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The frequency- and wave-vector-dependent dielectric function for Ge, GaAs, and ZnSe is
calcu1ated from the electronic band structures obtained by the empirical-pseudopotential meth-
od. The results show the effect of increasing ionicity on the dielectric function. The results
also yield the plasmon dispersion relation (){q) for the three semiconductors. The frequency-
and wave-vector-dependent Penn dielectric function is calculated and compared with the re-
sults for Ge.

I. INTRODUCTION

We have calculated the frequency- and wave-
vector-dependent dielectric function e(q, ru) in the
[100]direction for Ge, GaAs, and ZnSe. This di-
electric function describes the screening of a lon-
gitudinal field which varies in both space and time.
This is the first calculation of c(q, &u) for these
materials using realistic energy bands and wave
functions. These three crystals were chosen to ob-
serve the changes in e(q, &u) as one moves through
a series from a completely covalent compound (Ge)
to compounds with decreasing covalency (GaAs and
ZnSe).

The present calculations of e(q, ~) are similar
to that done by Walter and Cohen for Si. The real
part of the dielectric function, ~, (q, ~), is calcu-
ated directly, and the imaginary part, ea(q, (ii), is

calculated using the Kramers-Kronig transforma-

tion. The details and results of the calculation
are given in Sec. II. In Sec. III the results for Ge
are compared with a calculation of e, (q, &) using
the Penn model.

II. CALCULATIONS AND RESULTS

((i( ~ p (ao e(~ -)E ((if ~ 0 s&tj-
7

(2. 1)

Using the result for && obtained by Ehrenreich and

Cohen, we obtain

47t'e
e, (q, &u) = 1+, 2
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First we calculate the longitudinal-wave-vector-
and frequency-dependent dielectric function c(q, ~)
which describes the crystal response to an electric
field parallel to q and varying sinusoidally in time:
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+ [E,( R) —E„(k+q ) + h&a ]
' }. (2. 2)

The matrix element is the inner product between
the periodic parts of the Bloch functions, k is
summed over the first Brillouin zone, v labels the
valence bands, and c labels the conduction bands.
For computational purposes Eq. (2. 2) is rewritten as
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+ [E,(E) —E„(k+q)+h&u j '}, (2. 2)

where the summation is over a grid of 3360 points
in the Brillouin zone. (M) is the volume of a
cube associated with each point, with suitable
truncations at the zone boundaries. The coordi-
nates of the calculated points are given by, '6 (2s+ 1,
2m+ 1, 2m+1) in units of 2z/a, where s, m, and n
are integers. The indices v and c span the top
four valence bands and the bottom 11 conduction
bands. The wave functions and energies are ob-
tained by the empirical-pseudopotential. method, '
using the pseudopotential form factors of Cohen
and Bergstresser. Spin-orbit interactions were
not included in this calculation.

The dielectric function cannot be calculated for
an arbitrary q because of computer time limita-
tions. Crystal symmetry can be exploited to re-
duce considerably the time if q is restricted to
the [100]direction. In addition, iqi must be re-
stricted to the values —,'n, in units of 2m/a, where
n is an integer, so that k+ q also lies on the grid
of calculated points.

The term [E,(k) E„(k+q) -—he] in Eq. (2. 3)
can have singularities at some points in the Bril-
louin zone. If the cube of volume (&k) contains
such points, then the energy values at the cube
center cannot accurately represent (E,—E„-K~)
over the entire cube. For such cases, the large
cube is divided into 216 equal subcubes, and the
energies E, and E„are calculated for each sub-
cube by interpolation.
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FIG. 2. ~~{q,&) for GaAs.

After calculating e, (q, ~), we calculate the imag-
inary part s~(q, v) by a Kramers-Kronig transform
of e, (q, e). Figures 1-6 display three-dimension-
al perspective plots of g, (q, ~) and e2(q, ~) for the
three semiconductors. Each curve represents
&, or &~ as a function of ~ for fixed q. The q val-
ues are q = —,', —,', —'„and 1 in units of 2m/a in the

[100]direction. The dielectric functions were
also calculated for q= —,', —,', 1—,', 1—,', and 2, but

those results are not plotted.
By considering the points (q, ~d ) for which the

calculated &, =0, and by fitting a curve through
these points, we obtain for each material two

curves in the (q, ~) plane along which e, (q, ~) = 0,
which we denote by &u, (q) and ~, (q). The results
are plotted in Fig. '7. From Eq. (2. 1) we see
that, if s(q, ~) =0, then a nonzero electric field
can exist in the material even if no field is applied
externally; i. e. , a plasmon can be present. For
the three materials considered here, the lower
zero ~, (q) does not represent a physically observ-
able plasmon mode, because (as can be seen in

Figs. 1-6) both e, and ea are always near their
largest values when near w, (q); i. e. , +,(q) re-
sembles a damped pole in g, .

As we move through the series from completely
covalent Ge through somewhat ionic GaAs to the

higher ionicity compound ZnSe, we observe three
important qualitative features of g, : (a) The high-

er zeros of g„representing the plasmon mode
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FIG. 4. &2(q, cu) for Ge.
FIG. 6. ~2{q, ) fo»nSe.

v, (q), change very little; (b) the lower zeros of
s„e,( q), increase substantially; and (c) the ar

=0 values and the peak values of g, decrease sub-
stan xa y.t' ll . The reasons for these effects may be
understood by examining Eq. (2. 2).

Because Ge, GaAs, and ZnSe all have almost
exa,ctly the same lattice constant and are composed
of elements all from the same row of the Periodic
Table, they all have almost exactly the same sym-
metric pseudopotential. The principal change in
moving through the series is that an antisymmetric
psuedopotential is introduced and becomes larger.
For a given (k, c, v) the energy difference E,(k)
—E„(k+q ) tends to become larger. Assuming tha
changes in the matrix elements in Eq. (2. 2) are
not xmpor an,t ' ortant we may conclude the following.

band pairs (c,v) for which the matrix elements
are not small. Then

(E —E —h(o) '+ (E —E + h(u) '- 2(E, E„)/(br')'—,C V

and we expect s,(q, &u) at high frequencies to be
only weakly dependent on the energy differences
E,—E„The true p. lasmon mode ~, (q) should
therefore be little affected by the antisymmetric
pseudopotential and in fact is not far from the free-
electron value (e.g. , 15.6 eV for Ge).

(ii) For small frequencies, h&u &E, „-ora-. rall
(k c e) as ko increases, (E, E„-h~) ' at—firstkq cq vi~ as

increases rapx y sodl o that all terms in the sum over
k c v) increases rapidly. e, q, ~ reaco reaches a peak

and begins decreasing when S~ Passes thethe smallest
of the energy differences E,—E„,—E so that some of
the terms (E —E —hv) ' suddenly become large
and negative. g, q, ~(q ~) passes through zero when

negative that they balance the positive terms in the
sum over, c, v .~k, ) This occurs when Iv becomes
roughly equal to an "average energy gap" between
the top va ence an1 e and the bottom conduction bands.
This value is probably connected with the Phillips
average gap. When the antisymmetric pseudopo-
tential is zn ro uce'

1
' t duced and the energy differences

E,—E„become larger, the frequency @co at which
the negative terms (E,—E„—h~) balance the pos-
itive terms zn e su
come larger. The lower zero v, (q) should there-
fore incr ea,se.

(iii) At zero frequency, Eq. (2. 2) becomes

e, ( q, (u = 0) = 1+, Z
l (k, c

l
(K+ q, v)
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FIG. 5. ~&(q, ) for GaAs.
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FIG. 7. Zeros of &~(q, ) for Ge, GaA,GaAs and ZnSe.
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FIG. 8. &&(q, (d) for the Penn model.

x[E,(k) —E„(kpq)] '.
Since the antisymm etric ps eudopotential caus es the
energy differences E,—E„ to increase, all terms
in the sum decrease. The static and low-frequency
values of && should therefore decrease.

III. PENN MODEL

We have calculated the Penn-model dielectric
function for comparison with our Ge results. This
model makes the following assumptions: (1) There
is no Brillouin zone; (2) the energy E(k) is spher-
ically symmetric, with a step discontinuity of mag-
nitude E, at the Fermi surface; and (3) the eigen-
function of wave vector k is a superposition of just
two plane waves, of wave vectors R and k —2kFk.
Using these assumptions, one can set up and solve
a simple 2&& 2 secular equation and obtain analytic
expressions for E(k) and for the eigenfunctions. These
expressions are given by Penn. ' The dielectric
function of this electron gas can then be calculated
as a sum similar to (2. 2).

In previous zero-frequency calculations, ' to
avoid the use of computing machines, Penn's ex-
pressions for E(k ) and for the matrix elements in
(2. 2) were replaced with simplified expressions.
In particular, E(k ) was assumed to be parabolic
(i. e. , free-electron-like) everywhere except in a

region near the Fermi surface; there, E(k) is
assumed equal to E~a-,'E~ (+ for k&k~, —for k &k~),
so that the "bands" are perfectly flat in a region
near the Fermi surface, with an energy gap E~.

One can easily show that this "flat-band" sim-
plification will cause e, (q, ~) to exhibit a first-or-
der pole exactly at I~ =E, for all q&2k~. Because
the lower zero of the Ge s, (q, &u) increases signi-
ficantly with q (Fig. I), we expect that the Penn
model with the flat-band simplification cannot close-
ly approximate the calculated q, (q, &u) for Ge.

Accordingly, we have numerically computed the
Penn dielectric function using the exact E(k ) and
eigenfunctions proposed by Penn. We chose E~
= 4. 3 eV, the principal optical gap of Ge, and k~
so that the associated electron concentration is
equal to the Ge valence-electron concentration.
The results are plotted in Figs. 8 and 9.

The Penn model s, (q, cu = 0) agrees fairly well
with the result of Walter and Cohene (identical to
our result) for Ge. The numbers are given in
Table I. However, for intermediate and high fre-
quencies the agreement is poor. The Penn-model
polarizability at higher frequencies is considerably
larger than the calculated Ge polarizability based
on the Ge E(k). As a result, the upper zeros of
s, (q, e) occur at appreciably higher frequencies
than in the Ge case.

This low- frequency agreement and high-frequency
disagreement may be understood as follows: The
dielectric function for zero frequency is of the form

Jl

30—
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M
&,(q, (u = 0) = I+~+

whereas for high frequencies

320—
(o

10—

/
|/

0 4
/

8 12 16 20 24
%u (eV)

FIG. 9. ~2(q, fd) for the Penn model.
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So, for low frequencies the polarizability involves
the ratios of matrix elements and energy differ-
ences, whereas for high frequencies it involves the
products of matrix elements and energy differences.
We suggest that both the energy differences Eg,",

—Eg and the valence-conduction coupling matrix ele-
ments M2 tend to be larger for the Penn model than
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for true Ge. If so, then the high-frequency Penn-
model polarizability, involving the products
~ (Ek,;—Ek ), should be considerably larger than
the values for Ge, whereas the low-frequency polar-
izability, involving the ratios M /(Ep;, —Er), may

not be substantially different from the Ge case.
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The first observation of surface-phonon-surface-plasmon coupling in small particles is re-
ported. Thin layers of semiconducting CdO microcrystals with various free-carrier concen-
trations were used as samples. The coupling manifests itself in the infrared-absorption spec-
tra through two absorption maxima corresponding to two resonances of the coupled two-oscil-
lator system and through a pronounced absorption minimum near the transverse-optical-pho-
non frequency»2. The experimental results are discussed on the basis of a theoretical
approach recently developed by Genzel and Martin. Structure in the absorption spectra near
the longitudinal-optical-phonon frequency &gJ is attributed to the strong polar-optical scattering
of free carriers in CdO.

I. INTRODUCTION

The phenomenon of surface-plasmon- surfaee-
phonon coupling has met considerable theoretical
interest. According to the mathematical accessi-
bility, the problem has been studied for two situa-
tions: First, the case of infinitely extended sur-
faces bounding a half-space of a polar dielectric
and second, the case of small crystalline particles
of certain shapes. ' Both cases are amenable to
experimental investigations. Plasmons and pho-
nons at extended surfaces can be studied by the
prism-coupling method proposed by Otto and used
already by Marschall et al. 7 in studying the dis-
persion of surface plasmons as well as by Marschall
and Fischer and also by Bryksin et al. in investi-
gating surf ace phonons. Using the prism-coupling
technique, Reshina et al. have observed very re-
cently coupled surface -phonon- surface-plasmon
modes at extended surfaces ot' n-type Insb. Surface
phonons in small ionic crystals have been studied

extensively in the last years by infrared-absorp-
tion measurements. ~ Also, surface plasmons
in small metallic particles have been detected by
optical methods. ~ ' The present paper deals with
the first investigation of a coupled system of surface
phonons and surface plasmons in microcrystals of an
ionic semiconductor by means of infrared absorption.

For an understanding of the experimental results,
Sec. II gives a concise account of the theoretical
approach of Genzel and Martin. 5 Section III is de-
voted to a description of the experimental proce-
dure. In Sec. IV, the experimental infrared-absorp-
tion curves are discussed on the basis of the theory.

II. THEORETICAL SURVEY

Genzel and Martin ' have developed a continuum
model appropriate for describing the dielectric
properties of spheres with sizes very much smaller
than the wavelength of the electromagnetic radia-
tion. They consider a medium composed of sepa-
rated particles with bulk dielectric function e(&)'


