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The dispersion relations are obtained for electrostatic modes localized in the vicinity of the
edge of a dielectric wedge formed by the intersection of two semi-infinite planes making an
interior angle of 2o. The dielectric constant of the medium is assumed to be isotropic. The
resulting modes can be classified as even or odd under reflection in the plane bisecting the
wedge. Their frequencies are functions of one continuously varying quantum number. The
general results obtained are specialized to yield the dispersion relations for edge optical
modes and edge plasmons. Properties of dielectric edge modes are compared and contrasted
with corresponding properties of surface modes.

It is well known' that at the plane interface be-
tween a dielectric medium and the vacuum it is
possible for electromagnetic excitations to exist
which, while wavelike in directions parallel to the
interface, decay exponentially in amplitude with

increasing distance from the interface both into the
medium and into the vacuum. Such surface exci-
tations have recently been the objects of experi-
mental study.

In this paper we investigate a related problem,
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namely, electromagnetic excitations localized at
the edge of a dielectric wedge whose boundary is
formed by the intersection of two semi-infinite
planes making an interior angle of 2n. The modes
we study are wavelike in the direction parallel to
the edge of the wedge, and decay in amplitude with
increasing radial distance from the edge and with
increasing distance from the two dielectric-vacu-
um interfaces both into the medium and into the
vacuum. H/e work in the electrostatic limit in the
present paper, and obtain expressions for the elec-
trostatic potential describing these excitations as
well as their dispersion relations. The nature of
these edge excitations when the retardation of the
Coulomb interaction is taken into account will be
discussed in a subsequent paper.

In a recent paper the dispersion relation and
displacement field for vibrational modes localized
at the edge of a right-angle wedge of an elastic ma-
terial have been determined.

We consider a dielectric wedge filling the space
r& 0, 0& 8& 2n (o. & z), and —~& z & ~ (see Fig. 1),
and characterized by an isotropic dielectric con-
stant &(w). The complementary space, which we

will call the vacuum, is characterized by a dielec-
tric constant of unity. The magnetic permeability
is assumed to be unity everywhere.

In the electrostatic approximation we must solve
for the potential function p(r, 8, z) which satisfies
Laplace' s equation

V y=0.
Considerations of infinitesimal translational invari-
ance require that we choose for y an expression of
the form

y(r, 8, z) =f (~, 8) e'",
where f (r, 8) is a solution of the equation

integral rep res entation

K;,(z)= J e'"'""cosy' dx.
It is real for p, real and z real and positive, and is
an even function of p, . For fixed p, and large z it
has the asymptotic form

(6)

j./ 2

K (z)- —' e-'-""".
2",

The solution of Eq. (6) can be written

Q (8) =acoshp8+ bsinhp. 8 .
Because the system being studied has reflection
symmetry about the planes 8 = n and 9 = n+ p, we
can choose our solutions to be even or odd about
these planes. Thus we pick the coefficients a and
5 in Eq. (10) in such a way that Q (8) is given by

Q"'(8) = coshI (8 —o.), 0& g& 2a

= cosh'(8 —n —z), 2n & 8 & 2z

8 "&(8)= sinhp(8 —c.), 0& 8& 2n

= sinhp(8 —a —z), 2o. & 8 & 2z . (12)

Thus, finally, the electrostatic potential p(r, 8, z)
associated with the dielectric wedge is given by

y"'(r, 8, z) = AK„(qx) cosh'(8 —o.) e'",
0& 6)& 2n

= BK„(qr)cosh'(8- n —z) e'",
2c &8&2m (13)

q"'(r, 8, z) = C K, „(qr) sinhp. , (8 —n) e'",
0& 8& 2u

= DK, ,(qr) sinhp(8 —o. —z)e"',
2o. & 8 & 2p . (14)

8 1 8 1 8a+- —+—a z -q' f(&, 8)=o
8g x 8x x 88

We separate variables by setting

f (r, 8) = R(r) Q~ (8)

and obtain the pair of equations

(3)

(4)

The results given by Egs. (13) and (14) explain
the choice for the sign of the square of the separa-
tion constant made in writing Eqs. (5) and (6). Had

the opposite choice of sign been made, the radial
function R(r) would have been K, (qr), the ordinary

8=2a

d2
g 0=)U, OH (6) 9=0

8=2vr

where p. is the separation constant.
The solution of Eq. (5) which decreases with in-

creasing r is

R(r) = K„(qr),
where K,.„(z) is the modified Bessel function of the
second kind with pure imaginary order. It has the

8=a,+ sr

FIG. 1. A dielectric rvedge filling the space ~&0,
0 & 8 &20. and —~&z & ~ and characterized by an isotropic
dielectric constant c(~). The complementary space is
characterized by a dielectric constant of unity.
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modified Bessel function which decreases with in-
creasing argument. The angular function Q (8),
however, would be of the form acosp. 8+ hsing, 8, or
oscillatory. With the choice of the sign of p.

~ made
here, which leads to Eqs. (13) and (14), we obtain
solutions for the potential which, in addition to de-
creasing with increasing y, decrease exponentially
in the directions normal to the planes 8 = 0 and 8
= 2n, both into the dielectric wedge and into the
vacuum outside.

The coefficients A, 8, C, D, in Eqs. (13) and

(14) have to be determined from the boundary con-
ditions, to which we now turn.

The boundary conditions which must be satisfied
are the continuity of the tangential components of
the electric field (E„,E,) and the normal compo-
nent of the displacement (D,) across the planes 8= 0
and 8=2m. In fact, because of the way in which we

have chosen the angular functions 0 "' '(8), it is
necessary to satisfy the boundary conditions ex-
plicitly only at the plane 8 = 2n: Their satisfaction
at the plane 8 = 0 is then automatic.

The components of the electric field are given by

(15a)

tanhIl lT —n
(19)

(20)

(g +x 1/2

cur (even)+x (21)

for the even modes, and

x&, +S "'
&d = (dr (odd)

x&„+1
(22)

for the odd modes. To simplify these expressions
we have set

We apply the results represented by Eqs. (18)
and (19) to two cases of physical interest. The
first is a dielectric wedge constructed from a di-
atomic cubic ionic crystal or polar semiconductor,
whose dielectric constant is given by

2 2
ML —~

~((u)= ~ z z ~

In this expression &„ is the optical frequency di-
electric constant, and ~~ and w~ are the frequen-
cies of the longitudinal- and transverse-optical
vibration modes of infinite wavelength. When Eq.
(20) is substituted into Eqs. (18) and (19), and the
resulting equations are solved for ~, the results
are

1 9+E (r 8 z)=--—
~ 88 ' (15b) tanhp, (w —n)

tanh p. n
(23)

E,(r, 8, z)= -—,
8+ (15c)

coshp, Q

cosh'(v —o. )
(16a)

From these expressions it follows that the continu-
ity of E„and E, at the plane 8= 2n is ensured if the
potential rp(r, 8, z) is continuous across this plane.
This condition requires that

and &0 is the static dielectric constant, which enters
the theory through the Lyddane-Sachs-Teller rela-
tion, e„~~= eo &~. The dispersion curves for edge
optical modes given by Eqs. (21)-(23) are plotted
for wedges of GaP defined by n = v/8, v/4, and

3m/8 in Fig. 2.
The second case we consider is that of a wedge

of an n-type semiconductor, whose dielectric con-
stant is given by

6(co) = z (1 —(dp~/(d ), (24)
sinh p, n

sinh p(m —n)
(16b) where ~ is the plasma frequency of the free car-

riers in the semiconductor, and is defined by
For the even modes the continuity of D~ across

the plane 8 = 2z yields the condition that

sinh p. o.

sinh p. (w —n)

for the odd modes we obtain the condition

(17a)

( )
cosh/ Q

cosh'(n —n)
(17b)

Combining Eqs. (16a) and (17a) we obtain the dis-
persion relation for the even modes

( ~ 1/2
even

I, &„+x

for the even modes, and

(26)

(o,
' = 4 one'/m* ~„.

In Eq. (25) n is the density of free carriers and m~

is the effective mass of each. In this case e„plays
the role of the background dielectric constant of the
semiconductor. When Eq. (24) is substituted into
Eqs. (18) and (19), the solutions can be written as

g(~) = — (even) .
tanh p. (v —n)

tanhjtL e (18) (0 (odd)
I, e„x+1 (27)

The dispersion relation for the odd modes, which
follows from combining Eqs. (16b) and (17b) is

for the odd modes. The frequencies of edge plas-
mons given by Eqs. (26) and (27) are plotted for
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400-

we consider the system depicted in Fig. 4. A di-
electric medium characterized by a dielectric con-
stant. e(&d) occupies the half-space y &0. The half-
space y & 0 is the vacuum. We seek the potential
function p(x, y, s) in the form

y(x, y, s)-f (x, y) e'",
so that the function f (x, y) satisfies the equation

(28)

390- /

Q =7T/2

Q = 311/8

Q "- 7T/4
We separate variables by putting

f (x, y ) = 1'(X) F (y),

and obtain the pair of equations

d'
22X= —VX,

dx

(28)

(30)

(31)

d'
2 2, 1'=(q'+ v')1',

dg
(32)

380

FIG. 2. Dispersion curves for edge optical modes of
GaP plotted for different values of n (2e is the wedge
angle). The odd modes lie above the dispersion curve
for e =~/2 and the even modes below. The following data
were used for GaP: ~z =367.3 cm; (dz =403.0 cm
e„=9.091; and go=10.944.

where v is the separation constant. The choice of

sign for va on the right-hand sides of Eqs. (31) and

(32) is dictated both by the invariance of the sys-
tem against infinitesimal displacements in the x
direction, and by our requirement that the poten-

I.OO-

wedges of n-type InSb defined by c& = w/8, x/4, and

3m/8 in Fig. 3.
From the results presented in Figs. 2 and 3 we

see that in general the frequencies of the even
modes are lower than the frequencies of the odd

modes for all values of &t&
& 0, provided that o. & w/2.

For angles n& v/2, the reverse is true. From
Eqs. (18) and (19) we see that the even modes for
a wedge angle o & v/2 have the same dispersion re-
lation as do the odd modes for a wedge angle of

p —n, while the odd modes for a wedge angle n
& v/2 have the same dispersion relation as the even

modes for a wedge angle of m —e.
For the special value of n = v/2 the dispersion

relations for the even and odd modes coincide, and

are independent of p. . Since this special value of
a corresponds to the case that the wedge opens up
to fill the upper half space z& 0, 0 & 8 & m,

—&g & ~, with a plane dielectric-vacuum inter-
face it is interesting to compare and contrast the

preceding results with the corresponding results
for surface modes on a dielectric medium filling
a half-space. Although the results in this case are
well known, ' we rederive them here in a way de-
signed to facilitate this comparison. Accordingly,

0.90-
Q = VF/2

Q = 37T/8

a = Vr/4

Q = 77/8

0.80-

FIG. 3. Dispersion curves for edge plasmons in ~-
type InSb plotted for different values of the wedge angle

2n. The odd modes lie above the dispersion curve for
o =~/2 and the even modes below. The experimental re-
sult for q„was taken to be q =15.68.
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X

FIG. 4. A dielectric medium filling the half-space
y &0 and characterized by an isotropic dielectric constant
e. (). The complementary half-space is characterized by
a dielectric constant of unity.

X(x) = acosv x+ b sinv x,
while the solution of Eq. (32) with the required
property is

(33)

2,„2 1/2I (y) —e (a+& ) y&Q

tial decreases to zero with increasing distance
from the surface into the medium and into the vac-
uum.

The solution of Eq. (Sl) can be written in the
form

quantum number q, while the dispersion relation
(36) for surface modes is independent of both con-
tinuously varying quantum numbers v and q. In the
limit as g- ~, however, we see from Eqs. (18)
and (19) that the dispersion relations for the even
and odd edge modes both approach the dispersion
relation (36) for surface modes. The frequencies
given by combining Eqs. (36) with Eqs. (20) and (24)
are plotted as dashed lines in Figs. 2 and 3, re-
spectively. It should also be noted that the dis-
persion relation for surface modes, Eq. (36), is
just that for the even and odd edge modes, Eqs.
(18) and (19), for all values of V. in the special
case o. = v/2, when the wedge fills the upper half
space.

Just as the dispersion relation for dielectric sur-
face excitations becomes a function of q when re-
tardation is taken into account, we expect that the
dispersion relation for edge modes will become a
function of both p, and qin the same limit.

An interesting limiting case of Eqs. (13), (14),
and (16) is that for n= n/2. In this case the di-
electric wedge fills the upper half space z&0,
0 & g & p, —~ & z & ~, which is the situation assumed
in our discussion of surface waves. The potential
functions y'"(r, g, g) and y"'(r, 8, g) in this case
take the forms

( 2~p2)1/2y=e y&Q . (34) y"'(r, 8, e) =AK;, (qr) cosh'(8 —m/2) e"*, 0& 8& p

%ith no loss of generality we can divide our solu-
tions into those which a,re even under reflection
in the yz plane and those that are odd. Conse-
quently, we obtain for y(x, y, z) the results

2 „2 1/2iy'" (x, y, e) =Acosvxe " '" ' " e'", (35a)

q'"(x, y, z)=Bsinvxe " '" ' '" e'" .+2+&2 1/2 [ (35b)

By writing the potential in a form which is continu-
ous across the plane y= 0 we have assured the con-
tinuity of the tangential components of f(E„,E,)
across this plane. The continuity of the normal
component of D across the plane y =0 yields the
same dispersion relation,

e(~) = —1,
for both the even and the odd modes.

From the preceding analysis we see that for both
edge modes and surface modes the separation con-
stant (v, for edge modes, v for surface modes)
plays the role of one of the two continuously vary-
ing quantum numbers (the second being q) charac-
terizing the potential and hence the electrostatic
fields of the modes. However, the edge modes
differ from the surface modes in that their dis-
persion relations are functions of the continuously
varying quantum number which is the separation
constant p. , although they are independent of the

=AK, „(qr) cosh', (8 —Sg/2) e'", p& g & 2~
(SVa)

y "'(r, 8, z) = C K«(qr) sinhV. (8 —x/2) e'", 0 & 8 & v

= CK, „(qr) sinhV, (8 —Sn/2) e"', w& g& 2g .
(37b)

Because the physical configurations are the same,
and because the frequencies of the two kinds of
modes are the same, the question arises as to
whether it is possible to superpose the wavelike
surface modes given by Eq. (35), which decay only
in the directions normal to the dielectric-vacuum
interface, in such a way as to obtain the edge
modes described by Eq. (37), which decay not only
with increasing y but also with increasing 8 as one

goes away from the interface. In other words, is
it possible to find functions g „(v) and h„(v), inde-
pendent of x and y, such that, for example, the
relations

f g, (v) cosvxe " '" ' 'dv=K„(qr) cosh'(g —~/2)

(38a.)
and

h, v sinvxe " '" ' 'dv=K&~ qr sinhp, 9 —p 2

(36b)
are satisfied for —~ & x & ~, y & 0 and & & o, ««7t'
The answer is yes, and requires for its demon-
stration the following two integrals:
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'((qe ~ xe)"e+n)'"
a 2 Sya

0

=ti;„[ e(x' +X')'~'] nneh n)»~ -inn ' —), (3ee)

1 Q+v —v
dv . p2i(q'+ v')" '

q

(q +v ) ~ yv')»' 2,„21/a
sinvxe " '" '

=X,„[e(x' y')n')einnn(ten'~ ——
x 2

(391)

where the branch cut for the arctangent is along-
the negative real axis (@&0, y=0). Comparing
Eqs. (38) and (39) we see that the functions g, (v)
and h„(v) are given by

(q'+ v')"'+ vg, (v) =, , „„,cos ~)(»ln
(q +V)

(40a)

—l . (q+v) +v
h, (v)=, 2 ~,»(. sin V ln

(q +v)
(40b)

Analogous results can be obtained relating the po-
tentials (35) and (3V) for y & 0 or»[& 8 & 2»[, i. e., in
the vacuum.

Thus, we have demonstrated the existence of di-
electric edge modes in the electrostatic approxi-
mation, have obtained the potential function from
which their electric fields are derived, have ob-
tained their dispersion relations, have solved them
in two particular cases, and have shown them to
be a linear superposition of dielectric surface
modes of the same frequency in the special case
that the dielectric wedge fills the upper half space,
the only case in which such a superposition can be
xIlade.
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