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V. CONCLUSIONS
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The maximum value of 0 obtained by the variation
principle is 0. 15 and this occurs for p, = l. 5 (8
= 13.6 A) and Z= 1. For this case the ratios given
in Eq. (16) are 0. 55 and approach unity for larger
values of p0.

Summarizing, we have included configuration
interaction in the quantum mechanics of the elec-
tronic states of donor-acceptor pairs and thus
substantially improved the agreement between
theory and experiment of the dependence of the
radiative transition energy on donor-acceptor dis-
tance. A small revision in the sum of the ioniza-
tion energies of separated donor and acceptor is
probable. The possible origins of the remaining
slight discrepancy in the 8 dependence are con-
sidered. The effect of configuration interaction on
radiative lifetimes of pairs is evaluated and the
theoretical lifetimes are found to be increased by
as much as a factor of 2.
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The magnetophonon effect in nonpolar nondegenerate semiconductors is investigated by
solving the Boltzmann equation exactly in the Ohmic limit for combined optical- and acoustic-
phonon scattering of carriers in parallel electric and magnetic fields. The solution is used in
computing the longitudinal magnetoresistance at severalternperatures and ratios of acoustic-
to optical-phonon scattering. As this ratio increases from zero at intermediate temperatures,
the Gurevich-Firsov (GF) resonance maxima are found to broaden and shift toward higher mag-
netic field, with pronounced minima developing at the resonance fields before the magneto-
phonon structure vanishes at large acoustic-phonon scattering. As the temperature increases,
additional (pseudoresonance) minima develop between the GF extrema, and are comparable in
amplitude to the latter when AT approximates the optical-phonon energy. At these temperatures
the GF extrema are minima, even in the absence of elastic scattering. The results are com-
pared with displaced-Maxwellian computations. The various effects are explained by physical
arguments, which suggest that the same effects should occur for polar materials also.

I. INTRODUCTION c (d0 ~

The magnetophonon effect is an oscillatory be-
havior of various transport properties of nonde-
generate semiconductors, as a function of applied
magnetic field, and is due to resonant interactions
between the longitudinal-optical (LO) phonons of
the material and the cyclotron motion of the charge
carriers. The resonance magnetic fields are de-
fined by

where N is an integer, ~0 is the angular frequency
of the LO phonons at k =0, and c is the cyclotron
frequency, given by d, = eB/m*, where B is the
magnetic field, and I* is the carrier effective
mass. These resonances will here be referred
to as the Gurevich-Firsov (GF) resonances, after
the first workers in the field. '

Measurements of Ohmic longitudinal magnetore-
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sistance (OLMR) in fairly pure nondegenerate
Polar semiconductors (Refs. 3 and 4 list most of
such work) typically show minima at or near the
resonance fields, although some quite polar ma-
terials' ~ show extrema well displaced from the
fields. The only published OLMR magnetophonon
observation on a nonpolar material is that of Sokol-
ov and Tsidil'kovskii, who reported resonance
Ininima in n-Ge. This, however, has not been
confirmed by Eaves, Stradling, and Wood. ~

The approximate theoretical analysis of Gure-
vich and Firsov on QLMR was carried out for
polar materials, and suggested that the extrema
at the resonance fields should be maxima if LO-
phonon scattering is dominant, and minima other-
wise. However, the common observation of OLMR
minima under circumstances for which LO-phonon
scattering is dominant has contradicted this con-
clusion. Later studies ' based on the displaced
Maxwellian distribution function, taking into ac-
count the simultaneous action of several elastic
scattering mechanisms in varying strengths in
polar materials, did not resolve this question, but
did show that strong carrier-carrier scattering
prevents the development of GF resonance minima
in OLMR.

Recently, however, it has been recognized that
the magnetophonon analysis is considerably simpler
in nonpolar materials. Kharus and Tsidil'kovskii
were able to conclude that there could bc GF mini-
ma even in the absence of elastic scattering pro-
vided the temperature was high enough. My anal-
ysis, made independently and reported briefly'
(Ref. 12 is hereafter referred to as 1), confirmed
this and showed that the GF minima can be well
developed even at temperatures which are not
particularly high (kT = —,'5~0). Thus the maxima-
minima puzzle in OLMR can be considered at
least partially resolved.

The emphasis of I, however, was upon a differ-
ent phenomenon which was referred to as a "pseu-
doresonance" behavior. The purpose of the pres-
ent paper is to elaborate upon the material pre-
sented in I, and to supply some additional results.
It was shown there by general arguments that a
new type of oscillatory behavior intermixed with
the GF resonances should exist, with extrema lying
at magnetic fields given by

~, /~0 ——2/(2n+ 1), n=0, 1, 2. . .
in contrast to the GF resonances described by
Eq. (1). Computations showed that the pseudores-
onance amplitudes could be comparable in mag-
nitude to the GF amplitudes at the higher tempera-
tures; i. e. , kT=S&0.

In this paper, the solution to the Boltzmann
equation, for combined LO- and acoustic-phonon
scattering in nonpolar materials, is shown in the

Ohmic longitudinal case. An expression for the
OLMR is developed, which is particularly useful
in computing. A physical picture of the mecha-
nisms responsible for the various effects is also
given. The simple model of the band structure—
parabolic, isotropic, and centered at k = 0-is
used, and the influence of Landau level collisional
broadening is not included. Level broadening has
been treated, e. g. , by Dworin, ' Nakayama, '4

and Barker, for the transverse case, where it is
essential for removing divergences at the GF res-
onances. Broadening effects should not be as im-
portant in the longitudinal case, since the ampli-
tudes are already finite, but can be expected to be-
come more significant with decreasing I3 and in-
creasing T. The results of numerical computations
are shown for several temperatures, and mix-
tures of elastic-inelastic scattering ranging from
pure acoustic phonon, in which the results of Dub-
inskaya are extended, to pure LO scattering. In
several figures we show how the GF extrema and
the pseudoresonances vary with temperature and
elastic scattering, as determined by the Boltz-
mann equation. The results are compared with
displaced Maxwellian computations in a few eases.
From this comparison, the role of carrier-car-
rier scattering on the magnetophonon structure
may be inferred.

II. THEORETICAL DEVELOPMENT

Ohmic mobility expressions for zero magnetic
field, for combined LO- and acoustic-phonon scat-
tering in nonpolar materials may be found, e. g. ,
in Conwell, and will not be repeated here. The
Hamiltonian describing a carrier of momentum p
and charge -e with e& 0, interacting with the lat-
tice, and in parallel electric and magnetic fields
in the z direction, is, in the "Landau gauge, "

H= [p„p+, (p+, + m* ~a, x) ]/2m *

+Hg+Z, V +eEs, (3)

where H~ is the lattice Hamiltonian, and V de-
scribes the interaction between the carrier and
phonons of type n.

The energy eigenvalues of the first term on the
right-hand side in Eg. (3) are

(4)

There is an N, -fold energy degeneracy associated
with the y direction. With

s = h~~, /kT,
the equilibrium distribution function may be written

x exp( —ns —Pk k, /2m*), (6)

normalized such that
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J dk,f„(k, , k, ) = 1 .
n=0

The steady-state Boltzmann equation becomes

eE sfg(kg( kg ) Q [ ( k k /kl kl)
8 Bk

g

&&f„.(k, , k, ) —w(n k,
' k„nk, k, )f„(k„,k,) ] . (8)

The transition probabilities for either of the two
phonon scattering processes are

x "(nk,k„n k„k,) = +
l
Z„„l'[&'(q)sg„.g, „,

q

The left-hand side of Eq. (18) does not occur for
the polar optical-phonon scattering, nor for im-
purity scattering, or acoustic-phonon scattering
via the piezoelectric interaction.

Equation (8) is linearized in E by writing

f„(k, , kg) =f„(k, , kg)+f„(k, , kg), (19)

where f„(k, , k, ) is linear in E, odd in k„and in-
dependent of k, . The "arrival" scattering term in
Eq. (8) vanishes, leaving the "departure" term to
define a relaxation time. The Boltzmann equation
is solved for f„'(k, , k,), and the mobility is calcu-
lated from

vg= —p, sE= (5/m*) Z J dkgkgf „(k, , kg) ~

Ryan
(20)

u (n'k,'k'„nk, kg)= ~
l ~gg l'[A'(q) ~g -g, .« For either of the two mechanisms acting alone, one

obtains
+ sgg'-gg «g 6++ (q) ~g'-g, -«y Sag-ll, , -«g 6-]

where

6, = 6[k (k, —k,
' )/2m*+k'~, (n —n ) +8'cu„~],

(11)
(»)A (q) =

l q, l'n„, ,

E (q)=
l q l'(n, +1) . (1,3)

The Planck factor at lattice temperature T = 1/kP
specifies the number of thermal phonons of type
n in mode q, of angular frequency &,

(
Bh «I I)-1 (14)

The usual assumptions of no dispersion for the
LO modes (~, = ~0), and linear dispersion for the
longitudinal-acoustic modes (rz, = qu, ) are made.
The coupling coefficients I q I for the nonpolar
optical-phonon and deformation-potential acoustic-
phonon scattering are, respectively,

4ek' pu ', (. awA=
3E no@(u ( m* kT )

G"(s)= Z e-"'
n=0

w 00
2 gcf8 g

D„"(z',s)

G"(y, )=& ."'
n-0 „D (8 P S)

D„"(e',s)= 5 [e'-s(n' —n)] ' ',
n'

p,s = 3Abno y(1 —e ') G"(s)/s,
p"=64(l —e ')G" (y, s)/s,

where

y = I &40/k T
&

b= (Eg „/Eg)

(21)

(22)

(23)

(a4)

(26)

(26)

(27)

(28)

I q., l

'= El.,~ ~0/2&pul

l q..l'=E', 8-q'/anpu, , (16)

n'

+e"[e' —y s(n' -n—)]-'"] . (29)

where 0 is the volume of the sample and p is its
mass density; E& and Ej are both deformation-
potential parameters" with dimensions of energy.

In Eqs. (9) and (10), J„.„(q„,k, + q, , k, ) is the
matrix element of the carrier part of V,
(n, k, + q, , kg+ q, l

e"' ln, k„, kg)

=-Z„.„(q„,k, +q„k,), (17)

and can be expressed as an integral over harmonic
oscillator wave functions. ' ' However, with the
usual assumptions of elasticity and equipartition
for the acoustic phonons, and no dispersion for the
LO phonons, one does not need to know the form
of J„.„, but can use the enormously simplifying
result

f 1' dq„dq, l Z.,„ l'= 2&m*&, /k . (18)

In Eqs. (28) and (29), the terms [ ] ~ are zero
if the radicands are less than zero.

The integrands in Eqs. (26) and (2V) are dis-
continuous and difficult to work with numerically.
Dubinskaya considered the Ohmic longitudinal
magnetoresistance for pure deformation-potential
acoustic -phonon scattering, using expressions
equivalent to Eqs. (21), (26), and (28), first given
by Argyres, and Gurevich and Firsov. By re-
writing G"(s) and using tables, Dubinskaya com-
puted 4 p/po for s & 0. 6 and showed that for 0.6 & s
& 2, the magnetoresistance is negative. It has
been observed that G"(s) can be reexpressed in a
yet simpler form, by transforming the range of
integration in each interval for which the integrand
is continuous, back to the interval 0-1, and col-
lecting terms (see Appendix). Thus
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This form is simple to work with by computer, and

Fig. 1 shows the resulting longitudinal magneto-
resistance. Computations were carried down to
s= —,'. The results coincide with those of Du»n-
skaya for s &0.6. Also shown in Fig. 1 are results
computed with the displaced Maxwellian, using the
assumptions of elastic collisions and equipartition,
as with the Boltzmann equation. The displaced
Maxwellian expressions are given in Ref. 4. No

region of negative magnetoresistance occurs, the
over -all magnetoresistance being rather uniformly
higher. Comparison of the curves shows the ef-
fects of carrier -carrier scattering, implied by
the displaced Maxwellian.

The nonpolar optical-phonon scattering term
G"(y, s) is not so easily transformed and com-
puted. However, the same transformations and
resummations as used with the acoustic-phonon
term considerably simplify the computation (see
Appendix). Thus, for the combined action of the
optical and acoustic phonons, one obtains

FIG. 1. Ohmic longitudinal magnetoresistance due to
deformation-potential acoustic-phonon scattering, as cal-
culated by the displaced Maxwellian and Boltzmann equa-
tion techniques.

Here, C is the ratio of acoustic- to optical-phonon
scattering, including thermal excitation of the
respective phonons. The quantities (y+n +y/s) '+
are defined to be zero for negative argument. The
integrand of G'(y, s) has at most two discontinuities
in the interval 0-1, one from LO-phonon emissions
(the term multiplied by e") and one from LO-phonon
absorptions. At the GF resonances [Eq. (1)],
these discontinuities have moved to the boundaries
of this interval. The two discontinuities merge
at the center of the interval for the pseudores-
onance values of 8, specified by Eq. (2). These
values may be determined by setting the LO radi-
cands in Eq. (33) equal to zero at y = —,', or more
generally by the method in I.

One can understand the reason for the pseudores-
onances in physical terms as follows. In I it was
pointed out that the pseudoresonances occur when
emission and absorption transitions ending at k, = 0
pair off, that is, when both have the same finite
initial value of k, . Figure 2 depicts the most im-
portant of such transitions at magnetic fields near
the pseudoresonance field at r~, = 2~0/3. Absorp-
tions a and b always originate from the same k, .
Absorption a involves the lowest-energy carrier,
and is a dominant transition, limiting the mobility.
[This may be confirmed by inspecting the n= 0
and n=1 terms of Eq. (32). ] In spite of this, it
actually plays only an indirect role in determining
the amplitude of the pseudoresonance, contrary to
a statement made in I. In fact, the interplay of b

and b, as well as c and c, is responsible for the
abrupt change in the behavior of the mobility. A
"mobility-limiting" transition is used here to mean
a transition for which carriers of higher energy
play a relatively smaller role in determining the
mobility. Emission processes are considerably
more effective than absorption processes as mobil-
ity limiters. Below the pseudoresonance field

)),;= 6A(1 —e ') G'(y, s)/s,
where

G'(y, s)=~s Z e"' J dye ~
n=0 0

(31)

(33)

C = 2/yno b . (34)

n

&& Z (y+n')'"/g„(y, s), (32)
n'= 0

n n

4(y, s)=C Z (y+n') "'+ Z [( yn+' y+/s) "'
n'= 0 tf

(bf (cf
FIG. 2. Various LO transitions ending at &~=0;

(a), (b), (c), magnetic fields below, at, and above, re-
spectively, the ~~ =20/3 pseudoresonance field. Carrier
energy is plotted vertically, and I P~/2m+ is plotted hor-
izontally, both in units of I'~0.
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, 3 .5 existence of the absorption processes b' and c at
the pseudoresonance field of Fig. 2. When the
temperature is high enough to allow these pro-
cesses, the emission processes b and c are also
allowed. The GF minima would go principally as
e " due to the single absorption process from near
the bottom of the band. Landau level broadening
will, of course, contribute additional temperature
dependence, which should be more important at
the lower magnetic fields.

III. NUMERICAL ANALYSIS AND DISCUSSION
I I

.2 0.5 1.0 1.5 2.0 2. 5 The Ohmic longitudinal magnetoresistance is
calculated as

FIG. 3. Ohmic longitudinal magnetoresistance due to
combined optical- and acoustic-phonon deformation-
potential scattering at T = 8/6, as calculated from the
Boltzmann equation. Numbers on curves are values of
(Et QE&)2. Several scales are used to separate the
curves.

[Fig. 2(a)] the mobility is limited first by absorp-
tion a, and secondarily by absorptions b and c .
As the field increases, these transitions are
pushed back to the more energetic carriers, and
the mobility is correspondingly increased. At the
pseudoresonance field [Fig. 2(b)] emission transi-
tions 5 and c occur for carriers with the same en-
ergy as those undergoing absorptions 5' and q'.
At higher fields [Fig. 2(c)] emissions b and c are
the mobility limiters, and their carriers maintain
the energy I ~~0 as the magnetic field increases
further. It is the change of the mobility-limiting
mechanism from absorption to emission at the
pseudoresonance fields that produces the resis-
tance minima.

In fact, the same mechanism is in part respon-
sible for the minima which appear at the GF fields,
a fact which has not apparently been realized
earlier. ' The appearance of new elasti. c transi-
tions as 8 increases through the QF fields general-
ly makes a larger contribution to the QF minima,
however. That is, the horizontal transitions to
k, =O replace LO emissions as the limiters (ex-
cept at the N= l resonance). Thus, increasing
elastic scattering tends to enhance the GF mini-
ma for N& 1, opposing the tendency for all ex-
trema to be "washed out" by the monotonic elastic
background. Horizontal transitions to k, = 0 do not
critically affect the pseudoresonances, however,
as can be seen from a diagram such as Fig. 2,
and so the pseudoresonance amplitudes can be ex-
pected to vanish more quickly with elastic scat-
tering than the N& 1 QF resonances.

The temperatur e dependence of the pseudoreso-
nance amplitudes should vary approximately as
e "/(e" + l) = e s", which is the condition for the

b P/Po —P p/Ps —l (35)

.2 . 3 .0 . 5

15
-.1

-.2
sp
Po

I

2. 5

I I I I I I I

0.2 0.5 1.5 2.0

C 0

FIG. 4. Ohmic longitudinal magnetoresistance due to
combined optical- and acoustic-phonon deformation-po-
tential scattering at T =8/3, as calculated from the
Boltzmann equation. Numbers on curves are values of
(E&,JE&)2. Arrows show the pseudoresonance positions.
Several scales are used to separate the curves.

I

1.0

since changes in carrier concentration with 9 are
neglected. In Figs. 3-6 the OLMR is shown for
several lattice temperatures, and ratios b ranging
from pure nonpolar optical-phonon scattering to
predominantly acoustic -phonon scattering.

At the low temperature (y= 6) of Fig. 3, the
curve for pure LO scattering shows fairly sharp
GF maxima displaced slightly to the high-field side
of the resonance fields, in agreement with the
analysis of Bryksin~ on polar materials, and of
Kharus and Tsidil'kovskii ' in the nonpolar case.
As the amount of acoustic-phonon scattering in-
creases, the maxima broaden and shift toward

. .higher fields, while QF minima develop right at
the resonance fields, appearing first and being
most prominent at the low fields. Collisional
broadening of the Landau levels should act against
this trend. Finally, no pseudoresonances are in
evidence at this low temperature.

For the higher temperature (y=3) of Fig. 4, the
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FIG. 5. Ohmic longitudinal magnetoresistance for
nonpolar LO scattering only, as calculated from the
Boltzmann equation. Numbers on curves are values of
p=8/T. Arrows show the pseudoresonance positions.
Two scales are used for clarity.

I

2.0 2. 5

pure LO curves show GF maxima shifted toward
higher fields and less pronounced than at the lower
temperature. The same trends in the GF reso-
nances occur as in Fig. 3. Now, however, the
pseudoresonances (marked by arrows in the figure)
have developed to a small degree. To be noted is
the fact that with increasing elastic scattering, the
pseudoresonance amplitudes, which are always
minima, decrease, whereas the GF minima first
increase, then decrease as acoustic-phonon pro-
cesses become completely dominant. The 5= 0, 6
curve in Fig. 4 shows that the pseudoresonances
have vanished while the GF minima are still prom-
inent.

Figure 5 shows the changing magnetophonon
structure with temperature for pure LO scattering.
The y= 3 curve shows GF maxima and fairly well-
developed pseudoresonance minima. Notice the
broad minimum to the low-field side of the (d, = 2~0
pseudoresonance. This is the minimum discussed
by Bryksin, + and should not be confused with the
pseudoresonance. As the temperature is increased
to y= 1.5 and 0. 75, minima develop at the GF reso-
nances. %e emphasize that this occurs in the ab-
sence of elastic scattering, and shows that the
reasoning of Gurevich and Firsov concerning the
importance of elastic processes in producing the
minima, should not be understood as requiring that
elastic processes are necessary for the achieve-
ment of the minima.

That elastic processes that do assist in forming
OLMR GF minima can be seen by comparing with

Fig. 6 (b= 6). Also, one sees that the pseudoreso-
nance amplitudes diminish with increasing elastic
scattering.

The most important feature to be noted with re-
gard to the pseudoresonances, however, is that
at the higher temperatures they are generally as

1.0 2.0 3.0

, 4 -.4

.2
P

0.2 0.5 1.0
-

~ 21.5
~c ~o

FIG. 6. Ohmic longitudinal magnetoresistance due to
combined optical- and acoustic-phonon deformation-
potential scattering at (E& ~/E~)2 =6, as calculated from
the Boltzmann equation. Numbers on curves are values
of p= 6/T. Arrows show the pseudoresonance positions.
Several scales are used to separate the curves.

prominent as the GF resonances, and should be
observable.

Minima at the pseudoresonance positions have
indeed been observed, appearing only at high tem-
peratures~'~'~ 25 (y= 1) or under hot-electron con-
ditions. The "extra" structure is usually com-
parable in magnitude to the GF structure at the
higher temperatures, but has a temperature de-
pendence which is quite different. '~ The extra
structure also is smaller when elastic scattering
is known to be stronger. ' The pseudoresonance ef-
fect has each of these features, as seen in Figs.
3-6.

The observed extra structure has earlier been
explained3' as due to 2-LO processes, which
have not been defined further apart from the state-
ments that such processes should have a tempera-
ture dependence e ", a resonance condition Nip,
=2i&0, K=1, 2, . . . , and should be weakened by
competition from elastic scattering. These fea-
tures are characteristic of second-order (i. e. ,
second Born approximation) LO proces se s~ 7 A
still earlier postulate invoked spin-flip transi-
tions, but this explanation has now generally been
abandoned. ' ' Notice that the second-order
resonance fields coincide with the fields at which
the GF resonances and the pseudoresonances to-
gether occur. Both the GF resonances and pseudo-
resonances, of course, occur in first order. The
second-order processes thus mimic the pseudores-
onance behavior to a certain extent. No theoretical
analysis is available at present for an accurate
comparison. However, the success of the first-
order calculations in providing a qualitatively cor-
rect description of the magnetophonon effect is a
strong indication of the relative smallness of the
second-order transition probabilities.

Some workers ' ' have used the technique of
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FIG. 7. Ohmic longitudinal magnetoresistance due to
combined optical- and acoustic-phonon deformation-po-
tential scattering at T = &/3, as calculated with the dis-
placed Maxwellian distribution function. Numbers on
curves are values of (Et,JEt) . Inset shows low-field
region on an expanded scale.

applying non-Ohmic electric fields at very low
temperatures to bring out structure which is other-
wise unobservable. In addition to structure which
can be identified as the QF resonances, other
structure is also usually seen in the longitudinal
configuration. Some of this consists of minima ly-
ing at the pseudoresonance positions ' '; no at-
tempt was made to explain these minima. The
pseudoresonance effect is possibly the correct ex-
planation. The finite longitudinal electric field
necessary to bring out the magnetophonon struc-
ture at very low temperature may also assist in
bringing the carriers to values of k, necessary for
the existence of the pseudoresonance effect. This
same idea may also be the explanation of why even
in the Ohmic regime the pseudoresonance struc-
ture is seen more readily in the longitudinal con-
figuration than the transverse, since in the latter
the electric field does not assist in bringing the
carriers to finite k, .

Figure 7 shows a few results of displaced Max-
wellian computations. Theoretical details may
be found in Refs. 4 and 18. As is seen, the GF
resonance extrema for pure optical-phonon scat-
tering are maxima, but are much broader than as
calculated by the Boltzmann equation. This is
to be expected because of the carrier-carrier scat-
tering implied by the displaced Maxwellian dis-
tribution function. With admixture of acoustic
phonons, QF minima do not develop, as was also
found for polar materials. The maxima simply
decrease in amplitude and become broader. Fi-
nally, the pseudoresonances are not present in
the displaced Maxwellian description. This may
be seen analytically4'" as well as in Fig. 7.

I wish to thank R. A. Stradling for useful dis-
cussions which have led to my clearer understand-
ing of the physical picture underlying the pseudo-
resonance effect.

APPENDIX

This Appendix will show the transformation and
resummation technique used in obtaining Eqs. (30)
and (32).

From Eq. (8) and (20), one may write the longi-
tudinal mobility as

Ps= m*
ns k3)

dk k ~ (k)g~n
8 gk

(A1)
where 1/r„(k, ) is a sum over the 10- and acoustic-
phonon transition probabilities. Performing the
necessary operations leads to Eq. (31), in which

G'(y, s)=Z e "' f Czz e ' /[CD„"(z, s)
@=0 0

+ D."(z', y, s)], (A2)

where z =k k, /2m*kT. Substituting y=z /s, con-
sider the quantity

E(y, s)—= 2G'(y, s)/s =Z f dyy @T(y+n),
n=O

(A3)
where

T(y+n)=e '"'"' Z [C(y+n —n') '
n'A

+ (y+n —n'+ y/s) '~ +e'(y+n n' —y/s) '~
] . —

(A4 )
All quantities x ' are defined to be zero for
x ~ 0. The following manipulations hold regardless

Again, this is because of the carrier-carrier
scattering, and is consistent with the trend seen
in Figs. 3-6, in which the pseudoresonance am-
plitudes decrease monotonically with increasing
elastic scattering.

In conclusion, although there is little magneto-
phonon data on nonpolar semiconductors, the
Boltzmann equation analysis given here for non-
polar materials yields the over ™allmagnetophonon
behavior generally observed in rather pure polar
materials. The extra structure observed experi-
mentally at the higher temperatures is probably
the pseudoresonance effect. This is the natural
interpretation; the effect is a first-order process,
and our computations have shown that the pseudo-
resonance amplitudes can be as prominent as the
QF amplitudes at the higher temperatures, and
have qualitatively the correct elastic scattering
and temperature dependence. Any other explana-
tion has the twofold burden of justifying a proposed
extra mechanism and showing why the pseudoreso-
nances should not be significant.
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n

x Q (y+g') &+, . . .
n'=0

00 n

=Z f dyT(y+n) Z (y+n')'". (A6)
a=o n'=0

2
+( 1 + f + ")dyy'"Tb+1)+'"

0

Transform each f"' back to ja, and collect
terms common to T(y+n):

F(y, s) = f dy y'" T(y)+ f dy T(y+1)

FIG. 8. Illustration of the effect of the transformation
discussed in Appendix. Carrier energy is plotted
vertically, and I k2/2m* is plotted horizontally, both in
units of Ifd~.

of where the zeros of T(y+n) lie; however, the
motivation is to remove the zeros associated with
the acoustic term (the term multiplied by C).
%rite

1 p
&(y, s ) = ( f + f + ~ ~ ~ ) dy y'@ T(y)

0

Equation (32) follows at once.
The transformation has a simple physical in-

terpretation. The original variable y is the car-
rier kinetic energy measured in units of I , . The
translations and collecting of terms is equivalent
to making cuts on the y axis at the points 1, 2, . ..
[see Fig. 8(a)], and sliding each strip to the left
to coincide with the first strip [Fig. 8(b)]. Then,
e. g. , transitions c and g in Fig. 2 will, respec-
tively, overlap transitions b and b . The effect
of the transformation is to remove the energy
degeneracy of the different Landau levels, in the
sense that each pair of values (y, n) in Eqs. (A6)
or (32) specifies a distinct carrier energy.
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Using a method previously introduced to treat s states, we analyze the 2p-excited states
of direct excitons in semiconductors. The splitting of the four 2f levels, due to the degen-
eracy of the valence bands, are given by simple analytical expressions. The symmetry of
these levels are discussed for the zinc-blende, diamond, and NaCl structures. Results are
given for all semiconductors for which the valence-band parameters are known. Since the
actual experimental situation is poor, suggestions are made as to which substances should
be investigated in order to appreciate these splittings.

I. INTRODUCTION

Very recently, two-photon spectroscopy has
gained increasing importance as a powerful method
of studying electronic properties of solids. '~ Two-
quantum absorption is a nonlinear optical phenom-
enon in which two quanta are simultaneously ab-
sorbed in an electronic or excitonic transition.
Since the selection rules for two-photon transitions'4
are very different from those appropriate to one-
photon transition, the two methods are comple-
mentary. Moreover, since more state symme-
tries are observable in two-quantum absorption,
one expects that more information concerning
energy levels in solids can be obtained from two-
quantum absorption than from single-quantum ab-
sorption. For excitons, the different selection
rules involved in the two-quantum experiments '

allow the observation of P states forbidden in the
one-photon case. It is therefore evident that an
accurate knowledge of these states is necessary
to correctly interpret the results of the experimen-
tal analysis. Because of the anisotropy and the
degeneracy of the valence bands in all cubic semi-
conductors one cannot apply the simple hydrogenic
model for the determination of these states; fur-
ther, such degeneracy produces a splitting of the
P states' which is clearly neglected if one uses the
simple model.

In a previous set of papers, we have set forth
a method which solves the exciton problem in the
case of degenerate bands, and we have applied it
to treat the exciton ground state and the excited

s-like states. In this paper we extend the method
to treat the P-like excited states. We obtain very
simple analytical expressions for the splitting of
the various 2P states. Section II is a short analysis
of the symmetry of the various states. In Sec. III
we review briefly the general formulation of the
problem and the method of solution, and in Sec. IV
we apply the method to treat the 2P states. In
Sec. V we discuss and summarize the results of
the present investigation.

II. GROUP-THEORETICAL ANALYSIS

We now briefly describe the symmetry' of the
P states in the diamond, zinc-blende, and ÃaCI
structures. The exciton wave function can be writ-
ten"

where &f&, and QI,
" are the Bloch functions for the

electron and the hole, respectively, y is the enve-
lope function which describes the relative electron-
hole motion, andi runs over the degenerate valence-
band states. The symmetry of the exciton wave
function is determined by the direct product of the
irreducible representations for the envelope, hole,
and electron wave functions.

For diamond crystals, the point group is.O„.
The symmetry of the degenerate valence band at
k= 0 is I'8 and the conduction-band minimum is
I'2, (I'6 double-group notation). For the P states,
in which we are interested, the envelope function
has I'» symmetry and therefore we have


