
C3

C17L

I"
2

I'g
I"

2

Q„i +jQ„.
(E,3

13
l2
I'g

Q„. —gQ i

(~ )

I 4

I'3

r,

+-,'(r, )
—2(r6)

+-,'(r, )
r7 1—

2 (rs)

+ —',(r,)

Is
—l (r8) —-'(& )

metry group of the system. Let us suppose that the
A

operator g Q belongs to the irreducible represen-
tation I'&. Then the well-known orthogonality the-
orem tells us that M .„ is zero unless I"„is con-
tained in I',. && I', . Thus radiation of polarization q

may induce the transition p, - p' if and only if I'~

& I', contains I'~. This allows us to deduce the
selection rules from the character table of the
symmetry group.

In the absence of the magnetic field the symme-
try of the system under consideration is T„. The
impurity levels are classified according to the
double-valued representations I'6, I'7, and I's.
The components of Q belong to the single-valued
representation I', . We note that I'5~ I'6= r, + r„
I",&I', =I'8+I's, and I', &&r, = r, +r, +2I's. Thus
the allowed electric dipole transitions are I'6—I'„r,—r„ I'7 —I' s, and I', —I', . As the
ground state of an acceptor is a I's level, the ex-
citation spectrum consists of lines of three types:
I's- I'„ I's- r„and I's- I's. We now proceed to
deduce the selection rules for the Zeeman compo-
nents of such lines.

In Sec. II we have already obtained the symmetry
classification of the Zeeman sublevels according
to the irreducible representations of the appropri-
ate symmetry group ($4, Cs, or C,„depending on
the orientation of B). To determine the selection
rules for transitions between the Zeeman substates
belonging to two different impurity levels, we only
need to classify the components of Q according to
the irreducible representations of the groups $4,
C3, and C». This classification is presented in
Table VI. The right-handed coordinate system
(x', y', z') is chosen with the z' axis along B
Thus (I),, determines the selection rules for longi-
tudinal polarization (g„=z'). Q„, + LQ„, corresponds
to the left-circular polarization [q. = (1/)(2)
)((x'+iy')], while (()„.—('Q, . corresponds to the
right-circular polarization [g = (1/v 2 )(x' —iy')].
Using Table VI and the character Tables III-V
we obtain the desired selection rules.

Tables VII-IX present the selecta'on rules for the
Zeeman components for B(l [001], B(( [111], and
B II [110], respectively. The components are those
of the zero-field transitions I"s- I'8, I's —I'~, and
I"s- I's. In each table, a nonzero entry indicates
an allowed electric dipole transition and specifies

0

The relative intensities of the Zeeman compo-
nents of an impurity absorption line I",- I', , in-
duced by the polarization q, can be obtained from
the transition probabilities I q M„",

" 'I, where

M((-a) (o()))
~ q~ y(i) ) (62)

Here Q is the electric-dipole-moment operator.
The wave functions 4„"' and 8„'~' represent the
Zeeman sublevels of the initial and the final im-
purity levels, respectively. The zeroth-order
approximation to these wave functions are given by
appropriate linear combinations of the unperturbed
wave functions:

(63a)
LL

I

0 (k) Q g e(k) (63b)

TABLE VIII. Selection rules for the Zeeman
components with B tl f111].

C3

+-,'(r4)
-2(I 5)

+-', (r,)
Is

+-.'(r 4) --,'(I,) ——'.(r,)

+-'(re)
+y(r4)

8 1(r )
—g(I'6)

the polarization that may induce it. Note that, for
B(l [110], the absence of any rotational symmetry
precludes the specification of a definite circular
polarization for q I B.

Tables VII-IX provide a simple means for check-
ing our calculation of relative intensities of the
Zeeman components, presented in Sec. IV.

IV. RELATIVE INTENSITIES OF ZEEMAN COMPONENTS
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TABLE IX. Selection rules for the Zeeman
components with B II t110].

Q(i k) (g(k)
~ Q~

y(i) ) (66)

Cgg

+ 2 (I'3)
--,'(I', )

+ -'(I'3)

E'», E

C», E

Is
+2 (I'4)

E», 5

C»8 E'

E'»8 6
E»

-~(I'3) -'.(I 4)

E'», 6
E'», 6

It should be noted that the matrices $ and S' con-
tain the effect of the magnetic field, whereas the
matrices Q" k' are field independent. The forms
of S and $' have been obtained in Sec. II. The task
in hand then is to derive the matrices Q" "'. We
shall address ourselves to the transitions I',- I'8,
1"s- I'z, and 1 8- I'8 only.

I et us recall that the components of Q belong to
I', of T„. We note that

E'», E

6», E' r, xI', = I",+r, +2I'8 (66)

E», C

C», 6
C», 6

C», C

M(i k) (g ~7 Q(i k)3)
VP Vg

where

(64)

where (P,"'}and (8„&k&}are the unperturbed wave
functions of the respective impurity levels. Thus,
we can write

(67)

contains I'6 only once. So, according to the "gen-
eralized Wigner —Eckart theorem" developed by
Koster, ' Q' ' is proportional to a known matrix.
Thus, we have

(g (8)
~
Q

~ y
(8) )~ (~ &8)

~
Q ~ ~ (8) )

where (((&„' '}and f()&„( '}are the angular momentum
eigenfunctions given in Eqs. (5) and (10). It is
easy to derive the matrix [(p„&8&IQIg),&8&)]; this is
done in Appendix C. The proportionality (67) then
yields

Q(8 8) D
~3 (x + iy) —2iz

i(x+ iy)

(x —iy)

22 i~3(x- iy)

where D0 is a complex parameter that can be de-
termined by calculating one nonzero matrix ele-
ment with the actual unperturbed wave functions
8"' and &I&

"&
V

From Eq. (66) we find that I', appears only once
in the direct product I",x I"8. Thus, Q'8" ' is pro-

(6S)

portional to aknown matrix. " This allows us to write

(g(7&
~
Q~

q(8) ) (~(7& Q~
~&8& )

where fp„&7&}are those of Eq. (6). The matrix
[(y„'7& I fk&i9&,

' ') ] is deduced in Appendix C. We ob-
tain

Q(8 7) gy0

—(x —iy)

—2z

0

iv 3 (x —iy)

~3(x+ iy) 2i2

—i(x+ iy)
(70)

where D0 is a complex parameter that can be ob-
tained by calculating one nonzero matrix element
with the actual unperturbed wave functions.

For a 1,-18 transition, we observe that 1, ap-
pears tuice in the direct product I', && I'8, and so
each of the matrices Q„, Q, , and Q is a. linear
combination of tycho known matrices. " The most
general form of Q' 8' can be obtained from a sim-
ple symmetry argument. Each component, being
a 4&&4 matrix, must be expressible as a linear
combination of the 16 matrices listed in (7). How-
ever, the matrices Q' 8' are referred to the two
sets of functions (8„&8&}and f(I&„&8&}, both generating
the same irreducible representation I', . So the

I

matrices Q„, Q, , Q, will retain the transforma-
tion properties (I', ) of the operators Q„, Q, , Q, .
Now there are only two sets of matrices (U„, U, ,
U, ) and (V„, V, , V, ) in (7) that belong to I', . Thus
we can write

Q' & = —(2/v 3 ) (D+D') U —(4i/v 3 )D' V . (71)

The nomenclature of the two complex parameters
that multiply U and V is chosen to conform to the
notations of Rodriguez, Fisher, and Barra. '
Clearly, D and D' can be determined by calculating
two suitable matrix elements with the actual un-
perturbed wave functions.

It should be noted that Eqs. (68), (70), and (71)
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were obtained by Rodriguez et al. ' by making ex-
plicit use of specific forms for the unperturbed
wave functions. However, the functions chosen by
them are not the most general permitted by sym-
metry. (See Appendix D. ) The derivation pre-
sented above clearly establishes the complete gen-
erality of the results.

%e shall now proceed to calculate the relative in-
tensities of the Zeeman components. Strictly
speaking, we are going to calculate only the rela-
tive values of transition probabilities. In order to
obtain the relative intensity of a given component,
the relative transition probability has to be multi-
plied by the energy of the particular transition as
well as the fractional population of the initial sub-
level. If the Zeeman splittings are sufficiently
small so that the factors (E+' —E~ ') may be ap-

proximated by the energy of the zero-field transi-
tion, and if all the initial sublevels may be assumed
to be equally populated, then the relative intensity
would become identical with the relative transition
probability. It is with this fact in mind that we

use the terminology "relative intensity" to mean

the relative transition probability that we actually
calculate. The three different orientations of B
are treated separately.

A. Magnetic Field along [00&]

This is the simplest case; both S and S' are unit

matrices. The transition matrix M" ' is the

same as the matrix Q" "'. The components will

be denoted by Q„[001], Q, [001], and Q, [001]. We

write them explicitly for each type of transition:

Case (i) I'8- I'~:

Wso 1 o fvs o -f o 0 -2$00
Q„[001]= Do

0 $0
Case (ii) I',- I', :

—1 0
Q„[001]= Do 0 —i

Q, [001]= Do

Q„[001]= Do

o fVs o

Q, [ool] = D,
,

0 0 2 0

0 0 0 2$

Q [0 10]= Do

Case (iii) I'8- I'8:

Q„[001]=

—(D+ 2D') 0

WSD'

-v SD'

(D+ 2D') 0

Q, [ool] =
iD

-fVSD'

—i(D+ 2D')

fVS D'

fWSD'

—j(D+2D )

-fV SD'

Q, [001]=
'(D 3D'

f(D -D')

—f(D - D')

—f(D+ 3D')

For each polarization the transition probability
for a given Zeeman component is proportional to
the absolute square of the corresponding element
of the appropriate transition matrix. The matrix
Q„[001]+iQ, [001] corresponds to the left-circular
pola, rization (e,) in the Faraday configuration,

while Q„[ool,] —jQ [001] corresponds to the right-
circular polarization (e ); the relative intensities
of the allowed Zeeman components are presented
in Table X. The matrix Q, [001] corresponds to
linear polarization (q„) parallel to B, whereas

Q„[001]or Q„[001]corresponds to linear polariza-
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TABLE X. Relative intensities of the Zeeman com-
ponents in the Faraday configuration with B II [001]
(circular polarization) .

It is easy to see that

0&u&1 . (V4)

Zero-field
transition

Components
Relative intensity

The parameter v is introduced by

ID I'=-.'N(I --'.") (75)

I's —I"
6

3~ 1
2 2

+21 1

+2 +Q3 1

+ —~1 1
2 2

+ —~ +—3 1
2 2
1 1

3~ 1
2 2

+2

Using Eqs. (72), (73), and (V5) we find that

ID+ 2D' I'=-.'~(1 --'u —v),
ID-D'I'=4 &(I+2v),

and

~s 1 s

+—32
+—12

I
2
3
2

+21
1

3
2~ +—32

3~ 1
2 2

+—1 1
2 2

+y~ +21 3

+ —~ ——3 3
2 2

—sQ+rV3

8Q

SQ
3

I
D+ 3D' = —,

' N(1 —2v) .
Therefore, it is necessary to restrict v to the com-
mon range of the inequalities:

——,
'

& v & —,', —(1 ——.
'

u) & v & (1 ——,
' u) . (76)

I
D+ D'

I

'+ 6
I

D'
I

' = -'&(I+ u),

ID+ D'I'=-.'iv(I —.) .

(72)

tion (c, ) perpendicular to B; the relative intensities
are presented in Table XI. The parameters u and
p that appear in the relative intensities of the Zee-
man components of a I s- I'8 transition were in-
troduced by Rodriguez et al. ' They are discussed
below.

It is noted that, for each polarization, the sum
of the transition probabilities is given by

&= 41D+ D'
I '+16 ID' I'

Thus the intensity of the zero-field transition can
be normalized to N. In other words, we can keep
N fixed. The parameter u is then defined by the
equations

The fact that the relative intensities of the com-
ponents of a I s- l 8 transition can be expressed in
terms of two real parameters is not at all sur-
prising: It is clear from Eq. (Vl) that ratios of the
transition-matrix elements depend only on the
ratio of D' and (D+D'), that is, on only one com-
plex parameter. It is particularly interesting to
note that u and ~ have been defined in such a way
that either u = 0 or u = 1 requires v = 0. This is
quite appropriate, because u=0 implies D' =0,
while u=1 implies D+D'=0. In either case, Eq.
(71) shows that the relative intensities are known

numbers, independent of any parameter.

B. Magnetic Field along [111]

In this ca,se, the matrix S is given by Eq. (39):

S(y) = D' '[111]C(y) .

The matrix C(y) is given in Eq. (34), and

(I/v 2 )a'(u' —ia~' (i/v 2)b'(u'

D&~~»[111]=-,' —iaido* —sa*

(i/v 2 )b m* —be* —ia&u* (I/W2)a (u*

where
a =- [(v 3 + I )/v'3]"'

b = [(v 3 —I )/&-3]'~',
and

- in'/8

For either a I s- I'6 or I's- I', transition the
matrix 8' is the rotation matrix

a(d
D" "[111]=-

be*

For a I'8- I'8 transition, S' =S(y'). Note that the
parameter y for a given I', level has been defined

in Eq. (35). Here we are using y to represent the
value of this parameter for the initial level, and
y' for the final level.

The derivation of the transition matrices M' ""'
is now an exercise in matrix multiplication. In

writing the results we shall use the rotated coor-
dinate system

R' = (I/v 6 ) (x+ y —22),
j' = (1/ v 2 ) (- I-+ j),
Y = (I/&3) (x+y+2),

so that z' ll B. For ea.ch type of transition, Q[111]
will denote the transition matrix M:
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TABLE XI. Relative intensities of the Zeeman components in the Voigt configuration with B ll [001].
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I ongitudinal polarization (e„) Transverse polarization (e~)
Zero-field
transition Components

1 1
2 2

Relative intensity Components
3 1

+ 1 1

Relative intensity
9.
8

8

3 1

I'8 I'8

+y V

3 1 4 —gQ+ggS

3
~8 I

Q

pQ3

Case (i) I'2- I'2:

va
P)lf 2

—Wsy
(1 + y2)l/2

zV3y
(1 ~ P)1/2

i~s
(1 + y2)1/2

Q„.[111]= D2

iss
(1 + P)1/2

'Wsy

(1 y')"'
les

Ws Q,.[111]= D2
0 -2i (i 0

0 0 2 0

Case (ii) I'2- 1'7:

Q» [111]=

i(2v 2y-1)
(1 + y2)1/ 2 0

—i(2'+ y)
(1 y')"'

(2v2+y)
(1+y2)"'

(2v 2y —1)

Dl
q, ,[111]= a

—(2' y —1)
(1+P)1/2

—(2v 2+y)
(1 + y2)l/2

j(2&2+y)
(1 + 2)1/2

—i(2v 2y —1)
(1 + P)1/2

0 2 0

,

0 0 -2j 0

Case (iii) I'2- I"2:

g[(&2y'+ 1)D+ (2~2y' —1)D']
(1 + y/3)1/2

[(y ~2)D —(y'+ 2&2 )D']
(1 + iR)1/8

q,.[111]= ~a
1

—2[{W2y+1)D+3D']
(1 + y211/ 2

[(y- W2)D+ syD']
(1+P)l/2 22&3 D'

[(y' —&2)D (y'+as 2)D']—
(1 + y/2)1/2

i[(v 2y'+ 1)D+ (2~2y —1)D ]
/R)1/2

[(y —Wa)D+ syD']
2)l/2

—&[(v 2 y+ 1)D+3D']
P)1/2
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Q&~ [111]=
~2

1
[(~2r+1)D+»']

(1 2)1/ 2

—z[(y —v 2)D+SyD']
(1 + y2)1/2

[(W2y' + 1)D+ (2v 2 y' —1)D']
~2)1/ 2

-2v SD'

—i[(y' —v 2 )D (y'+ 2~2 ID ]
(1 + y'2)1/2

i[(y' —~2)D —(y' + 2~2 )D']
(1 + yI 2)1/2

2v 3D'

—[(0 2 y' + 1)D+ (2W2y' —1)D']
(1 + yj2)1/ 2

i[(y —v 2 )D+ 3yD']
(1 + P)l/2

—[(v 2 y+ 1)D+3D' 1

(1 + y2)1/2

Q,.[111]=

—[(y'y+1)D+ ~ (y', y)D']
[(1+y")(1+0)]"'

l[(y' —r)D+& (r', y)D']
[(1+r")(1+y')]"'

(D+ D')

(D+ D')

&[(y' —y)D+& (y', y)D']
l(1+r")(1+y')]"'

—[(r'r+1)D+ ~(r', r»']
[(1+y")(1+Y')]"'

In the last matrix we have introduced

) (r', r) = (r'r-+ &) —2~2 (r' r), —

&(r', r) -=(r' —r)+2~~(r'r+ &) .

The relative intensities for transverse circular
polarizations are presented in Table XII, while
those for linear polarizations are given in Tables
XIIIA and XIII B. It is interesting to note that the
relative intensities of the Zeeman components of

I',- I'6 and I 8- I', reduce to the simple results of
Johnston et a/. ' if we let y=O; this, however, cor-
responds to the trivial case of a j = —,'-like I 8 level,

C. Magnetic Field along )110]

Here the matrix S is given by Eii. (59):

S(5, 5,) =D"'"[i&O)C(5„5,) .

The matrix C(5, , 53) is given in Eq. (52), and

—zv30)

2v2 -v 3~v+

Q3

—&l3QJ —V 3(d

—v 3 ~v+' —zWS(v*'

—W3 fd

—&/ 3 (v+

TABLE XII. Helative intensities of the Zeeman components in the Faraday configuration with 8 ll |111)(circular
polarizationj).

Zero-field
transition

Component
Relative intensity

8 6

+ 3 1
2 2

+—1 1
2 2

3 1
2 2

+ ~ ~
1

+ ~ +3 1
2 2

~[ /(&+r')]

0[&/0 +r') ]

+-2 2

3
2 2

+ —~ ——1 1
2 2

+ ~ +3 1
2 2

k ((2~2+r )'/(1+&) ]
1

12 [(2v 2 r —1) /(1 +r ) ]

I'8 I'8 + 1 3
2 2

——~ +—1 1
2 2

3 1
2 2

+1 3
2 2

+ —~1 1
2 2

+—~+—3 1
2 2

8 [(V-~2) +2(~27 —k)u —(2r -~2r —2)v]/(1+/)

&
[(~» + t) -2r'(kr'+~&)u —(2r "-D~r ' 2)v]/g+r—»).

g(r —~2) +2(~2r' —k)N+ (2r'- W2r' —2)v]/(1+r')

6 [(~&'Y+ &) —2 r(ng+&2m+ (2r2 —vYr —2)v]/(1+r2)
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TABLE XIII. Relative intensities of the Zeeman components in the Voigt configuration with B II [111].
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Zero-field
transition Components

A. Longitudinal polarization (ejj)

Relative intensity

I's I'
s

I'
s

I's- I'
s

.1 1
2 -2
1 1
2 2

3 3
2 2

3 3
2 2

1

,'[(~ &+1)'0.-u) +2(& —~)'u+2W2(&'&+ 1) (y' - y) ~]/[(1+~")(1+~')]
2[(y' —y)2(1-u) +2(y'y+1) u —2&2(y'y+1) (y' —y)vj/[(1+ y'2)(1+/)]
g(1-u)

B. Transverse polarization (e1)

I's- I'
s

s [V'/(1+ V') j

-83 [1/(1 + q&)]

I' s

3 1
2 2

%2- Wr'

g4 [(2v 2 +y) /(1 +y )]
1
S

p4 [(2~/ —1) /(1+/ )]

I's- I'
s

3 1
2 2

1 3

~(p [(p-~2) +3(~2p —2)u —(2p -~27 2)&]/(1+p )

gg [(~2y'+1) —3y'(2y'+&2) u (2y' -~2 y' —2)v]/(1+y' )

gg [(y' —W2) +3(v 2 y' —2)u+(2y' —v2 y' —2)v]/(1+y' )

gu1

fg [(~2 j/ + 1) —3y(~ +&2 )u + (2y~ -W2 j/
—2)v]/(1 +y )

1

~ «ga

For either a I"8- I"~ or I s- I'~ transition the
matrix S' is the rotation matrix

1D" '[110]=
~~

For a I'2- I'2 transition S' = S(5', , gz), where the

primed parameters refer to the final I'8 level.
We shall write the components of the transition

matrix Q[110] for each type of transition in the ro-
tated coordinate system

j' = (1/~& ) (- ~+ j),
z' = (1/v 2 ) (x+j);

Case (i) 1'2- F2:

Q~ [110]= D2

(v 3 —5,)

(1 ~g2)1/2

z(W3&, +1)
(1 + g2)l/ 2

(~36, +1)
(1 + g2)l/2

[110]= D0

&(WS + a, )

(1 + () 2)1/2

(Mar, —1)
(1 + g2)'1/2

2(~3V, —1)
(1 ~g2)1/2

(W3+ O2)

(1 + g2)1/2
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Q ~ [110]= Dp
1

(I + g2)l/2

—2z

(1+()2)1/2

2
(I ~()2)1/2

2i5g
(1 + ~2)1/2

Case (ii) I'2-I', :

Qe [110]—Dp '(~35 1)
(1+(')'"

(()2 —V3)
(I + g2)1/2 0

—i((), —~3)
(1 + ()2)l/2

(W3(), +1)
(I + g2)1/ 2

Q„,[110]= Dp

(1 + ~2)l/2

2i52
(1 + ()2)1/2

—251
(I + g2)1/ 2

2i
(1 + ()2)1/2

q., [110]= D'p —(()2+ &3)
(1+ ()2)1/2

—i((), + ~3)
(1 + g2)1/2 0

(v 3(),-1)
(1 + ()2)1/ 2

Case (iii) I'2- I'2:

h, (6„61)a+h, (6„61)a'
a(6„6',)

110 =-'
«, (Pi, P, )D+ «, (2'„P,)D'

H(e'„6, )

—[h1(ep, 62)D+ h2(62, 62)DQ
H(6I, eg)

hs(62, 62)D+ h4(62, 62)D'

H(eg, eg)

h, (e„e',)a+ h, (6„6',)D'

a(6„6',)

—[h1(61,61)D+ hp(61, 61)D']
H(61, ei)

hs(6,', 6,)D+ he(62, 6,)D'

H(6,', 6,)

h1(63, 62)D+ hm(62, 62)D'

a(e„e,')

—[2(e, —6', )a+ h,(e„e',)a']
H(61, 61)

2 - [2(1+pip|)D+ «N(pi, pi)D')
a(e„e',)

2(6, —6,')a+ h, (6„6,')a'
a(e„e,')

—[2(1+6pe 2)D+ hg(6 p, ep)a']
H{6,6')

2(1 + 6 161)D+h/I(61 2 61)D
a(6„6',)

—[2(6, - 6', )D+ he(6 „6',)D']
a(e„e',)

2(1+6,6,')D+ h,{6„6,')a'
a(6„6,')

2(6, —6;)D+ h.(6„6',)a
a(e„e,')

q [110]
2

—[2(1+eg61)a+ hg(6 & 61)a ]
a(e,', 6,)

2(e,' -e,)a+ h.(e.', 61)a'
a(e,', 6,)

2(1+6',e,)a+ h, (6'„6.)D'

a(e'„6,)

2(61 ep)D+ he(61 7 62)D
a(6'„6,)

2(ep —61)D+ he(ep 2 61)D
a(e,', 6,)

2(1+e.'6, )a+ h, (6&, 6&)D'

a(e,', 6,)

2(61 ep)a+ he{61 62)D
a(e'„6,)

—[2(1+6162)D+ hg(612 ee)D']
a(e', , ",)

The functions that appear in the transition matrices
for I'8- 18 are defined by

H(x, y) = [(1+x') (1+y')]' ',
h, (x, y) = v 3 (1 —xy) + (x+ y),

h, (x, y) = v 3 (1 —xy) + (5x —3y),
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h, (x, y) = W3(x+ y) —(1-xy),

h4(x, y) = v 3 (x+y) —(5+Sxy),

h, (x, y) = v 3 (x+ y)+ (3+ 5xy),

h, (x, y) =v 3 (1+Sxy)+(x —Sy),

h, (x, y) = (1+3xy) —u 3 (x —Sy),

h, (x, y) = v 3 (3 + xy) + (Sx —y),

h, (x, y) = (3+xy) —v 3 (3x —y) .

The results for B II [110]have a special feature:
The Zeeman components for polarization perpen-
dicular to the field do not have any characteristic
circular polarization. This is a consequence of the
absence of high rotational symmetry about the field
direction. The relative intensities for linear po-
larization along [110], [110], and [001] are pre-
sented in Tables XIVA, XIVB, and XIVC, respec-
tively. In tabulating the relative intensities for
I'8- I'8, the following functions have been used:

g factors for shallow acceptors in germanium, by
using the effective-mass wave functions of Mendel-
son and James. ' Their results indicate that the
parameter u is small (=6). This suggests that the
four components of equal intensity for &, are suf-
ficiently weak to escape detection.

A detailed comparison between the present theory
and the experimental data' leads to four possible
assignments of quantum numbers to the Zeeman
sublevels for the D line. If it is assumed that the
larger calculated g factors have the correct sign,
then the values of the principal g factors obtained
experimentally are

g1(2 = —1.53 + 0. 09, g3(2 = 0. 03 + 0. 04

for the ground state, and

g1/ 2
= —6. 14 + 0. 13, g3/ 2

= 0.07 + 0.03

for the excited state. The principal g factors for
B II [001] are defined by

F(x, y) = [16(1+x') (1+y')]- ',
f, (x, y) = (1 —xy) + v 3 (x —Sy),

f, (x, y) = (x+y)+v 3 (3+xy),

f, (x, y) = (x+ y) —WS (1+Sxy),

f, (x, y) = (x+ y) + v 3 (1 —xy),

f, (x, y)= (1 —xy) —v 3 (x+y) .

(7'7)

(Va)

(79)

(So)

(al)

(62)

2p, p.g g~ B=E~

From Eq. (19) we find that

/ 1 / / 9
g1/2 g1 & g2 & g3/2 gi 4 g2 '

Thus,
/ 1/

Rl A1/2 8 &g3/2 A1/2) &1

/ 1/
g2 2ils/2 gl/2)

(SS)

(S4a)

(64b)

Note that, in each table, the Zeeman components
p, —p,

' and —p, ——p,
' are listed next to each other;

they have equal intensities for the linear Zeeman
effect (5, =5&, 5', =52). Also, the relative inten-
sities of the Zeeman components of I',- I'8 and

I,—r, reduce to the simple results of Johnston
et al. ' if we let 6, =52=0; this again corresponds
to the special case of a j =-,'-like I 8 level.

In general, the relative intensities for B II [110]
are functions of B. This field dependence results
from the quadratic terms in the Zeeman Hamil-
tonian.

V. AN EXAMPLE: BORON IMPURITY IN GERMANIUM

We shall now briefly discuss the recent experi-
mental work of Soepangkat et al. '6 on the Zeeman
effect of boron acceptors in germanium. Measure-
ments have been carried out in the Voigt configura-
tion with B II [001], using linearly polarized radia-
tion. The prominent D line" of the excitation spec-
trum splits into four components for polarization
parallel to B(4„)ow perpendicular to B(q, ). The
present theory, for a I'8- 1"8 transition, predicts
(see Table XI) four components for q„and eight dif-
ferent components for &, . Of the latter, four are
of equal intensity (=~8u), while the remaining four
occur in pairs of equal intensity. Lin-Chung and
Wallis have calculated the relative intensities and

For the D line under consideration, we obtain

g) = 1 73+ 0 ~ 11 g~=0 ~ 78+0.07

for the ground state, and

g1 = —6. 92+0. 15, g2=3. 11+0.08

for the excited state. This gives the ratios

(g1 /gP )gpo hand
2 22 0~.34

0'= a(i a/2s)wc' .t=d- 223+0 11.
From Eq. (35) we calculate the parameters y and
y' that characterize the relative intensities of the
components for B II [111]:

y= —1.&3-1:23 y = —1.87+0. 36 . (65)

Let us recall that for ljyzear Zeeman effect 51
=62=5 and 6', =52=5'; the relative intensities for
B II [110]a.re characterized by the parameters 5

and O'. Using Eq. (55) we obta. in

1 ~ 16+0'71 5 = 1 ~ 17+ 0 ~ 21 (aa)

The uncertainties in the values of the param-
eters, shown in Eqs. (65) and (66), are large.
However, Eqs. (36a) and (Ssb) and (56a)-(56d) re-
veal that these parameters are directly related to
the energy splittings for B II [ill] and B II [110], re-
spectively, and should be determined experimental-
ly. The relevant experiments are in progress.
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TABLE XIV. Relative intensities of the Zeeman components in the Voigt configuration with B I'I [110j.

Zero-field
transition Components

A. Longitudinal polarization (&]])

Relative intensity

+ 8 I
2 2

+3 I
2 2

+ ~ +I 1
2 2

I I
2 2

+ ~ +3 I
2 2

3 I
2 2

+ I I
2 2

——~ +—I I
2 2

ls 1s

+ —~ +—3 I
2 2

3 I
2 2

+ 3 3
2 2

+—3 3
2 2

+—~ +—I 3
2 2

l~
2 2

+—~ ——I I
2 2

——~ +—I I
2 2

+(~f» ~2)[4(1+6(8) (1 -I) +gfj(bg» 62)u —2(l+i5g62)f((i5g» g2)U]

( 2» f) [4(1 + 626f) (1 -u) + if' (&2» &f)u —2(& + &2 [)f( (&2» &f)v]

&{&j,&2) [4(~j —&2) (1 -u) +~f2(~j, &2)u+2(&j —&2)f2(&j, ~2)v]

&(~2y &j) [4(~2 —~j) (1 —g) + 4f 9(&2, &j)u+2(&2 —&j)f2(&2y ~j)v1

( j, 2) [ (1+(5j62) (1-g) +gf j(5g, 02)g+2(1+Bj(52)fj(6j,52)v]

E(62, 0j) [4(1+526j) (1 -g) + 4f j(6p, 6j)u+2(1+626j)fj(62, 6j)v)

+(~2y ~f) [4(~2 ~j) (1 u) + 4f3(~2y ~j)u 282 ~j)f3(~2y ~j)v)

&(&j, &2) [4{&j—~2)'(1 —u) +4f3(~j, ~2)u —2(&j ~2)f3(&j, ~2)vj

Transverse polarization (&Q of radiation propagating along [001j

+ —~+—3 I
2 2

3 I
2 2

+—~ ~—I I
2 2

——~ +—I I
2 2

+ 3 I
2 2

+8 I
2 2

+ ~ +I I
2 2

I I
2 2

+ ~+3 8
2 2

3 3
2 2

+ 8 I
2 2

+—I2 2

+—~ +—I I
2 2

+—~I 3
2 2

——~ +—I 3
2 2

+{6j,6j) [4(5j —6j) (1 —g) + 4f3(6j, 5j)u+2(&j —&j) f3(~j, ~j)v)

&(~2, &2) [4(~2 —&2) (1 —u) + 4f3(&2, &2)u + 2 (&2 —&2)fs @2& ~2)v J

+{~jy ~j) [4(1+ ~j~j) (1 —u) + 4fj (~j, &j)u —2 (1 + ~j~j)fj Pf y ~j)v j

F(a f.&2) [4(&+~@2)'(& -I) +kff(~2, $)N —2(&+&@2)fg(&2» &2)~]

+(~2» 2)[ (~2 ~2) (~ I) &f2 ~2» 2)+ (~2 ~2)f2(~2» 2)

&(&j, ~j) [4{~j—~j) 0 —u) +4f2(~j, ~j)u —2(&j —~j)f2(~j, ~j)v)

&(&2, &2) [4(&+~2~2)'(& -~) +

if'�(&2,

Q)N +2(&+&2~2)fg (~2. &2)v l

E(0j, 6j) [4(1+&j6j) (1 —u) + gfj (6j, ~j)u+2(1+&j&j)fj(&j, (5j)v]
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TAB LE Xnt'. (Continued)
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Zero-field
Transition

I'8 ~ I'6

I'8 X'7

Component

C. Transverse polarization

+ —~ +—3 1
2 2

3 1
2 2

+ 1 1
2 2

+1 1
2 2

+ —~——3 1
2 2

+3 1
2 2

+—~ +—1 1
2 2

1 1
2 2

Relative intensity

(&J of radiation propagating along [110]
—,[(6t-H3)'l(1+6i2)]

—,[(~, -~)'/o ~,')j

8 [(v3& +1) /(1+02) f

8 [(~, +~)'/(~+~() I

—,[V~~, ~)'/o ~',)j

8 [(~3 $2 + g) /(g + (52) j

—,[(~, -~3)'/(~+~', ) j

8 [(~, -~3)'/(~+~)) ~

+—~+—3 3
2 2

3 3
2 2

+ 1
2 2

—~ +—3 1
2 2

+ ~ +I 1
2 2

1 1
2 2

+ 1 3
2 2

&(&'t 6[)ff4(6i, 6[)(1—u) +4(6i —6[) u —4(6g —6t)f4(6i, 6t)v]

+ (62 ~ 6t ) [f4 (6g, 6t ) (1 —u) + 4 (6t —6t) u —4 (6t —6t)f4 (6t, 62)v ]

P(6t, 6i) [fg(6i, 6[)(1-u) +4(1+6i6,')'u+4(1+ 6,6i)y, (6, , 6;)v]

+(6pt 62) If&(62, 62) (1 -u) +4(1 +6t6t) u + 4(1 +6t62)fq(62, 62)v]

+(6t ~ 6z) [f 4(6&, 6&) (1 —u) + 4 (6t —6t) u + 4 (6t —6&)f4(62, 6g)v]

&(6t 6{)[f4(6t 6[)(1-u)+4(6i-6[)'u+4(6i 6t')f«6t 6t)-v]

E(6g, 62) [fg(6t, 6t) (1 —u) +4(1 +6t6t) u —4(1 + 626t)fg(6t, 6t)v]

——~+—1 3
2 2 E(6t, 6i) [fm (6t, 6t) (1 -u) + 4 (1 + 6i 6t) u —4 (1 + 6t 6[)f g (6t, 6[)v ]

Ourtheory provides the framework for a complete
analysis of the experimental data for all three
crystalline orientations of the field. Such an analy-
sis is expected to yield more accurate values for
the g factors. It should be noted that the param-
eters u and p that appear in the relative intensities
of the Zeeman components can be independently
determined from an investigation of the stress-
induced components. '
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APPENDIX A

Combining (A 1)-(A3) we obtain

&&~."'I Pn(4+ 2s»Ps'I &.
"'

&

Now,

(A4)

Our objective here is to show that P„"' and y "'
belong to the same row of the irreducible repre-
sentation I', (i=8-8).

Comparing Eqs. (1) and (3) for linear terms in '

B we find that

(A5)

Substituting (A5) in (A4) and using (Al), we have

&4."'IP (l +2 )P 'll,"'&

&&!"
I
(1+2s)

I
t'" &

=g"' &~."'I Jl (."'
& (A1) Z I'„~(R) &q'.

I
(l +2s„)ly"'&I'„'„' (R) .

@I
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Thus

P
I $, &-Z I'".' (R)l &ti, &) . (A6)

tation matrix D"~ &(n, P, y), suitable for the phase
convention of fp,&

&} and {y' &].

For j=-', , Eq. (B2) gives

Here we shall derive the rotation matrices
D" '(c&& P, y) and D' '(o. P y)

The operator
A

R(~ P y) = 8 &aJz e &Bzy 8" && z~

rotates the contour of a function by the Eulerian
angles (o., P, y). The rotation matrices are defined
by

D".'(~ p»)=(j&'IR(~, p, y)lji ),
where

&'li u & =j (j + I ) I ji &

and

Thus, we have

D&J& (~ P y) p-&4'0 d &J&
( )Pe lb&&'-

where
d.".'(p) = &f I

'
I

'"-' f I &

(Bl)

The point to be noted is that the matrix d&~ &(P) de-
pends on the phase convention for the functions

l jp). Using Sylvester's formula'~ we obtain
A

d& J &(P) Q - &v&& (B2)

For j= —,', Eq. (B2) yields

Comparison of (A5) and (A6) demonstrates that
&C&,
"& and y„&" belong to the same row of I', (i = 6, 7),

that is,

Q."' &a
I t."' &= &~."'I I'a

I ~."'& . (A7)

In an exactly similar manner, Eq. (A7) can be
established for i = 8, starting with

«"' «+». )
I

c"'&= (y"'lai~, +a'~'I ~"'&

and noting that J„, J, , J, belong to I'4.

APPENDIX 8

d' ~ '(P) = —,'[- cos(—,'P)+9 cos(—,'P)]

+i ', [——,
' sin( —', P) —9 sin(-,'P)] J,

+ —,
' [cos(-,' P) —cos(-,'P)] d,

+ i[- —,
' sin(-,' p) + sin( —,'p)] Z~ . (B4)

The matrices [(y&8&
i Q I &»& ') ] and [(&»

& & I'Ql p& ')]
will be derived here.

Q~y~ ') involves the spatial functions QX, QY,
and QZ; the nine functions can be projected onto
various irreducible representations of T„:

I'&'. &&OQ„X+ Q, Y+ Q,Z;
I'3.'&c& = 2Q, Z —Q+ —Q Y,

&c
= W3(q~ —Q„Y);

I', : ~, =-.'(Q, z- Q, Y), ~„=-,'(q.x- q„z),

&cc
= 2(Q„Y- Q X);

I'5. ~„=-.'(q, z+ q, Y), ~, =-,'(q,x+ q„z),
&c, = -'(Q. Y+ Q,X)

The spatial part of y„' ' is fo(r), belonging to I' t.
This forms a nonvanishing scalar product with Ko

only. Thus, the only nonzero matrix elements
(q&„&~&

I Q}y&s&) are those proportional to

f fo(r)Q„Xdr = f fo(r)Q, Ydr = f fo(r)Q, Zdr .

It is now easy to deduce (rp„'s& I Ql y,& ') in a straight-
forward manner. For example,

(~."&&gal al v &Ss&&2& = ( I~/~) f fo(r)Q(X+iY) dr

By using the matrix 7, of Eq. (9)we obtainthe rotation
matrix D&~~~&(n, P, y) suitable for the phase conven-
tion of (p~& '}.

APPENDIX C

d" "(p)= cos(-,'p) —2i[sin(-,'p)] j, . (Bs) = (1/&2)(@+iy) ffo(r)QXdr .

By using the matrix j of Eq. (4) we obtain the ro-
I

We obtain

[&~"'I@I&o"'
&]

= d
i(x+ iy) 22

~3 (x+ iy) —2iz (x —iy)

iv 3 (x- iy)

where do= (I/W6) ffo(r)Q„Xdr
The spatial parts of y„~' contain X, F, Z. These

form nonvanishing scalar products with K„,
&, , respectively. Thus, the only nonzero matrix
elements (y„' '

~Q~ y„& ') are those proportional to

= f ZQ„Ydr = f ZQ„Xdr
Now the matrix elements can be calculated easily.
For example,

(9,",&„lyly,",»„=(I/W6) f Zq(X+iY)dr

fXQ, Zdr = fXQ, Ydr =
/ YQ,Xdr= f Yq„zdr We obtain

= (I/ W6 ) ( y + i&c) f ZQ„Y dr .
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[«"'I@l~"'
&]

= d',

—(x —iy)

iv 3 (x —iy)

v 3 (x+iy)

—i(x+ iy)

x+y +a
1 &.

' g transforms as

x'(y' —aa)+ y'(aa —x') + a'(x —y');
I'i: (wq, wa} transform as

(28 —x —y q
&3 (x —y )]' q

F4.'($, n, gj transform as the x, y, a components
of an axial vector;

I', : (X', y', Z'j transform as the x, y, a compo-
nents of a polar vector.

The functions are assumed to be real and nor-
malized. The products of these functions with

(~ n &, [ P &) generate double-valued representations
of T~ according to the following scheme:

I', xl =1 1 xI' =I', , I x 1"8——I'

1" xI'8=I' +r, , 1",xI' =1,+I',

Thus, there are two types of I'8 functions, two
types of I'i functions, and three types of I'a func-

where
d', = —(i/v e )jxq„z dr .

APPENDIX D

Here we shall present the most general symme-
try forms for the impurity wave functions Qr„"&j
(i= e—8).

We first note that the spinors (l o. ), I P &] gen-
erate the representation 1",. In general, g,"& is a
linear combination of products of these spinors
with spatial functions. The spatial functions, how-
ever, can be classified according to the single-
valued irreducible representations of T„. Let us
define the following functions of x, y, z by specify-
ing their transformation properties under T„:

I', : f transforms as

tions, each type being derived from a distinct
single-valued representation. The most general
form of g" & is then a linear combination of func-
tions of these distinct types. We obtain

, , 8) 0)4 (f) + y(f)A(f) + p(4) 8)

where c(8) = g")=-0 and

4'+i'/a=fl o') ~ @-&'/a=fl p) ~

A."'/ =(I/~~)[«+ n)lp& ~l )1,
A"'/ =(I/~~)[(4- 'n)l &-&lu&];

4",,'/, = (1/v 3 ) [(x' + iy')
I p ) + z'

I
o.)],

c ",'„=(I/ws) [(x' —iI")
I n) —z'I p)];

/~+&/a-zl o'& i ii &/a-gl P) ~

e",,&„=(I/W2) (x'+ i r')
I
n ),

e,",&„=(i/We)[(x'+ir')I p) —2z'I a&],
e",&„=(I/we)[(x' —iv)ln)+2z'I p)],
c",'„=(i/v 2)(x'-iy')I p);
A,",'q, = —(I/we) [(p —in)l a)+2&

I p)],
A",,'„=(i/~2) (~ —in) I e),
/t",&„=(I/W2)(&+in)le),

A",&„=-(i/v e)[(&+in)l p)- g I a)];
X+ 3/a wll P ) 1 X+ &/a iwal ~ &,

(8) I (8) ~

x &/a wal p) I x-a/a iwll o'& ~

(8) I (8)

It should be noted that the functions 4„"', A„"',
and g~

' are orthogonal to one another, and belong
to the same row of 1",. The angular momentum
eigenfunctions (y "&j represent a special case of
(c, (&

&]

The forms of (g„'"] used in Ref. 12 correspond
to the restrictive assumption b' '= a' '= c' '=0.
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Linewidths and Two-Electron Processes in Spin-Flip Raman Scattering from CdS and ZnSe
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We present inelastic-light-scattering data and analyses for spin-flip scattering from conduc-
tion electrons in CdS and ZnSe. Cross sections, linewidths, and line shapes are studied as
functions of magnetic field, temperature, scattering angle, and donor concentration. Both
free-conduction-electron spin-flip processes and spin-flip processes involving conduction
electrons bound to shallow donors are observed. These processes exhibit different selection
rules and temperature dependences; the free-electron spin-flip processes exhibit only o, &&

scattering in which i &j and i or j II H as expected, while the bound-electron spin-flip processes
also exhibit strong a.„„and n» scattering (z is the [0001j optic axis), in agreement with the
selection rules calculated for shallow donors at Cez Cd sites by Thomas and Hopfield. For
right-angle scattering, the free-electron linewidth increases from 0.05cm (half-width at
half-height) at 2 K to about 4 cm at -150'K in both ZnSe and CdS. This broadening is not
due to a decrease in spin lifetime, but rather to a spin diffusion, as directly confirmed by the
angular dependence of the spin-flip linewidth. The linewidth is observed to vary as q, where

q is the momentum transfer in the light-scattering process. Bound-electron scattering ex-
hibi. ts a linewidth which is independent of scattering angle and nearly independent of tempera-
ture over the 2—150 K range. The spin-diffusion model is thus not applicable to bound-elec-
tron scattering. The double spin-flip process observed involves two interacting electrons
with an apparent attractive energy of 0.25+ 0.05 cm . Selection rules, relative cross sec-
tions, field dependence, and binding energy of the double spin-flip transition are discussed.
At sufficiently high input powers (~ 3 MW/cm2) the CdS single spin-flip scattering becomes
stimulated, resulting in a tunable, visible, spin-flip laser.

I. INTRODUCTION

In an earlier paper' we reported spin-flip scat-
tering from free conduction electrons in the wide-
gap semiconductors CdS and ZnSe. Reference 1
emphasized the determination of selection rules,
gyromagnetic ratios (g values), and absolute scat-
tering cross section and indicated the existence of
anomalous linewidths. In the present work we
have systematically studied the spin-flip line
shapes, the dependence of linewidth upon tempera-
ture, magnetic field, and scattering angle, and
change in selection rules as the sample tempera-
ture is reduced below the exciton binding energy.
We have examined scattering cross sections as
functions of several parameters (temperature,
field, laser power, laser frequency, donor con-
centration); and finally, we have studied a new

two-electron scattering process involving simul-
taneous spin-flip scattering of two electrons bound
to nearby donors. The latter process is highly
resonant, involves a total spin change of 48 =+2,
and exhibits a spin-spin interaction energy of
0. 03-0.04 meV (0.2-0. 3 cm ').

In Sec. II we present line-shape and linewidth
measurements as functions of temperature, field,
and scattering angle. In Sec. III we present tern-
perature and field dependences of cross sections
and briefly mention the observation of stimulated
spin-flip scattering in CdS. In Sec. IV the selec-
tion rules at different temperatures are discussed.
Section V is concerned with the double spin-flip
process, including its selection rules, resonant
cross sections, and dependence upon donor con-
centrations.

The basic theory of spin-flip scattering is at


