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Using a method previously introduced to treat s states, we analyze the 2p-excited states
of direct excitons in semiconductors. The splitting of the four 2f levels, due to the degen-
eracy of the valence bands, are given by simple analytical expressions. The symmetry of
these levels are discussed for the zinc-blende, diamond, and NaCl structures. Results are
given for all semiconductors for which the valence-band parameters are known. Since the
actual experimental situation is poor, suggestions are made as to which substances should
be investigated in order to appreciate these splittings.

I. INTRODUCTION

Very recently, two-photon spectroscopy has
gained increasing importance as a powerful method
of studying electronic properties of solids. '~ Two-
quantum absorption is a nonlinear optical phenom-
enon in which two quanta are simultaneously ab-
sorbed in an electronic or excitonic transition.
Since the selection rules for two-photon transitions'4
are very different from those appropriate to one-
photon transition, the two methods are comple-
mentary. Moreover, since more state symme-
tries are observable in two-quantum absorption,
one expects that more information concerning
energy levels in solids can be obtained from two-
quantum absorption than from single-quantum ab-
sorption. For excitons, the different selection
rules involved in the two-quantum experiments '

allow the observation of P states forbidden in the
one-photon case. It is therefore evident that an
accurate knowledge of these states is necessary
to correctly interpret the results of the experimen-
tal analysis. Because of the anisotropy and the
degeneracy of the valence bands in all cubic semi-
conductors one cannot apply the simple hydrogenic
model for the determination of these states; fur-
ther, such degeneracy produces a splitting of the
P states' which is clearly neglected if one uses the
simple model.

In a previous set of papers, we have set forth
a method which solves the exciton problem in the
case of degenerate bands, and we have applied it
to treat the exciton ground state and the excited

s-like states. In this paper we extend the method
to treat the P-like excited states. We obtain very
simple analytical expressions for the splitting of
the various 2P states. Section II is a short analysis
of the symmetry of the various states. In Sec. III
we review briefly the general formulation of the
problem and the method of solution, and in Sec. IV
we apply the method to treat the 2P states. In
Sec. V we discuss and summarize the results of
the present investigation.

II. GROUP-THEORETICAL ANALYSIS

We now briefly describe the symmetry' of the
P states in the diamond, zinc-blende, and ÃaCI
structures. The exciton wave function can be writ-
ten"

where &f&, and QI,
" are the Bloch functions for the

electron and the hole, respectively, y is the enve-
lope function which describes the relative electron-
hole motion, andi runs over the degenerate valence-
band states. The symmetry of the exciton wave
function is determined by the direct product of the
irreducible representations for the envelope, hole,
and electron wave functions.

For diamond crystals, the point group is.O„.
The symmetry of the degenerate valence band at
k= 0 is I'8 and the conduction-band minimum is
I'2, (I'6 double-group notation). For the P states,
in which we are interested, the envelope function
has I'» symmetry and therefore we have
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I 8 8 r» r6 ——E$0+ E2 0+ E3 0+ E4

where

E, = r, + r„
(twofold degenerate without electron spin),

E,= r, + r»

(fourfold degenerate without electron spin),
(3c)

E,= r„+r„+ I;,
(fourfold degenerate without electron spin) .

(3d )

For the zinc- blende case, the point group is I'„, the
symmetry of the degenerate valence- band maximum
is I'8, and the conduction- band minimum is r&

(I'8 double group). The exciton P-like level sym-
metries are exactly the same as in the diamond
case.

For the Na Cl structure, the point group is 0, the
symmetry of the degenerate valence -band maxi-
mum is I, and the conduction valence -band mini-
mum is I'& (I 8 double group). One therefore gets

r,-e r» e r,' = E, o E, 0 E30+

where

E, = r, + r»,

(4)

(twofold degenerate without electron spin),
(5a)

E,= r, + r„.
(twofold degenerate without electron spin),

(5b)

E,= r„+ r», + r„,
(fourfold degenerate without eleciron spin),

(5c)
E,= r„+ r», + r„,

(twofold degenerate without electron spin),
(3b)

E = rga+ r»+ F5

III. FORMULATION OF THE PROBLEM

Crystals with d iamo nd and zinc -blend e structure
have very similar band structure s. Mo st of them,
and these are the ones for which the present inves-
tigation applies, have a direct gap at k = 0, where
the conduction band has a nonde generate minimum
and the valence band has a threefold degenerate
maximum, neglecting the spin. The inclusion of
spin and spin-orbit interaction alters the bands by
splitting the sixfold degenerate valence- band states
into an upper fourfold (J= 2) and a lower twofold
(8= 2) state represented by the spin-orbit splitting

Since the spin-orbit splitting ~ is almost al-
ways large, compared with the exc iton bind ing en-
ergy, '2 its contribution to the main (upper fourfold
band) excitons is very small, as seen in our pre-
vious work. Therefore, in order to simplify the
analysis, we will neglect such terms The exciton
Hamiltonian, in the relative electron- hole system,
is therefore (neglecting the electron spin)

p2 ea
H,„(p) = — ——I —H„(P),2' ~

(8)

P+ Q L

L P —Q 0

where p is the relative electron-hole momentum,
rn,* is the electron effective mass, & is the static
dielectric constant, r is the electron- hole distance,
I is the 4 & 4 unit matrix, and H „ is the well-known
4 && 4 matrix' which describes the hole kinetic en-
ergy near k = 0.

Equation (6) differs for the diamond and zinc-
blende structure because of linear terms in p which
appear in H, in the latter case. ' We have pre-
viously seen that such terms are negligible and
therefore we will neglect them in our present
treatment.

Equation (6) can be written explicitly as follows':

(fourfold degenerate without electron spin) .
(5d )

H, „(p)=
0 P —Q —L

0 M —Lt P+Q
Not all the above leve ls are observable in gen-

eral in a tw o-q uantum absorption experiment,
since they obey selection rules . A single photon
represents, in the long-wavelength limit, a per-
turbation of symmetry I'» and therefore only ex-
citons of r» symmetry are observed in one -photon
experiments. In two -photon absorption the pe rtu r-
bation can have many complications which depend
on the polarization. of the two quanta. For example,
in the NaCl structure r». exciton states are ob-
served only when the two quanta are not polarized
parallel to each other. We will not d iscuss the
selection rules here because it would be q uite
lengthy, but we refer to the excellent works of
Inoue and Toyozawa and Bade r and Gold .

where

p2
P =

2p, p

2

(s - like), (8a)

=
p' p' - 2P'

2p

(j „—ip, )p,
2 p'2

(d-like),

(d -like),

(8b)

(8c)

2 2

M = &3 " —i " ' (d-like),
2p& 2

(81)

where the masses L"p, p, and p.2 are simply re-
lated to the Luttinger" parameters y&, ya, and

y3 and to the Dre sselhaus -Kip- Kittel' paramete r s
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A, J3, and C by the simple relationships

1 1 y~ 1 2-- —~A,
pp mq p mq

1 y2 1
= —~B

mp

(9a)

(9b)

2~3 Y3 (g2 3g 2)l /2

mp P (9c)

mp being the free-electron mass.
In accord with the fact that the operators (8a)-

(8d) have different symmetry properties, we write
Eq. (V) as

1 1
Q= —~ —To, (15a)

the first nonvanishing contribution; in this case
the first order. Here, as in the case of s states,
since one has four series of P states with the same
energy, we use degenerate first-order perturbation
theory. The resulting secular determinant is
diagonal, however, and nondegenerate perturbation
theory can be used. The analysis becomes more
elegant if the perturbation Hamiltonian H„ is ex-
pressed in terms of irreducible tensor operators. '

Using the standard definitions" we get

H,„=H~+ H~, (10) 2L= — - Ti,6p. &

where H, and H„are 4&&4 matrices which contain
only s- and d-like operators, respectively, i. e. , 2

p 0 0 0

0 P 0 0

0 0 P 0

0 0 0 P

(1la)
and therefore

i 2L = — —
Tg6p. &

1 1 1
2 3 p& 12 (15c)

Q L M 0

L —Q 0 M

M 0 —Q

0 M —L Q

(11b)

Exact solutions of the unperturbed Hamiltonian
H, are easily found because the operator P repre-
sents the Hamiltonian of a hydrogen atom with re-
duced mass p, p and the dielectric constant &. The
eigenfunctions are

(12)

where in, l, m) is the usual hydrogen-atom wave
function'~ and li& is a four-component spinor as
defined in Ref. 8. The corresponding eigenvalues
are

E„,, = I/n, f = 1, 2, 3, 4

where we have used effective units; i. e. , for the
energies

Rp = p, pe /2A e

and for the length

~o= e& /i&pe .2

(13)

(14)

We now consider H„as a perturbation. Consistent
with our previous work' we will consider only

In accord with our previous work we treat H,
as the unperturbed Hamiltonian and consider H„as
a perturbation.

IV. CALCULATION FOR THE Zp STATES

2 3 py 12/2

1 1
p, , — T, , 1e

where T,' is the q component of the irreducible
tensor T' of rankjt formedfrom the symmetricre-
ducible second-rank tensor with vanishing trace

T] =3P P) —5; p
2 (18)

Since, for simplicity, we work in effective units
(i. e. , E»= 4), we rewrite Eqs. (15a)-(15e) as

(1Va)

L=-Z P, p pT
3 p,

(1Vb)

and similarly for L and M . In order to deter-
mine the perturbation corrections to the unper-
turbed 2P level, we must diagonalize the determinant

&+s IHa
I
+o) &+s I+a I+-&&

&I'o IHa l&i) &&o IHs l&o& & o Iffy I& i&

&P i IHu l&s& &&-s IHu l&p& &I'-s IHu II'-x&

(18)
where IP )= I2, l, m) using the notation (12). All
the matrix elements involved in Eq. (18) are of the



CALCULATIONS OF 2P-EXCITON STATES IN SEMICONDUCTORS. . .

type

&LM IT', ILM) . (19)

Such matrix elements are easily evaluated using
the signer-Eckart theorem":

where

a-f - bf +~f10 ~f4

b—'f4 —2af, = Xfv

df4 +af1o = V1o

«M'l7'. ILM)=(-I)'" ~ ~ (LIIT'IIL) . 1 Po0=
10 pg

(25a)

2 d 2
&& ff„(1) „,+ — —, ff„(r)r'A .

0

(21)
In our case, I.=1 and therefore

(LII T'IIL) = —3/2v 5 . (22)

In order to diagonalize the matrix (18) we have
to solve the system of equations

(23)

(20)

By doing this, we have separated the matrix ele-
ment [Eq. (19)] into two parts: one part ( II II )
which is independent of M, ~', and q is called the
reduced matrix element of the tensor T2 and
which therefore has to be evaluated only once;
another part, the 3-j symbol which depends on I,
&', and q in a very simple known way.

The reduced matrix element ( II II ) is easily
evaluated:

[L(2L+ 1) (2L+ 2) ]
/2

(LII IIL) =
[(2L —1) (2L+ 3)]'"

i &0
10' 2 P, 2

0 1 Wo (25c)

(25d)

By solving Eq. (26) we get

Po)(
20 II, Pz P2

( 1'
2 1/2

3I( P,,
&l 4l( P,, )I

~2 E jt'2) E»)

(28a)

(2sb)
2 ( 2p 1/2

64l' "'
40 P2 &»/

(28c)
By solving E11. (2V) we have

It is easy to see that (24a) and (24b) have the same
eigenvalues given by

&'-2a}'-(a'+ Ibl'+c'»+a(2a'- Ibl'+2c ) =0,
(26)

and that (24c) and (24d) also give the same solu-
tions given by

&'+2a~'-("+ lbl'+d') ~-a(2"- lbl'+2a ) =0 ~

(2V)

f12 f12
4 +v 3 I, Xo=X2, Xo=X2.

1 ( po po&
20 I, P& P2)

af1 + Cf11 = Xf1

+2afs +bf11 = Xf,

cf1 + b*fo +af11 = A f11

(24a)

af, +bf,

t

b*f, + 2a fo

Cf2

+cf2 =ufo

= Xfo

-f12 = ~f12

(24b}

a f2 + afo = Xfo

The above 12&&12 system factorizes into four 3& 3
subsystems. After straightforward calculations
one gets

(2sd)
In conclusion we therefore have the following solu-
tion:

E", =- —
I

4 ~o +%3 ~o (tw«old), (29a)
P2

E2 = —
I 4 o —v 3 o (twofold), (29b)

20 k P.g P.2

2 ( )2- .1/2 .

40 . 12 u»
(fourfold}, (29c)

E" 3 0 3 ~ 64 . 0

(fourfold) . (29d)

—2a fo —bfo —Xf

, dfo —b~fo —afo = Xfg

(24c) It is useful to express the above results in terms
of the same parameters, p. and 5, used in describ-
ing the acceptor impurity problem. ' By doing so,
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moreover, we can determine very easily the sym-
metry of the above states. Since

&o 4 Po
5 p, g 5 p, y

Wo &o1

2vs ps pg

we can rewrite expressions (29a)-(29d) as

(twofold),

(soa}

(sob)

(31a)

Es =-o'o(( + ~o'6) (twofold), (3lb)

E~o = 4'o [S'IL+
—',~5+-,' (625p, + 720p5 —6005 )'~s]

(fourfold}, . (Slc)

E', = —,', [SiL+ —", 5 ——,
' (625''+ V20iL& —6005'}'~']

(fourfold) . (3ld)

As 5- 0, i.e. , neglecting the cubic term in the ex-
citon Hamiltonian, ' we get

and therefore we see that

«1 P1/2 p

«3 - 3/2 ~

d«3+« - P5/2 ~

(ssa)

(ssb)

(33c)

using the notation of Ref. 19.
Therefore, the symmetries of the four 2p states

(29a}-(29d) are, say, for the diamond structure
(including the electron spin),

«1 I1+I25 u

«a- I'3+ I'~5 ~

«,-r„+r„+r„,
« I' +I'g +I"

(S4a)

(s4b)

(34c)

(s4d)

E; = Ro (g+E;), i = 1, 2, 3, 4 (s5)

and similarly for the zinc-blende and NaC1 struc-
tures. In conclusion, the energy expression for the
four 2P states is given by

« =E"
2 4 (32) where E", are given by expressions (29a}-(29d).

TABLE I. Results for Ge and III-V compounds. All the quantities are defined in the text. The energy unit is meV.

AlSb

GaAs

InP

InAs

InSb

Ge

9 9

15.2"

11.S"

16.8"

411

&o

o. o1ob
o. 010

0 075b
0. 081

O. 048b

0. 048
o. 045~

O. O35b

O. 032
0. 031

0. 053
0. 052

O. O1Sb

0. 017
o. ole'

0. 012
o. 010
o. 010m

o. o26'
0. 025

0. 022b

0. 039

O. O93b

0. 236

O. 159'
O. 215'
0. 226~

O. 1S4'
0. 280
O. 237'

o. 189'
O. 276"

O. 24O"

0. 259
0. 288'

O. 212b
O. 300
0.308

0.236
0. 256

o. oog'
—0. 001d

o. os4'
0. 021

O. O35'
0, 001
0. 001~

0 033b
0. 005
0. 042~

0. 035b
—O. 001

o. oogb
—0. 001d

o. ooo'

o. ooeb
0. 004
O. 019

O. 023d
0. 0340

Rp

1.44
1.45

8.30
8. 91

4. 16
4. 22
3.90

2. 05
1.87
1.82

4. 96
4. 82

1.74
1.68
1,57

0.56
O. 49
0.48

1.49
1.44

0.35
0.35

1.88
1.70

0. 87
0. 83
0. 76

0.42
0.34
0.35

1.01
O. 87

0. 33
0.31
0.28

0.11
0. 09
0. 08

0.28
0.27

0.36
0. 36

1.87
2. 08

0. 97
1, 01
O. 93

0.48
0.44
0.41

1.15
1.14

0, 41
0.40
0.37

0, 13
0.11
0.11

0. 35
0. 33

0.37
0.37

2. 27
2. 65

1.17
1.24
1.15

0. 59
0. 57
0. 54

1.43
1.47

0. 52
0. 51
0. 48

0. 16
0, 15
0. 15

0.44
0.43

0.36
0.36

2. 07
2. 14

1, 02
1.01
0. 93

0.50
0.44
0, 44

1.21
1.14

0.42
0.40
0. 37

O. 13
0. 12
0.11

O. 36
0.35

&2s

o. 36'
o. 36'

2. 13
2. 43

1.08
1 13c
1.04c

O. 54c

0. 52
O. 49'

1 31c
1 34c

O. 47'
0 46c

0. 44'

o. 15'
0 14c
0 14c

0 40c
o. 4o'

~Reference 21.
R. L. Bowers and G. D. Mahan, Phys. Rev. 185,

1073 (1969) and references cited therein.
cReference 8.

M. Cardona, J. Phys. Chem. Solids 24, 1543 (1963).
Re ference 20.
K. G. Hambleton, C. Hilsum, and B. R. Holeman,

Proc. Phys. Soc. (London) 77, 1147 (1961).
Q. H. F. Vrehen, J. Phys. Chem. Solids 29, 129(1968).

"G. Picus, E. Burnstein, and B. H. Henvis, J. Phys.
Chem. Solids 8, 282 (1959).

R. A. Straddling, Phys. Letters 20, 217 (1966).
~W, J. Turner, W. E. Reese, and G. D. Pettit, Phys.

Bev. 136, A1467 (1964).
"O. G. Lorimor and W. G. Spitzer, J. Appl. Phys. 36,

1841 (1965).
'C. R. Pidgeon, D. L. Mitchell, and R. N. Brown,

Phys. Rev. 154, 737 (1967).
C. R. Pidgeon and S. H. Groves, Phys. Rev. 186,

824 (1969).
"R. A. Faulkner, Phys. Rev. 184, 713 (1969).
'J. C. Hensel and K. Suzuki (unpublished).
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TABLE II. Results for cubic II-VI compounds. All the quantities are defined in the text. The energy unit is meV.

p, p

O. 178'
0. 228d

O. O89b

0. 385
0. 137b

—0. 047
36. 87
47.41

8. 58
7.29

7. 88
11.48

10.32
15.52

9 11
10.65

E2s

g 61c
15.29

ZnSe 8. 7' 0. 125"
0. 132

0. 126b
0 339

o. o55'
0 019

22. 43
23. 67

4. 90
3.91

5.17
5.41

6. 21
7. 52

5. 58
5. 57

5. 77
6. 95

Zn Te 10 1 0. 079
0. 081

0. 116
0. 192

0. 029
0. 000

11.43
10.83

2. 53
2. 19

2. 71
2. 60

3.13
3.12

2. 83
2. 60

2. 92
2. 85

CdTe 9 7a 0. 079
O. 070

o. o116'
0 253

0. 029
—0. 023d

11.43
10.10

2. 53
1.89

2. 71
2.45

3. 13
3.04

2. 83
2. 37

2. 92
2. 76

~D. Berlincount, H. Jaffe, and R. L. Shiozawa, Phys.
Rev. 129, 1009 (1963).

R. L. Bowers and G. D. Mahan, Phys. Rev. 185,
1073 (1969) and references cited therein.

'Reference 8.
"M. Cardona, J. Phys. Chem. Solids 24, 1543 (1963).
'G. E. Hite, D. T. F. Marple, M. Aven, and B. Segall,

Phys. Hev. 156, 850 (1967).

V. RESULTS AND DISCUSSION

%'e now apply the results of Sec. IV to investi-
gate the direct 2p-exciton levels in diamond and
zinc-blende crystals for which band parameters
are available. In Tables I and II we give the results
of an investigation for the III-V and II-VI compo-
nents, respectively. In these tables we give the
binding energies E&, E&, E„and E4 of four 2p
states obtained using Eg. (35). Also given are the
parameters used for the calculations; i.e. , the
dielectric constant &, the band parameters p,o, p, ,
and 5, together with the effective rydberg Ro. We
have also included the energy of the 2s-exciton level
in order to compare it with the energy of the 2p
states.

We can see that the perturbation in the case of p
states is even more important than the case of s
states. In fact, such a perturbation as H„not only
shifts the energy of the states considered here,
but also introduces a splitting.

Unfortunately, the experimental situation is poor
at present, and it is not possible to compare our
results with the experimental data. 2p states have
been observed by Frohlich et al. ~ in some alkali
halides and in ZnO. 2o In this case only one of the four
2p states has been observed. Furthermore, the
band parameters necessary for the calculation
are not available and for that reason we cannot
compute the 2p levels for such substances. Stafford
and Park have very recently investigated the two-
photon spectrum in KI and have observed two sepa-
rate 2p levels'. One of them is interpreted as being
due to a phonon-assisted process. Our method can
be applied to alkali-halide crystals because the

effective-mass approximation, which we use, is
supposed to work fairly well for the excited 2p
states. However, also for KI, the band parameters
p,„p,&, and p, 2 needed for the calculation are not
known, and therefore we cannot compute such
levels. We think, however, that it is possible that the
two levels observed byStafford and Park are sim-
ply two of the four 2p states. The argument is the
following: In semiconductors, i.e. , II-VI com-
pounds, where the exciton binding energy is
of the order of 30 meV, the splitting among the
the various 2p states is of the order of 2 meV.
Everything else being equal, the splitting among
the 2p states scales linearly with exciton
binding energy, thus in KI, where the binding
energy is of the order of 300 meV, the splitting
could be about 20 meV, which is in qualitative
agreement with the splitting observed by Stafford
and Park~a (22 meV). It is clear, however, that only
when the valence-band parameters p.o, p.» and p, 2

are known can one have quantitative conclusions.
For the semiconductors for which the valenee-

band parameters are known, no experimental data
are available. We think that the split 2p states
can hardly be observed in the III-V compounds,
both because of the very small gap of the material
and because of the small splitting among these
states. However, II-VI compounds look much more
promising, especially ZnS and ZnSe.

It is clear that there is much room for both
theoretical and experimental efforts in the future,
which could prove to be very useful in better under-
standing the nature of these solids, since two-
quantum experiments give much information which
is not obtainable with the one-quantum experiments.

*Research supported in part by the Advanced Research
Projects Agency under Contract No. HC 15-67-C-0221.

~Present address: Xerox Corporation Rochester Re-
search Laboratories, 800 Phillips Road, Webster, N. Y.
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X-ray-induced electron-emission measurements were used to determine the energy levels
of core electrons in GaP, GaAs, InAs, and InSb. The investigated energy range extends from
the bottom of the valence band to about 1400 eV below the Fermi level. Samples were cleaned
by using argon-ion bombardment, and the gold 4f,~2 electron level was used to provide an en-
ergy reference level. Chemical shifts were determined by comparing the results with pre-
viously published experimental values for the pure elements. Several spin-orbit-splitting
values were experimentally determined. Two maxima in the conduction-band density of states
were located with respect to the bottom « the conduction band by comparing the photoemission
data for the outermost core d and p electrons with transition energies measured by uv absorp-
tion, uv reflectivity, and electron-energy-loss experiments. One maximum is located between
0. 8 and 1.4 eV above the bottom of the conduction band depending on the compound and the other
is located between 3 and 4 eV.

I. INTRODUCTION

V/e present the results of our x-ray-induced
electron-emission studies of the electron-core
level, s of GaP, GaAs, InAS, and InSb. Similar
measurements on several of the II-VI compounds
have previously been reported. '

Section II includes a brief description of the ap-
paratus and principles of operation along with a

more detailed description of sampl. e preparation
and energy calibration. Sample preparation in-
cluded cleaning by ion bombardment and energy
calibration was based on the 4f„2 energy level of
gold.

The results of our measurements are listed in
Sec. III which is divided into three sections. Sec-
tion III A is concerned with the actual location of
the measured energy levels. We list our results


