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Using the variational method, the electronic contribution to the low-temperature thermal
conductivity of potassium is calculated for a number of different pseudopotentials and a
realistic phonon spectrum. A detailed evaluation of electron-phonon umklapp-scattering
effects is presented. In particular, umklapp processes have a negligible effect on the
thermal resistivity and Wiedemann-Franz ratio below - 2 'K, but significantly enhance both
at temperatures above this. Higher-order corrections to the variational calculation are
evaluated and it is found that these are significantly larger for the umklapp component of the
thermal resistivity than for the normal component. The lattice contribution to the low-
temperature thermal conductivity is calculated and compared with the results for the
electronic component.

I. INTRODUCTION

In an earlier paper' we reported calculations of
the ultrasonic attenuation and electrical resistivity
of potassium which included a detailed evaluation
of the role of electron-phonon umklapp-scattering
processes at low temperatures. In this paper, a
similar treatment has been extended to the thermal
resistivity of potassium.

In Secs. II and III, the electronic contribution to
the thermal conductivity is calculated, including an
explicit evaluation of umklapp-scattering effects.
It is found that above - 2' K umklapp processes
significantly enhance both the thermal resistivity
and the Wiedemann-Franz ratio. The results for
the total thermal resistivity (umklapp plus normal
components) are in reasonable agreement with
experimental observation, 2 although a detailed com-
parison must await more precise experimental
study. In Sec. IV, higher-order corrections to
the variational calculation are evaluated. The
umklapp component is affected by such corrections
to a much greater extent than the normal compo-
nent. In Sec. V, the lattice conductivity is calcu-
lated in order to quantitatively evaluate the relative
importance of heat conduction by the lattice com-
pared to that by the electronic system.

II. THEORY

Taking the phonon system to be in equilibrium,
the variational expression for the thermal resis-
tivity W of a metal due to electron-phonon scatter-
ing (i. e. , in the absence of electron-impurity scat-
tering) is given byo

(1/ks) f f f [y(k') y(k)—]'Pdq dkdk'
I v (E —p, ) y(k )(6fo/6E) dk I

where P is the probability for an electron in a
state of wave vector k to be scattered to a state of
wave vector k through the absorption (or creation)
of a phonon of wave vector &I (k -k=7&+6, with G
a reciprocal-lattice vector). Here v is the elec-
tron group velocity, E is the electron energy, k~
is Boltzmann's constant, and p, is the chemical
potential. The trial function g represents the de-
viation of the true electron distribution f from the
equilibrium Fermi distribution fo:

f-fo=-
~

—
6E
sfo

it is chosen to minimize the right-hand side of Eq.
(1). As a first approximation, we shall use the
standard trial function appropriate to the solgtion
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of the Bloch equation in the relaxation-time ap-
proximation

P (k) ~k ~ u (E —p) . (3)

Here a spherical Fermi surface has been assumed

such that v and k are parallel; u is a unit vector in
the direction of the heat current.

In the approximation of a local pseudopotential
Wj

V(k -k), spherical Fermi surface, one-plane-.
wave electron states, and cubic-crystal symmetry,
this trial function leads to the expression

p
Lo T

30o N(0)
8 k4~ ~u, r 4 qCkp

i c(q; x) ~ g I'
I v(q)i' q'

q (I - e ')(e' —I) 3 6w' v'

(4)

The same notation has been used as in Ref. I:
q -=k -k; m is the electron mass; 00 is the vol-
ume per ion; k~ is the Fermi wave number; R(0)
is the single-spin electron density of states per
unit volume at the Fermi surface, K(0) = mk~/
2m h; m is the electron mass; M is the ion mass;
T is the absolute temperature; n is the valence
electron density; e is the electronic charge.
The phonons are described in a repeated-zone
scheme; they are specified by their frequencies
ar(q; A.) and polarization vectors e(q; x) for wave
vector q and polarization branch A. (one longitudi-
nal, two transverse). In Eq. (4), we have intro-
duced the dimensionless parameter z to represent
the ratio of h&u(q; X) to kBT. The integral extends
over the volume of a sphere of radius 2k~.

III. RESULTS AND DISCUSSION

40-

x lo

TOTAL

dence of the Wiedemann-Franz ratio (divided by
the square of the temperature and expressed in
units of the Lorenz number Lo). The ratio has
been calculated individually for both the normal
[p„/(L, T'W„) ] and umklapp [p~/(LOT Wp) ] resis-
tivity components as well as the total [pr/
(LOTsWr)]. Values of the electrical resistivity p
used are those of Table III in Ref. 6. Large-angle
umklapp-scattering events are more effective in
degrading the electrical current than the thermal

20- ~ ~

In evaluating expression (4), the same phonon
spectrum and pseudopotentials were used as in
previous papers~" 6 (for a listing of the pseudopo-
tentials, see Table IV of Ref. 6). The results for
the total thermal resistivity have been explicitly
separated into normal and umklapp components and
are tabulated in Table I and plotted in Fig. l. As
in the case for the electrical resistivity and ultra-
sonic attenuation, the normal component at low
temperatures is nearly identical for all three
pseudopotentials. It is the umklapp component
which is entirely responsible for the variation be-
tween the total (umklapp plus normal) results for
the various pseudopotentials. Umklapp processes
freeze out at low temperatures, contributing only
a negligible amount to the thermal resistivity at
temperatures below - 2 'K. At temperatures above
this, however, the umklapp component significantly
enhances the thermal resistivity over that due to
the normal component alone. This results in a
temperature dependence in the range -2-6 K
that is slightly steeper (depending on the pseudo-
potential) than the usual T dependence predicted
by the Bloch theory, which neglects umklapp pro-
cesses. The effect, however, is much less pro-
nounced than for the electrical resistivity. '

In Fig. 2 is presented the temperature depen-
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FIG. 1. Temperature dependence of the thermal
resistivity of potassium S' as calculated using several
different pseudopotentials: long and short dashes,
Bardeen pseudopotential; short dashes, lower Lee-
Falicov psuedopotential; long dashes, Ashcroft
pseudopotential. In each case the total thermal resis-
tivity has been explicitly separated into normal and

umklapp components. The normal components from the
three pseudopotentials were so nearly identical they
could not be resolved on this scale.
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TABLE I. Electronic component of the thermal resistivity of potassium as calculated using several different

pseudopotentials. The results have been separated into normal and umklapp contributions. In each case the resis-
tivity has been divided by the square of the temperature, the units being 10"4 cm/W'K.
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T
('K)

8ardeen pseudopotential
normal urnklapp total

Lower Lee-Falicov pseudopotential
normal umklapp total

Ashcrof t pseudopotential
normal umklapp total

1.00
1.25
1.50
1.75
2.00
2. 25
2.50
2.75
3.00
3.25
3.50
3.75
4.00
4.50
5.00
6.00
8.00

10.00
12.00
14.00
16.00
18.00
20. 00

21.5
21.6
21.6
21.6
21.7
21.8
21.8
21.9
22. 0
22. 0
22. 0
22. 0
22. 0
21.8
21.5
20. 7
18.7
17.1
15.7
14.3
12.8
11.3
9.8

~ ~ ~

0.02
0.09
0.24
0.49
0.86
1.3
1.9
2. 6
3.3
4.0
4. 6
6.0
7.3
9.2

11.4
12.2
12.3
11.8
11.0
10.0
9.1

21.5
21.6
21.6
21.7
21.9
22. 3
22. 7
23. 2
23. 9
24. 6
25. 3
26. 0
26. 6
27. 8
28. 8
29.9
30.1
29.3
28.0
26. 1
23.8
21.3
18.9

21.5
21.6
21.6
21.7
21.7
21.8
21.9
22. 0
22. 0
22. 1
22. 1
22. 1
22. 1
21.9
21.6
20.8
18.8
17.2
15.8
14.3
12.8
11.2
9.8

~ ~ ~

0.01
0.04
0.10
0.22
0.39
0.62
0.89
1.2
1.5
1.9
2. 2
3.0
3.6
4.7
6.2
6.9
7.2
7.2
6.9
6.4
5.8

21.5
21.6
21.6
21.7
21.8
22. 0
22. 3
22. 6
22. 9
23.3
23.6
24. 0
24. 3
24. 9
25. 2
25. 5
25.0
24. 1
23.0
21.5
19.7
17.6
15.6

21.5
21.6
21.6
21.7
21.8
21.8
21.9
22. 0
22. 1
22. 1
22. 2
22. 2
22. 2
22. 0
21.7
20. 9
18.9
17.3
15.9
14.5
12.9
11.4
9.9

~ ~ 4

0.01
0.04
0.11
0.21
0.35
0.51
0.69
0.88
1.1
1.3
1.4
1.8
2. 1
2.7
3.5
4.1
4. 5
4.6
4.6
4.3
4.0

21.5
21.6
21.6
21.7
21.9
22. 0
22.3
22. 5
22. 8
23.0
23.3
23.5
23.6
23.8
23.8
23.6
22.4
21.4
20.4
19.1
17.5
15.7
13.9

current at low temperatures. This leads to a con-
siderable enhancement of the (total) Wiedemann-
Franz ratio in the temperature regime where the
umklapp contribution comprises a significant frac-
tion of the thermal resistivity. At lower tempera-
tures where umklapp processes are frozen out, the
ratio is determined entirely by normal processes.

The experimental data of MacDonald, White, and
Woods2 are in reasonable agreement with these re-
sults both in absolute magnitude and temperature
dependence. After subtracting the impurity-scat-
tering contribution, they obtained an approximate
T temperature dependence for the thermal resis-
tivity in the temperature regime below about 15'K.
For their three relatively pure potassium samples
[pa = (13.5, 14. 0, and 22. 2) x 10 ' 0 cm] the magni-
tude of this T term was determined to be between
16.5 and 1V x10 4 cm/W'K. This is somewhat low-
er (by 20-30%) than what would be expected on the
basis of these calculational results.

IV. HIGHER-ORDER VARIATIONAL CORRECTION TO
THERMAL RESISTIVITY

The results thus far have been obtained using the
first-order "variational" trial function given by Eq.
(3) (which actually allows for no variation at all).
Calculations by Sondheimer using higher-order
variational trial functions have shown that correc-
tions to the first-order result are relatively large

in the case of the thermal resistivity. At very low
temperatures and in the absence of impurity scat-
tering, Sondheimer found an 18. 8% change in the
thermal resistivity between results using a trial
function linear and cubic in E. Sondheimer's cal-
culations, which neglect umklapp processes, how-
ever, show that this percentage change will de-
cxease when one is not in the limit of low tempera-
tures or when substantial impurity scattering is
present.

To estimate the magnitude of such corrections
for the present calculation of umklapp effects, the
variational results of Sec. III have been similarly
carried to higher order using a second trial func-
tion cubic in E:

2

y(k)~k u(E —p, ) 1+a(T)
kg T (5)

where a(T) is a parameter which is chosen to mini-
mize the resultant values of the thermal resistiv-
ity. + Although expression (5) does not have the
exact form of the true p at low temperatures (see
Ref. 11), it does permit a much better approxi-
mation of g in the important region near the Fermi
surface [(E—p) =0]. Only the scattering of elec-
trons by phonons is considered here; in particular,
the variational calculation is carried out in the
absence of impurity scattering. +

The results using this second variational trial



TABLE II. Variational corrections to the thermal resistivity of potassium. W is the electronic component of the
thermal resistivity obtained using the standard trial function given by Eq. (3); 8' is the thermal resistivity which
results when using a higher-order variational trial function given by Eq. (5). In both cases the thermal resistivity has
been divided by the second power of the temperature, the units being 10 ' cmi'%'K.
I

T
(K)

Bardeen pseudopotential
~0

W/T2 W'/T2 difference

Lower Lee-F alicov pseudopotential
lo

W/T' difference

Ashcrof t pseudopotential

difference

1.00
1.25
1.50
1.75
2.00
2.25
2. 50
2.75
3.00
3.25
3.50
3.75
4.00
4. 50
5.00
6.00
8.00

'10.00
12.00
14.00
16.00
18.00
20.00

21.5
21.6
21.6
21.7
21.9
22.3
22. 7
23.2
23.9
24. 6
25.3
26.0
26.6
27.8
28.8
29.9
30.1
29.3
28.0
26.1
23.8
21.3
18.9

17.5
17.5
17.6
17.6
17.7
17.8
17.9
18.0
18.2
18.4
18.7
19.0
19.4
20.0
20.7
21.8
22. 5
22.1
21.4
20.5
19.4
18.0
16.5

18.8
18.8
18.8
18.9
19.3
20.2
21.3
22. 6
23.9
25.1
26. 0
26. 8
27.4
28.0
28.0
27.0
25.1
24. 5
23.5
21.4
18.6
15.5
12.6

21.5
21.6
21.6
21.7
21.8
22. 0
22. 3
22. 6
22. 9
23.3
23.6
24. 0
24. 3
24. 9
25. 2
25. 5
25. 0
24. 1
23.0
21.5
19.7
17.6
15.6

17.5
17.5
17.6
17.6
17.7
17.7
17.8
17.9
18.0
18,1
18.3
18.4
18.6
18.9
19.2
19.5
19.4
18.6
17.8
17.0
16.1
15.0
13.7

18.9
18.9
18.9
18.9
19.2
19.6
20. 2
20. 9
21.6
22. 2
22. 8
23. 2
23.6
23.9
23.3
23. 3
22. 4
22. 8
22. 5
20. 8
18.1
15.2
12.4

21.5
21.6
21.6
21.7
21.9
22. 0
22. 3
22. 5
22. 8
23.0
23.3
23. 5
23.6
23.8
23.8
23.6
22. 4
21.4
20.4
19.1
17.5
15.7
13.9

17.5
17.5
17.6
17.6
17.6
17.7
17.8
17.8
17.9
18.1
18.2
18.3
18.4
18.6
18.7
18.7
17.9
16.8
16.0
15.2
14.4
13.3
12.2

18.9
18.9
18.9
19.0
19.3
19.7
20. 3
20. 7
21.2
21.5
21.8
21.9
22. 0
21.9
21.5
20. 7
20. 2
21.3
21.5
20. 1
17.7
14.9
12.1

function are presented in Table II. The agreement
in absolute magnitude with the experimental data
of MacDonald et al. m (see end of Sec. III) is con-
siderably improved. ' As seen in Table II, correc-
tions to the first-order result (in the absence of
impurity scattering) are slightly less than 20% in
the low-temperature regime where umklapp pro-
cesses are frozen out. This change agrees well
with Sondheimer's very-low-temperature results.
However, as umklapp processes become important,
the corrections vise to slightly less than 30% near
5'K for the Bardeen pseudopotential (where um-
klapp effects are the greatest) before diminishing
at still higher temperatures. Such a rise in the

variational correction is not observed when normal
processes alone are considered. Higher-order
variational corrections are significantly greater
for the umklapp component than for the normal
component.

V. LATTKE CONDUCTIVITY

If we take the deviation of the phonon distribution
from equilibrium, Q (q ), to have the form

Q(q)eI-g u,

then the reciprocal of the lattice component of the
thermal conductivity W, is given by"

m
Tne

QeN(0)
8k+

k
MkgT

&t' la(q; x) q)'I V(q) I' w
' k&

q(l —e ') (e' —I) ek p Bw „(e'—1)

(7)

Here it is assumed that the electron distribution
is in equilibrium and only the interaction of pho-
nons with electrons is considered (i. e. , the inter-
action of phonons with impurities, boundaries,
etc. , is neglected). These assumptions are rea-
sonable insofar as there is no net electric current
and provided that A„,„«A, , (where A„,„and

I

A, ~ are the phonon mean free paths determined

by phonon. Scattering from electrons and impuri-
ties, respectively). The latter condition should

be satisfied at low temperatures in relatively pure
potassium samples.

The lattice contribution has been evaluated in this
approximation in order to determine its importance
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pure limit.
An analysis of lattice heat transport by individ-

ual phonon modes has also been performed. At
temperatures below about 2'K it is found that if
only the fast (slow) shear phonon mode were pres-
ent, the lattice conductivity would be about 250
(50) times greater than if only the longitudinal
mode existed. Note that the heat conduction by the
transverse modes is not infinite, even though a
spherical Fermi surface was assumed in the cal-
culation. This is a result of the phonon modes
being neither purely longitudinal nor transverse in

a realistic phonon model. At higher temperatures
where umklapp processes become important, the
difference in conductivity by the various phonon
modes is considerably reduced.

In the low-temperature regime A„~«A, „
these results should serve to evaluate the relative
importance of heat transport by the lattice in com-
parison to that by the electronic system. For ex-
ample, the lattice conductivity will be less than
2% of the electronic conductivity at temperatures
below -6'K in samples with po-15x10 Qcm.
The calculational results for the electronic com-
ponent alone should describe quite accurately the
low-temperature thermal resistivity of potassium
samples with purities in this regime.

I

202
2 4 7 10

TEMPERATURE ( K)

FIG. 2. Temperature dependence of the ratio p/
LpT +) as calculated individually for both the normal
[p„/(LOT'W„)I and utnklapp [pU/(L, T Ws)I resistivity
components as well as the total [pT/(LpT W'g) J (same
curve codes as Fig. 1). The ratio of the normal resis-
tivity components from the three pseudopotentials were
so nearly identical at these temperatures they could not
be resolved on this scale. The low-temperature rise in
the ratio of the umklapp resistivity components is due
principally to dividing p/WT by Tm in plotting the results.

VI. SUMMARY

A detailed evaluation of electron-phonon um-
klapp-scattering effects shows that umklapp pro-
cesses have a negligible effect on the thermal re-
sistivity and Wiedemann-Franz ratio of potassium
at temperatures less than -2 'K. Both are con-
siderably enhanced by umklapp processes, how-
ever, at temperatures above this. Higher-order
variational corrections are significantly larger for
the umklapp component of the thermal resistivity
than for the normal component.

relative to the electronic heat conduction in the
low-temperature regime. As before, the phonon
frequencies and polarization vectors were gener-
ated from a five-nearest-neighbor Born-von Kar-
man fit to inelastic-neutron-scattering data. The
results for various pseudopotentials are presented
ln Fig. 3.

In the limit where A„»«A, „ the absolute
magnitude of these results is in generally good
agreement with the lattice-conductivity data of
Archibald, Dunick, and Jericho obtained in several
potassium-cesium alloys. " However, an accurate
experimental determination of the temperature de-
pendence in this limit has not yet been made. The
experimental agreement in this case is as good as
that of the theory of Pippard, ' where a T tem-
perature dependence is predicted for W~ in the

15

xl0
IO—

7

OJ 4=

I ~ I I I I
I

2
I

I I I I I I I

4 7 10

TEMPERATURE ('K)

I

20

FIG. 3. Temperature dependence of the lattice
component of the thermal resistivity 8'& due to phonon-
electron interaction (same curve codes as Fig. 1).
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