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Absolute values of the anisotropy of the electron-phonon renormalization and of the anisotropy
of the temperature-dependent (T ) component of the quasiparticle scattering rate on the Fermi
surface of copper have been calculated. The electron-phonon matrix element is expressed in
terms of an augmented-plane-wave (APW) phase-shift pseudopotential. The anisotropies of the
Fermi surface, the phonon spectrum, and the wave functions of the initial and final states are
explicitly taken into account. The results are compared with experimental data on the scat-
tering rate of quasiparticles by thermal phonons in copper. The calculation predicts an aniso-
tropic variation of the absolute scattering rate which is in good over-all agreement with the
experimental data. It is found that the large increase on the scattering rate on the necks can
be explained by taking into account the scattering of electrons by transverse phonons. The
predicted anisotropy of the renormalization factor is in good agreement with that obtained from
a phenomenological interpretation of experimental cyclotron-mass data. The results of this
paper suggest the applicability of the APW pseudopotential to the description of the electron-
phonon interaction in other metals of the transition series.

I. INTRODUCTION

The anisotropy of the electron-phonon interaction
in copper has been demonstrated in several recent
experiments. The earliest is that by Haussler and

Welles, ' who, by measuring the damping of cyclo-
tron resonance curves, were able to estimate the
temperature-dependent (Ts) component of the quasi-
particle relaxation time for certain orbits on the
Fermi surface. More recently Koch and Doezema
have measured the relaxation time in various sym-
metry zones on the Fermi surface through surface-
quantum-state resonance experiments, and Gant-
makher has measured the relaxation time averaged
over various orbits by the radio-frequency size
effect. All of these experiments show a distinct
anisotropy of the T' component of the relaxation
time, which can be attributed to the scattering of
quasiparticles by thermally excited phonons. The
reported values of the relaxation time vary by a
factor of about 30 over the Fermi surface. A re-
view of all but the most recent experimental work
on the anisotropy of the relaxation time in the noble
metals has been given by Springford. 4 There are
no direct experimental measurements of the anisot-
ropy of the effective-mass enhancement, but I ee5

has interpreted experimental cyclotron-mass data
to deduce the anisotropy of electron-phonon con-
tribution to the mass enhancement, and he found a
variation of the enhancement by a factor of about 4
over the Fermi surface.

Although there are no first-principles calcula-
tions of the anisotropy of the above quantities,
Allen has calculated the Fermi-surface average
of the electron-phonon mass enhancement in the
noble metals. His approach is that which has been
so successful for the nontransitions metals: using

a single plane-wave pseudopotential to describe the
electron-phonon interaction and neglecting the an-
isotropies of the Fermi surface and the phonon
spectrum. He found than an empirically based
pseudopotential of Fong and Cohen' yields a Fermi-
surface average of the mass enhancement factor
that is consistent with other evidence. The purpose
of this paper is to present a first-principles calcu-
lation of both the anisotropy of the mass enhance-
ment and the temperature-dependent quasiparticle
relaxation time. In such a calculation it is neces-
sary to consider all the anisotropies in the problem:
that of the Fermi surface, the wave functions, the
density of states, and the phonon spectrum.

If the lattice potential were negligible, the Fer-
mi surface of copper would be spherical and would
lie entirely within the first Brillouin zone. In fact,
the electron-lattice interaction causes the Fermi
surface to bulge along the (100) and (111)direc-
tions and to intersect the zone boundary along the
(111)direction, forming necks. It is in the (100)
and (111)directions that the mass enhancement
and the quasiparticle scattering rate achieve their
largest values.

The necks in copper are associated with the
filled d bands which lie a few electron volts below
the Fermi energy. The proximity of the d bands
to the Fermi surface invalidates the small-core
approximation of pseudopotential theory. However,
recent work has shown that an accurate model of
the Fermi surface can be obtained by phase-shift
analysis. The method consists of representing
the lattice potential by a spherically symmetric
potential of muffin-tin form centered on each of
the lattice sites, and a constant potential in the
interstitial region. The muffin-tin potential can
be described by a set of phase shifts q, (E~), which
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are determined by fitting experimental Fermi-
surface data. In this way a model of the Fermi
surface of copper accurate to about 1 part in 10
has been constructed, and the phase-shift model
has been used to calculate the band-structure ve-
locities over the Fermi surface with a computa-
tional accuracy of about 0. 2%. ' In the present
work this method is extended to calculate the wave
functions at various points on the Fermi surface.

The phonon spectrum for copper was obtained
from the inelastic-neutron-scattering data of
Nicklow et al. , which yielded phonon frequencies
for wave vectors along principal symmetry direc-
tions. Nicklow et al. fitted a Born-von Khrman
interatomic-force-constant model to their data.
This model was used to calculate the phonon fre-
quencies and polarizations in off-symmetry direc-
tions.

The application of the APW method to the elec-
tron-phonon interaction has been discussed by
several authors. Golibe rsuch and Sinha have
investigated the general form of the matrix ele-
ment, and more recently Allen and Lee' have
related it to the phase-shift method and have
studied its applications to the alkali metals. In
this paper the APW formulation of the electron-
phonon matrix element is extended to take into
account the anisotropies of the initial and final
states, and is applied to the calculation of the mass
enhancement and the quasiparticle-scattering rate
in copper.

This paper is divided into five sections. In Sec.
II the theory of the electron-phonon renormaliza-
tion and the quasiparticle scattering rate is dis-
cussed. Section III is devoted to the evaluation of
the electron-phonon matrix element and its depen-
dence on the initial and final states. In Sec. IV
the calculations of the mass enhancement X(k)
and the relaxation time r(k) are presented, and
compared with other theoretical and experimental
values. The results and conclusions are summa-
rized in Sec. V.

II. THEORY

A. Renormalization

The electron-phonon interaction influences the
quasiparticle energy spectrum only within a width

+kcoL) of the Fermi energy, where co~ is the Debye
frequency. The perturbed quasiparticle energy
can be expressed as"

Eg = &g + Z,g» (Eg, k )

where Ep is the unperturbed energy and includes the
effects of the band structure and the electron-elec-
tron interaction; e„- and Eg are measured from the
Fermi energy. The second term is the electron-
phonon proper self-energy of the quasiparticle.

vf = V'f Eg = V'-„e-„/[I+X(k)],

D(Ef, k) = D (ep, k) [1+X(k)],

(3)

(4)

where R, is the component of k normal to the Fermi
surface.

The electron-phonon self-energy has been dis-
cussed by several authors, and we shall not go into
detail here. ' ' The real part of the self-energy
describes the contribution of the absorption and
emission of virtual phonons to the quasiparticle
energy, whereas the imaginary part is related to
the decay of quasiparticle excitations due to the
interaction with thermal phonons.

The renormalization factor can be expressed as

( )
2Q g tdSf,. IMf f. ~

(2v) J 85fr k&d ~f
pe

where 0 is the volume of the primitive unit cell,
and o is the polarization of the phonon with wave
vector k —k' and frequency ~„"'~.. The integral is
over the Fermi surface and is weighted by the in-
verse velocity, which is a measure of the local
density of states. IM„"'&.I is the matrix element for
scattering an electron from state k to state k'.

B. Relaxation Time

The inverse lifetime h/~(k) of quasiparticle ex-
citations, due to scattering by thermal phonons,
is equal to twice the imaginary part of the electron-
phonon self-energy. The scattering rate is depen-
dent on both the energy of the quasiparticle, as
measured from the Fermi energy, and the wave
vector. The general expression for inverse life-
time is"

0 IdSp
p Zg ) iMgg [2%(co)

+ I -f (E —~)+f(E+(o)], (6)

where lU and f are Bose-Einstein and Fermi-Dirac
distributions, respectively, and ~ is the frequency
of the phonon of wave vector k- k'. We are inter-
ested in the lifetime of quasiparticles at the Fermi
surface in the limit T- 0. At finite temperatures,
however, the Fermi surface is smeared out and,

For small Ef (i.e. , Ef«K&u~), Z„.» is proportion-
al to Ep,' we define this constant of proportionality
as —X(k). Thus for small Ef the quasiparticle ex-
citation spectrum is given by

(2)

It is clear from Eq. (2) that any physical observable
which depends linearly on a derivative of the quasi-
particle energy at the Fermi surface will be renor-
malized by the factor [1+X(k)]. In particular, the
local quasiparticle velocity V„-,Ef and the local den-
sity of states D(Eg, k) will be modified as follows:
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as pointed out by Allen, ' it is necessary to evaluate
the thermal average of the inverse lifetime, which
is given by

—sf
~(0, k) „st ~(&,%)

In the limit T- 0, this has the effect of increasing
the inverse lifetime by the isotropic factor ~~. The
general result for (0/r(0, k)) is

For T«QD, where QD is the Debye temperature,
the above expression is dominated by small-angle
scattering, and in the low-temperature limit it re-
duces to:

2kzQ 12
( )

IY'(0, k)l 3
( )i(k) . M&e'vt; 7 C.'

where M is the mass of the ion and k& is the Boltz-
mann constant. &(3) is the Riemann g function and

() signifies the angular average of the quantity en-
closed. C, is the velocity of sound for a long-
wavelength phonon of polarization o. V'(0, k) is
the q- 0 limit of the pseudopotential, which is
given by

2M
a IM&&'

I

In the above expression k and k' are restricted to
lie on the Fermi surface.

The anisotropic quantities in Eq. (9) are the
velocity v„-, the velocity of sound C', and the ma-
trix element !My"„.I. The first two of the quantities
vary by factors of no more than 2 over the Fermi
surface, while the experimental value of h/~(k)
varies by a factor of about 30. Thus, to explain
this anisotropy, it is necessary that the matrix
element be highly anisotropic. This will be shown

to be the case.
In the calculation of X(k) and h/v(k) it is neces-

sary to use accurate models for the anisotropy of
the band velocity, the Fermi surface, the phonon

spectrum, and the electron-phonon matrix element
IM'„»g. I. The band velocity was determined from
energy bands calculated from a modified Chodorow
potential, which is believed to include the dominant
effects of the electron-electron interaction.

The Fermi-surface radii were obtained by fitting
an APW phase-shift expansion to experimental
de Haas-van Alphen data, for various extremal
orbits normal to symmetry directions. In this way
it was possible to obtain Fermi-surface radii,
which are accurate to within the experimental limit
of error. The details of the calculation of band

III. ELECTRON-PHONON MATRIX ELEMENT

The matrix element of the electron-phonon in-
teraction can be formulated by replacing the ac-
tual lattice potential perturbed by phonons with an
array of appropriately displaced "muffin-tin" po-

TABLE I. Atomic force constants for the sixth-order
nearest-neighbor model used in the calculation of the
phonon spectrum.

Atomic force constants Ief. 9)
(dyn/cm)

y (1)
q„(1)
y„~(1)
y„„(2)
y~(2)
q„„(3)
y~(3)
y„,(3)
y~(3)

13278
—1 351
14 629

—41
—198

742
284
153
306

y (4)
y„(4)
y„,(4)

y (5)
y„(5)
q„(5)
y - (5)

y (6)
y„g(6)

350
—327

677
—195

—6
17

—71
—137
—135

velocities and the Fermi-surface radii are given
in Ref. 8.

A Born-von Karman atomic-force-constant mod-
el was used to calculate the phonon spectrum for
arbitrary wave vectors. The model took into ac-
count six shells of nearest neighbors and assumed
the force constants to be a'xially symmetric. This
restriction was necessary, as the parameters
were determined from inelastic-neutron-scattering
data along principal symmetry directions, and the
parameters of the general sixth-order nearest-
neighbor model cannot be determined uniquely from
symmetry data alone. The force constants used
are those reported by Nicklow et al. and set out in
Table I. The phonon spectrum was determined by
solving the normal-mode equation

M(u $„=Kg $gD N(q),

where M is the mass of the ion, co is the phonon
frequency, and $, 4 are the Cartesian components
of the polarization vectors. The dynamical matrix
is given by

D ~(q) = Z [-q, ~(R ~)][1—cos(q ~ R~)], (12)
LAO

where the R I, are the lattice coordinates of the
nearest-neighbor atoms, here restricted to sixth-
order neighbors, and y z are the atomic force
constants set out in Table I.

The analytical expression for the electron-pho-
non matrix element is discussed in detail in Sec.
III. The anisotropy of the matrix element will be
shown to depend on the magnitude of the initial-
and final-state wave vectors, and on the actual
form of the wave function of the initial and final
states.
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tentials. This is the approach used in the deriva-
tion of the general form of the AP% matrix ele-
ment by Golibersuchso and Sinha ss Allen and Lee
later demonstrated that the APW matrix element
can be expressed in terms of a pseudopotential
which depends only on a set of phase shifts 7l, (E~).
These phase shifts can be determined by fitting
de Haas-van Alphen data to a phase-shift model of
the Fermi surface, and are those that are used in
our calculations of the shape of the Fermi surface.

The phase shifts so determined depend on an en-
ergy parameter E~, which is equal to the depth of
the constant interstitial potential as measured
from the Fermi energy. The phase shifts can be
fitted to experimental data over a wide range of
E~. The small-angle scattering limit of the po-
tential, however, varies linearly with the energy
parameter E~, and the appropriate choice of the
energy parameter can be derived by long-wave-
length screening considerations. Ziman'2 has
shown that, in the limit of long wavelengths, the
pseudopotential must have the form

Ilm V~)2 (q) =
—1

(13)
q «O

where D(e~) is the density of states at the Fermi
energy. This limit then uniquely defines the en-
ergy parameter E~ and the corresponding set of
phase shifts.

Following the discussion of Golibersuch and
later Allen and Lee, we write the electron-phonon
matrix element as

l(f„-„-, =(k'~Z, 5It, — k), (i4)

where the summation is over all lattice sites.
i k) is the APW wave function which is given inside
the muffin-tin sphere by

~

k) =4 g o.'(1 4'(k+ G), (i5a)

where

e(k)= 5 c, (k)M, (r)y, (~) . (15b)

The M, (~) are the solutions of the radial Schro-
dinger equation, F, are spherical harmonics,
and the C, (k) are given by

c, .(1)= 4~~' I *, .(k)j, (kR, )/u, (R,),
where j, (kR, ) is the lth-order spherical Bessel
function. In the interstitial region r R„where
R, is the muffin-tin radius, the 4 (k) are plane
waves:

e(k) = e'"'~ .
(Note that we are only considering the problem of
one atom per primitive unit cell. )

The potential U appearing in Eq. (14) is a muf-
fin-tin potential, with the gradient outside the muf-

x ' I'*„, „(k)y, „(k')
8)) Q)+y

where

($)&.i, (&')), ((9)
Q~ Q~+y

&, =j...(k'R, )j, (kR,), A, =j) (k'R, )j(,g(kR,),
&) = )j( KgR) tan'g((Ep) y ) (KR~), K = Ep1/2

j& and y, are the spherical Bessel and Neumann
functions, respectively, and E(l) is given by

1+1
(21+ i)(2l + S)

x [tan71, (Ep) -tang„q(EF)j, (20)

where q, (EJ,) are the APW phase shifts. Allen and
Lee were concerned with the electron-phonon in-
teraction in the alkali metals, of which the Fermi
surfaces are essentially spherical, and they eval-
uated Eq. (19) in the case I ki =

I
k'I . In this pa-

per Eq. (19) is evaluated without this restriction.
By making use of the addition theorem for

spherical harmonics and by successive use of the
recursion relation

fin tin taken to be zero. This potential is described
by a set of phase shifts q, (EF). Lee and Heine'
have pointed out that the proper choice of the phase
shifts for the calculation of the electron-phonon
matrix element corresponds to a potential which
is formed by summing the individual overlapping
atomic potentials screened by the conduction elec-
trons, and which they term a pseudoatom pseudo-
potential. This potential has the required small-
angle scattering limit —the inverse density of
states at the Fermi energy.

The deviation of the ionic coordinate R& from its
equilibrium value R,. can be expressed in terms of
phonon creation and annihilation operators by

e
5R, = Z —,-~ ~„e""~(a'2, +a;,), (IV)2/M cu', )

where M is the ionic mass, ~, is the phonon fre-
quency of wave vector q and polarization 0, N is
the number of atoms per unit volume, and &„ is
the unit polarization vector. Thus the evaluation
of the matrix element reduces to the evaluation of
the quantity &„ I(k, k'), where

i(k, k') = &k'~ ~V~ k) . (is)

In Eq. (18), Ik) is a single APW. Allen and Lee
have shown that the above equation can be reduced
to

2 2 1/2
2 1(k, k')=(4v)'i+F(1)Z

m l+ 1
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TABLE II. Energy derivative of the logarithmic
derivative of the radial wave function in copper, I„on
atomic units), as defined in Eq. (25).

l=0
l=1
l=2
l=3
l=4
l=5
l=6
l=7
l=8

1.1154
0.6529

26.7646
0.3249
0.2286
0.1911
0.1644
0.1443
0.1287

(l +1+m)(l +1 -m)
(2l 1)(2l 2)

(I+m)(l -m) ('
(2l + 1)(2l —I)l

we obtain the following result:

Ijk, k'j = 4mi ~, tan7lg(Er) -tang„g(Er)
~l &l+1

x Z -', [(A, +B,) (k —k') + (-)"' (A, —B,) (l +k')]

5,5' ~ cell
ns ns. @*(k+5) @(R'+G') dr = 0, (23)

where 0 is the volume of the unit cell. The over-
lap integral is given by

~

4*(k+ C) e(k+ C')dr= ~M«,

-4wIt, ' ' —, 2 (2l+1)P, (coss~o „,o. )
j (R, l 5 —O'I )

x j,(E 1k+~I) j~ (Il
I

"+~'l)I„'', (24)

where, following Loucks, "we have defined I„' as
the energy derivative of the logarithmic derivative
of the radial wave function

x (2l'+1)P, .(cos&„"y) . (21)

Thus, the APW matrix element is given by

( &/2

Mg =I( ~ ~
2 nfl. I (k+G, k'+G') .2M', j gp.

(22)
&

The expansion coefficients ng, np. appearing in
the above equation, are those of the normalized eigen-
functions of the APW secular determinant. The
normalization condition on the wave function is

for I„' are presented in Table II.
In calculations of the band structure and of the

shape of the Fermi surface, it is necessary to
use at least 30 basis functions to obtain a good
fit to experimental data. In calculations of the
electron-phonon interaction, however, it is pos-
sible to obtain agreement with experiment using
far fewer basis functions. Allen and Lee, in their
work on the phonon resistivities of the alkalis, ob-
tain satisfactory results using single-APW basis
functions. In the alkalis the Fermi surface is es-
sentially free-electron-like, and one expects a
single plane wave to be a good approximation to
the wave function, whereas in copper the Fermi
surface protrudes to intersect the zone boundary.
Near the zone boundary the wave function can only
be described by a mixture of APW basis functions.

In the present work the matrix elements were
calculated using wave functions involving from 2
to 30 APW basis functions. The choice of a re-
duced set of basis functions was made by solving
the APW secular determinant for the normalized
wave function using a 60-APW expansion at each
of the points of interest. A set of basis functions
with the largest coefficients was then chosen, and
the reduced secular determinant was solved for
the normalized wave function. When a reduced
set of basis functions is used for the wave-function
expansion, the APW secular determinant is, in
general, no longer zero; therefore a least-squares
procedure was used to solve the reduced APW
secular determinant for the wave-function coeffi-
cients. The errors involved in this truncation
procedure are discussed in Sec. IV.

The alternative procedure of approximating the
wave function by the leading coefficients of a 60-
APW expansion has two drawbacks. The approxi-
mate wave function is not properly normalized,
and convergence of the electron-phonon matrix
element is less rapid. These problems are
greatest in a two- or three-basis-function approx-
imation and diminish rapidly as one increases
the number of basis functions.

q-0 limit of matrix element. As discussed
earlier, it is necessary that the APW pseudopo-
tential should satisfy the appropriate low-q limit.
This may be achieved by choosing the parameter
EF so that the following equation is satisfied:

. lim Z nest ns. I(k+ 5, k+ G'+ Q)
Vf ~ 0 /Pi Vg

S u,'(E., E)
SE u, (R„E) (25)

-1
=

D( )
(26)

Equation (25) was evaluated by solving the Schro-
- dinger equation for an empirical nonlocal modifi-

cation of the Chodorow potential. ~ The results

[For copper I/D(e~) is equal to 0. 272 Ry. ] The
term in the absolute value sign can be expressed in
symmetric form as follows:
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TABLE III. Set of phase shifts for which the Fermi-
surface average of the small-angle scattering limit is
equal to the inverse density of states. The energy pa-
rameter is expressed in rydbergs and the phase shifts
are in radians.

qo = 0.732 705 q2 = —0.025 083

q) =0.233 972 0.000 053
Ep.=0.27

nn ng. ! 1(k+6, k+6'+Q)
55'

+1(k+ 6', k+6+/)],
where in the limit q- 0 we have, from Eq. (21),

1 ~i k f, 4pj ~ tang, (E~) -tang„g(Ep)
Qg Qpi55' ~ i Mt Mr+

x p Q,.(k+6, k+6', g) (21'+1)I';(cosIIf„p;,p. ) .
(27)

Q is given by
k' r

Q, (k, k', Q) = —+ —,+ (k -k')I qg q„ I
I

x (Al+ l) ~( 1)l+l' L qj
(k kI)

8 yi 9 A/ B$ (28)

where 9', q, are given by

q,', =q k, g=q-q kk.
The term on the left-hand side in Eq. (26) is ap-
proximately a linear function of the energy pa-
rameter E~. Thus it is a simple matter to calcu-
late the appropriate value of E~ and the corre-
sponding phase shifts q, (E~) that will satisfy Eq.
(26).

On the belly of the Fermi surface the difference
vector g= k —k' is approximately perpendicular to
k and k', and the small-angle scattering limit is
independent of the orientation of g. Near the neck,
however, the matrix element depends on the
orientation of q with respect to k and R', and it is
necessary to consider the angular average of Eq.
(27) when computing the Fermi-surface average
of the small-angle scattering limit.

Equation (27) is also the matrix element that
enters into the ca,lculation of the relaxation time.
As noted before, when f is not perpendicular to
k, the matrix element allows for coupling with
transverse phonons even in the small-angle scat-
tering limit. It is the aspherical character of
the Fermi surface that accounts for the large in-
crease in the scattering rate on the necks over

that on the belly. However, the angular average
of the transverse component of the matrix ele-
ment is zero, and hence the Fermi-surface average
of the small-angle scattering limit depends only
on the longitudinal component of the matrix ele-
ment.

IV. RESULTS AND DISCUSSION

The Fermi-surface integrals appearing in Egs.
(5) and (26) were evaluated by dividing the Fermi
surface into 912 sections of approximately equal
area. The integrals were then replaced by a sum-
mation over the individual sections. The tech-
nique used in the calculation of the area of the in-
dividual sections will be reported in Ref. 21.

A. Small-Angle Scattering Limit

Since, as discussed in Sec. III, the Fermi-surface
average of the small-angle scattering limit is ap-
proximately a linear function of E~, the value of
Ez for which Eq. (26) is satisfied can readily be
obtained. The set of phase shifts corresponding
to this value of E~ is set out in TaMe GI. Where-
as in ordinary pseudopotentia. l theory the small-
angle scattering limit is isotropic, the present
formulation yields a distinctly anisotropic limit
as shown in Fig. 1.

It is important to note that the energy parameter
E~ is determined by requiring that the pseudopo-
tential should satisfy the small-angle scattering
limit, and that there are no free parameters in the
APW formulation of the electron-phonon matrix
element.

B. Renormaljtzation

In the calculation of the renormalization factor
A.(k), the integral in Eq. (5) was replaced by a
summation over 912 sections of the Fermi surface
and is given by

0.8—

0.6-
Ct

0.4-
CO

0.2—

I I ! I I I I I

~o ~5 o i5 so 4~ 6o

(I I 0& (O[Q)
&j& (peg ) (I I I) (IOI)

FIG. 1. Small-angle scattering 1.imit of the APW
pseudopotential is plotted in symmetry zones of copper.
The Fermi-surface average of this limit is —0.272 By.
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0.20

O. l 5

0.10
/

/

0.05-~~

( )
20 g 48j,
(2v)',„8e"„,

2
lm-„, „-, j

k&~
k~ k]

(29)

This expression was evaluated using three differ-
ent expansions of the wave function. The first
two were mixtures of two or three and three or
four basis functions, respectively, while the third
was an 8-APW basis-function expansion of the
wave function. The Fermi-surface averages of the
the enhancement (X(k) ) were found to be equal,
within the computational error, for all three.

The results of the calculation of X(k) are pre-
sented in Figs. 2 and 3. In Fig. 2 we have plotted
contours of constant X. These were determined by
fitting a cubic harmonic expansion to calculated
values of X at the individual points. In Fig. 3 the
renormalization factor Z(k) is plotted within sym-
metry zones and, as can be seen from the plot, X

has maxima along the (111) and (010) directions
and a minimum along (110). This is consistent
with the anisotropy of X(k) as obtained from the in-
terpretation of experimental cyclotron-mass data
by Lee, also given on the same plot. There are
discrepancies, however, in the absolute magni-
tude of X(k) along the (110) and (111)directions.

I I I I I I I

45 30 15 0 15 30 45 60 75 90
& I I 0) (010)

y ( d e q )
&10I)

FIG. 2. Angular variations of the electron-phonon
renormalization g {k)in symmetry zones of copper. The
solid curve is from the present work and the dotted curve
represents Lee's interpretation of experimental cyclo-
tron-mass data.

The technique used by Lee to estimate X(k) in-
volves a calculation of the quasiparticle velocities
from experimental cyclotron-mass data, and a
comparison with the band velocities derived from
a modified Chodorow potential, which is believed
to include the dominant effects of the electron-
electron interaction. Evidence for this assump-
tion has been discussed by Nowak and Lee, and
it is further supported by recent work of Wil-
liams, Janak, and Moruzzi, who found that the
Chodorow potential predicts values of the dielec-
tric function and the energy distribution of photo-
emitted electrons in good agreement with experi-
mental data. However, Christiensen 3 has
stressed the possibility that the Chodorow poten-
tial may be less than fully renormalized by the
electron-electron interaction. If this is so, Lee' s
calculation might underestimate X(k). It is also
possible that the discrepancies noted above could
arise from uncertainties in the interpretation of
the experimental data along various orbits to yield
local values of the quasiparticle velocity.

The Fermi-surface average of X(k) was obtained
by summing the individual Z(k) weighted by the
local area and density of states. This average
(X) is given in Table IV, together with estimates
by other authors. The theoretical estimates of
the upper and lower bounds on (X) were calculated
by Grimvall from superconductivity data and
resistivity data, respectively. Allen's results
were based on first-principles calculations, utiliz-

(ooI)
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~ so-

(IOI) p5

60—

TABLE IV. Result of this paper for the Fermi-sur-
face average of the electron-phonon renormalization is
presented, along with other calculated values.

0 l 5 30 45 60
(I00) (I I 0)

90
90

(0 I 0)
Grimvall {Ref. 24)

Nowak and Lee {Ref. 21)
Allen {Ref. 6)

Present work

0.07 {lower bound)
0.24 {upper bound)
0.10+0.01
o.45 {HM)
o.os {Fc)
0.12+0.02

$(deg j

FIG. 3. Contours of the electron-phonon renormaliza-
tion g {k) in copper are plotted on a stereographic projec-
tion. The contours were obtained from a cubic-harmonic
expansion fitted to the results calculated at selected
points on the Fermi surface.
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FIG. 4. Angul. ar variations of the inverse relaxation
time 1/7 (k) in symmetry zones of copper. The solid
curve is from the present work, and the points represent
the experimental data of Koch and Doezema. On the belly
of the Fermi surface the experimental points represent
averages over an angular range of about +6 .

ing a one-plane-wave expansion for the wave func-
tion and assuming a spherical Fermi surface.
The two values he reports are calculated from the
Harrison-Moriarty (HM) pseudopotential2' and the
Fong-Cohen (FC) pseudopotential, 7 respectively.
Allen decomposed the HM and FC potentials in
terms of effective phase shifts, and found that the
d-phase shift is negative in the HM pseudopoten-
tial, but is positive in the FC pseudopotential. A

negative d-phase shift corresponds to a repulsive
interaction due to the d bands lying below the
Fermi. surface, and is in agreement with scatter-
ing theoretical arguments. The value of Nowak
and I ee ' was obtained by an approach similar to
that used by Lee in his analysis of the anisotropy
of the renormalization.

C. Relaxation Time

The relaxation time was calculated from Eq.
(9). The procedure is quite straightforward on
the belly of the Fermi surface where the small-
angle scattering limit is very nearly independent
of the orientation of q, and the matrix element
involves terms coupled only by longitudinal phonons.
Equation (9) was evaluated by setting C~ =4. 69

&& 10' cm sec ' and calculating (M~.„),using a 30-
AP% basis-function approximation to the wave
function. Near the necks, however, the problem
must be treated more carefully. To calculate the
relaxation time, it is necessary to calculate 5/v'(k)
for all possible orientations of q, since for arbi-
trary q, coupling to transverse phonons is possible.
This was accomplished by dividing the plane of q
into intervals of ~&~ n radians and then calculat-
ing 1M-„»„1 and C, in each of the intervals. The re-
sults of this calculation within symmetry zones are
shown in Fig. 4, together with the experimental
data of Koch and Doezema. ~ A plot of the contours
of constant 7 is given in Fig. 5. These were ob-
tained by the same technique as for the renormal-
ization.

Our results can be compared with the experi-
mental data of Koch and Doezema, and agree with
the general form of the anisotropy they report, al-
though our calculations yield a value smaller than
the experimental value near the (100) symmetry
direction. Also, their result on the neck is slightly
smaller than ours. Gantmakhers has measured the
inverse relaxation time averaged around the belly
orbit normal to (100), 1/re, and around the "dog' s
bone" orbit, 1/7n. His results are shown in Table
V, together with the corresponding averages from
the present work. Our results are consistent with
the experimental value for 1/r~; however, our
value for 1/7'e is somewhat smaller than the re-
ported. experimental value. This may be because
our results underestimate the absolute magnitude

&ooi&0:~

15—

50-

& lol) p5

TABLE U. Present results for the orbital average of
the inverse relaxation time on the belly, 1/7'z, and on the
"dog's bone" orbit, 1/7&, are compared with preliminary
experimental data of Gantmakher.

I I I I

0 15 50 45 60
&100& &ii 0&

$(deg)

75
'90

90
&OI 0)

Gantmakher (Ref. 3)
Present work

0.3
0.23 +0.05

0.67
0.67+0.17

1/ve 1/~D

(10 sec /'K )

FIG. 5. Contours of the inverse relaxation time
1/v(k) in copper are plotted on a stereographic projec-
tion. The contours were obtained from a cubic-harmonic
expansion fitted to the results calculated at selected
points on the Fermi surface. The contours are in units
of 10 sec /'K
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of the scattering rate near the (100) direction, as
is suggested by a comparison with the results of
Koch and Doezema.

The error involved in the truncation of the wave
functions can be estimated by checking the conver-
gence of the matrix element as the number of basis
functions is increased. In the smal. l-angle scatter-
ing limit, the change in going from 8 to SQ basis
functions is less than 10% in the local matrix ele-
ments and less than 5% in the Fermi surface aver-
age of the matrix element.

The uncertainties associated with the results re-
ported in this paper do not reflect any errors in-
volved in replacing the actual lattice potential with
displaced "muffin tins. '" As discussed above, the
choice of the muffin-tin-potential approach was
motivated by the success of this method for energy-
band calculations, particularly in the transition
metals, and for discussion of the phonon resistiv-
ities of the alkali metals. The expression for the
electron-phonon matrix element used in the pres-
ent paper involves the replacement of the per-
turbed lattice potential by an array of rigidly dis-
placed potentials of muffin-tin form. Sinha" has
derived an expression for the electron-phonon
matrix element which includes the present result
plus additional terms representing the electron
response. The form of the electron-phonon matrix
elementused in the presentcalculations is the domi-

nant term, and calculations by S. T. Chui suggest
that the additional terms are an order of magnitude
smaller. ~6 The small-angle scattering limit fEq.
(13)] applies strictly to the complete electron-
matrix element, and to this extent the determina-
tion of E„and the phase shifts is approximate.

V. CONCLUSION

In the present paper the application of the APW
method to the problem of calculating the anisotropy
of the electron-phonon renormalization and the tem-
perature-dependent (T3) component of the quasi-
particle relaxation time is discussed. This ap-
proach requires a knowledge of the anisotropies
of the Fermi surface and the phonon spectrum. The
matrix elements of the electron-phonon interaction
were calculated from an APW pseudopotential, in-
volving phase shifts determined by an analysis of
experimental Fermi-surface data. The wave func-
tions used in the evaluation of the electron-phonon
matrix element were determined by diagonalizing
the APW secular determinant. Such an approach
yields absolute values of the renormalization and
relaxation time.

The renormalization is in good over-all agree-
ment with results obtained by Lee from an analysis
of experimental cyclotron-mass data. The scatter-
ing rate is also in good agreement with experi-
mental data of Koch and Doezema. This success
in describing the principal features of the anisot-
ropy of the electron-phonon interaction in copper
suggests that the APW pseudopotential may prove
to be an accurate way of describing the electron-
phonon interaction in transition metals.
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The model recently proposed by Ranurez and Falicov is generalized by the incorporation of
the spin-orbit splitting of the 4f shell. This generalization provides an understanding of the
fractional valence and magnetic susceptibility of e-cerium and suggests a mechanism to drive
the n-o.' phase transition.

I. INTRODUCTION

Phase transitions of Ce metal have received a
great deal of attention in recent publications. '
A p-7 phase diagram (a.s given in Refs. 2 and 3)
shows the following most relevant properties of
the different forms Ce metal takes: The P and

y phases exhibit a magnetic moment close to the
value of a singly occupied 4f shell. The u phase
shows about one-fourth of the magnetic suscepti-
bility of the y phase, ' while the a' phase has been
found to be superconducting, which implies that
it has very weak magnetic properties. On the
other hand, the P phase undergoes an antiferro-
magnetic transition at 12.5 'K making Ce the only

known element to have both magnetic and super-
conducting phases. '

In this paper we also focus our attention on the
&-~' phase transition for which the available ex-
perimental knowledge can be summarized as fol-
lows: (a) At room temperature the transition is
observed to occur at about 50 kbar; (b) the super-
conducting transition temperature is I.8 'K; (c)
there is no agreement with regard to the crystal
structure of the ~' phase, ~ but the lattice param-
eter has been determined as 4. 66 A, while the a
phase is known to be fcc with a lattice constant of
4. 73 A; and (d) the n phase has a valence of
3.67+ 0.09, intermediate between the y-phase
value of about 3.0 and the n' phase which is as-
sumed to be a truly four-valent metal. '

From the theoretical point of view, Ramlrez
and Falicov (RF) recently proposed a model to
explain the y-& phase transformation of Ce. They
assumed that the transition was driven by the

promotion of one electron from an f orbital in the
y phase to the s-d conduction band in the u
phase. This implies that the a phase would con-
sist of nonmagnetic Ce -ion cores and four con-
duction electrons per atom, and therefore does
not agree completely with the experimental re-
sults mentioned above.

In this paper we generalize the RF model in or-
der to achieve a satisfactory agreement with ex-
periment and suggest a mechanism to explain the
a-~' phase transition. The main feature of our
generalization is to incorporate the spin-orbit
splitting of the 4f shell into the theory; this is
achieved by introducing a doubly peaked density
off states in order to allow electrons to populate
both the J= —,

'
ground state or the J = y excited state

of the Ce atom.
In a certain way our model incorporates, and

provides a formalism for, qualitative ideas out-
lined by Maple and Wohlleben' in relation to SmS,
which in turn are based on a recent proposal of
Hirst; a discussion of this aspect is given in Sec.
IV.

The general outline of this paper is as follows:
After the present introduction a significantly im-
proved solution of the RF model is given in Sec.
II. Qn the basis of this solution, the generalized
theory, which includes the spin-orbit splitting of
the 4f shell, is developed in Sec. III. A full ac-
count of the minimization procedure of the perti-
nent forms of the Helmholtz free energy, its
evaluation as well as the phase transitions and
critical behavior that result, are given both in
Secs. II and III. The paper is closed in Sec. IV
with a critical discussion of the theory, in the


