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X-Ray Compton Profiles of Li and Na: Theory and Experiments
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A general discussion is presented of x-ray Compton profiles for conduction electrons in
metals. A formalism that includes both the interelectron Coulomb interaction and the electron-
ion interaction is then introduced. X-ray-scattering measurements of the Compton profiles of
single-crystal Li and polycrystalline Na were carried out at room temperature. There is sub-
stantial agreement bebveen our experimental data and the theoretical predictions.

I. INTRODUCTION

Following the discovery and explanation of the
Compton effect, it was suggested by several
people that this effect might be useful for measur-
ing the electronic momentum density of a variety
of systems. ' Recently, there has been renewed
interest in utilizing this rather unique microscopic
probe. 3 6

In a typical experiment, incident x rays with fre-
quency&&, wavevectork&, andpolarization &,are
scattered into a small solid angle. The scattered x
ray is described by the corresponding quantities

~z, k2, and e2 (see Fig. l). The cross section
may be completely characterized by the two quan-
tities:

a
dali

~&l( t ~ k ~ p
d&gdQ dQ) 0 &oq)~J

P ' 2m m j

(2)

where

is the Thompson cross section. The momentum
density N- is defined by,

N;= (aa;), - (4)

where ( ) denotes the exact ground-state average
of the free-fermion annihilation (a~) and creation
(a-) operators. Choosing the s axis as the direc-
tion of k, the Compton profile is

Z(q) = fdp„dp-„[X;]....,
with

q = (—,
' k —m(o/k) .

Equation (2) is valid as long as the energy of the
x ray is small compared to mc but large enough

which are, respectively, the energy and momentum
transferred to the medium. In the so-called im-
pulse approximation, ' the cross section is given

so that the recoil energy 5 k /2m is much greater
than the characteristic energies of the system
being studied.

The momentum density ¹ can be simply related
to the Fourier transform of the many-electron
wave function. The Compton profiles then serve
as a useful check of the different approximate the-
oretical calculations of these wave functions.
Most of the published work, attempting to inter-
pret Compton profiles, has concentrated on two

quite different types of physical systems: (a) Sev-
eral groups have attempted to fit the Compton
spectra of simple atoms and molecules, ' ' and (b)
a discussion of the Compton profiles of the con-
duction electrons in some simple metals has been
given. '

In this paper, we will concentrate on the prob-
lem of the momentum density of the conduction
electrons in simple metals. From a theoretical.
point of view, the momentum density of these
simple metals is an interesting one. Wave func-
tions of the conduction electrons in metals are,
as a rule, calculated in the one-electron self-
consistent-field approximation. 9?hile the ac-
curacy of such wave functions to describe the mo-
mentum density remains to be tested, the more
fundamental question is whether we have to go be-
yond the one-electron formulation to realistically
interpret the experimental Compton profiles for
metals. This is the spirit which underlies our
present investigations.

The deviations from free-electron behavior
arises from a number of different sources. The
Coulomb interactions between electrons and the
interaction of the electrons with the ion cores give
rise to the final correlated momentum density.

FIG. 1. Schematic description of the incoherent photon
scat tering.

3671



EISENBERGER, LAM, PLATZ MAN, AND SCHMIDT

hNP „Np II. QUALITATIVE CONSIDERATIONS
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The interplay of these two effects are best illus-
trated in lithium and sodium. They both have
bcc structure and almost the same electron
densities but differ in the strength of electron-ion
interaction by an order of magnitude. In fact,
sodium, as we shall see, is very close to a ho-
mogeneous electron gas, i. e., the interactions of
the conduction electrons with the ion cores are
small. In this alkali the interelectron Coulomb
interactions are dominant. Lithium, on the other
hand, has a larger electron density but a nontrivial
amount of electron-ion interactions, and both ef-
fects are significant. Since neither the homoge-
neous interacting electron gas nor the inhomoge-
neous noninteracting gas are exactly soluble, our
approach to the problem must be approximate.

The earliest theoretical work on the subject of
the momentum density in an interacting electron
liquid focused on the behavior of the completely
homogeneous system. The Coulomb interac-
tion was handled by treating it as weak. Recently,
some preliminary discussion of the momentum
density in the inhomogeneous system has been giv-
en by Lundqvist and Lydian. Their treatment, like
ours, is approximate. Unfortunately, the exact
nature of these approximations and their limits of
validity have not been accurately defined. In this
paper, we will present a first-principles, but approx-
imate, treatment of the inter acting inhomogeneous
electron fluid. Our approach will be to treat the in-
homogenities to lowest order and relate the exact sec-
ond-order momentum density to the exact re-
sponse function of the homogeneous system. As-
suming that the homogeneous system is accurately
characterized by random -phase-approximation
(RPA) theory, we will compare our theoretical
results with experimental spectra taken in single
crystals of Li and polycrystalline Na.

FIG. 2. Momentum density of electron gas: (a) nonin-
teracting, (b) homogeneous interacting, (c) inhomogeneous

interacting.

At zero temperature the three-dimensional mo-
mentum density of a noninteracting homogeneous
electron gas is the Fermi distribution [Fig. 2(a)].
This square three-dimensional distribution when
integrated over the two directions perpendicular
to the momentum transfer k [see Eq. (5)) gives the
characteristic parabolic Compton profile [Fig.
3(a)]. When the interelectron Coulomb interac-
tions are turned on, we expect a tail to appear in
the momentum density beyond the Fermi momentum

p~. The discontinuity at p~ persists but its value
is reduced from one to Z~, the renormalization
constant [Fig. 2(b)]. This altered three-dimen-
sional distribution yields (integrating over the two
directions perpendicular to k) a curve with a
smaller break in slope at pz and a long tail [Fig.
3(b)]. The area under each curve in Fig. 3 is the
same, i. e., proportional to the number of elec-
trons. The finiteness of the average kinetic en-
ergy (X.E. )

(7)

implies that the tail in ¹ falls off at least as fast
as IpI

Accurate first-principles calculations of the
momentum density can only be performed for weak-
ly interacting fermion systems. The results of
an RPA calculation of the momentum density for
an electron gas' at the density of metallic sodium
(r, = 3. 97) are displayed in Fig. 4. The quantity r,
is defined by (3/4mn) ~3 in atomic units, where n
is the electron density. Qualitatively, it is as ex-
pected. The tail in the momentum density falls off
as p

e and Z~ =0. 51.
When such a system of interacting electrons is

submerged in a lattice of static ions, as in the
case of metals, the momentum density N- changes
in two significant ways. ' First, the sphere in mo-
mentum space centered at p=0 becomes, in gen-

PF

FIG. 3. Compton profiles of electron gas: curve (a),
noninteracting; curve (b), homogeneous interacting.
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FIG. 4. Calculated momentum density of homogeneous
electron gas I.ef. 10), ~, =3.97.

eral, an anisotropic surface enclosing the same
volume as before (l.uttinger's theorem). We call
this the main m surface. Second, new surfaces
identical to the one at p =0 appear centered on each
of the other reciprocal-lattice points. These are
called secondary m surfaces. All these m sur-
faces are the images of the Fermi surface of the
metal across which N; suffers some discontinuity.
They may be completely separate from each other
or overlap in part, depending on the geometry of
the lattice and the electron-ion interaction. The
discontinuity of N; at the main m surface is, in
general, reduced from Z~, the case without the
ions. Similarly, the discontinuity at the secondary
m surfaces is, in general, smaller than that at the
main m surface. In contrast to the one-electron
approximation (the band picture), there is no re-
gion in the momentum space where N; is identical-
ly zero. Of course, the integral of N; over the
whole momentum space is still conserved. This
means that N- is reduced inside the main nz sur-
face, the intensity being transferred to the sec-
ondary m surfaces. The general qualitative pic-
ture for a weakly inhomogeneous system is that ¹

is large within the m surfaces especially the main
one, and relatively weak outside these surfaces.
An example of this behavior is sketched in Fig.
2(c).

Equations (2) and (5) imply that for a fixed di-
rection of the momentum transfer k, the Compton
profile actually measures the amount of N", con-
tained in a plane perpendicular to k sweeping
through the momentum space. The profile will
have a cusplike behavior whenever the plane
touches one of the m surfaces. In addition to the
sharp one where the plane last touches the main m

surfaces as one moves away from the origin to-
wards large k, there will be secondary cusp points
when the plane happens to be tangent to other parts
of the main m surface (secondary cusp points of
the first kind). This does not happen for a spheri-
cal Fermi surface. A second kind of secondary
cusp behavior exhibits itself even if the Fermi
surface is spherical. These breaks appear when

the integration plane touches the secondary m sur-
faces. These results follow from our general
discussion of the N» function and the fact that the
sharpness of the break in the Compton profile re-
flects the amount of discontinuity present in N.
across the m surfaces.

For a metal, secondary cusp points always ex-
ist, although they may be difficult to detect. The
secondary cusp points of the first kind (main I
surface) provide information on the shape of the
Fermi surface. The distance between the two
main cusp points measures the distance in mo-
mentum space between the two planes perpendicu-
lar to k which touch and sandwich the Fermi sur-
face from outside. ' The secondary cusp points of
the second kind reflect the position of the recipro-
cal-lattice vectors and hence the size and struc-
ture of the crystal.

The anisotropy of the Compton profiles for dif-
ferent directions of A relative to the crystal axis
is due to the geometrical arrangement of the sec-
ondary m surfaces and the nonsphericity of each
m surface. For simple metals like the alkalis,
the former definitely outweighs the latter.

In Sec. III, a general formalism which allows us
to compute N», taking both the Coulomb correlation
and crystal effects into account will be presented.

III. GENERAL FORMALISM

A. Momentum Density of the Weakly Inhomogeneous
Electron Gas

Our method of finding the momentum density of
an inhomogeneous electron liquid described by the
Hamiltonian H is based on the two facts'7: (i)

(8)

where E~(y) is the exact ground-state energy of

a,(x), and

H~(y) = H+), aJ a~ . -
Here p-=(p, g~) denotes the momentum and spin of
the plane-wave state of an electron. The Hamilto-
nian H contains both the Coulomb interactions
among conduction electrons and the interactions
of these electrons with the ion cores.

(ii) In the graphical perturbation calcula. .ions of
E~(X), the same graph rules and same set of graphs
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devised for the homogeneous electron gas can be
adopted. The only difference being that we re-
place e, =—k'/am=- z; by

&a(p) =
~a+ &s~, ~ (io)

Rule (i) follows directly from Feynman's the-
orem. ' It relies on the fact that the normaliza-
tion of the ground state of H~(y) is independent of

Rule (ii) is not completely trivial since one
might suppose that the distribution function ap-
pearing in the zero-order Green's functions which
characterize the perturbation theory could also
be modified by ~. The essential point is that this
distribution does not change. The Hamiltonians

T =—~a &a ~n ~~
t

Tp=~a ~o(p) ~a ~o (ia)

(0 I H„l m) (m I H„ I 0)
Eo Em (i4)

where Io)(l m)) is the exact ground (excited) state
of T~+Hc with energy E'(E"}. Combining Eqs.
(6) and (14) we find that

Np= Np+ &Np,0

where N~~ is the momentum density of a homo-
geneous electron gas and

(i6)
In this way, the pairwise Coulomb interaction is
included to all orders while the external potential
is taken to second order.

For electrons in metals,

H„=Z: Vsp-
0

have the same ground state. In T~ we have only
changed the energy of a single state p. The only
way the Fermi distribution could change is if
g& Iq&- && I, and since we are interested in the
limit y-o, rule (ii) follows.

For an interacting electron gas in an external
potential, the Hamiltonian is defined by

H= 7+He+Hz ~

where T is given in Eq. (11). The Hamiltonian Hc
characterizes the pairwise Coulomb interaction
between electrons, and II„-that part due to the
external potential.

When the external field is weak, H, in Eq. (13)
can be treated as the perturbation while T+H~ can,
at least formally, be treated exactly. The same
situation holds for H~(A) defined by Eq. (9). To
second order in H„we have

E,(x) =(oi T,+H, io&+(oiH„io&

where

p o=~ &&o,suy, ej,a
(i6)

v(x)=E v; e"'"
G

(i9)

is the potential energy due to the interaction of the
electrons with static ions. The P's are the non-
zero reciprocal-lattice vectors of the metal. The
first term in Eq. (16) vanishes because of the
translational invariance of T~+Hc. Equation (16)
then becomes

[
v ~o

s ~ l(m lp -lo
o S& ~ E' -E" ~-o

(ao)

Recalling the definition of the dielectric function
e(q, ~) of a homogeneous electron gas,

)]., 1 ~ ace„ol(mlp ~IO) I

co+z —& 0
(21)

with

v, -=4me /q, qeo
—=0, q=Q (22)

Em Eo (23)

B. Simplifications in RPA

The mast general form of the static dielectric
function is formally given by

%e see then that

, p 1 Vo (SS,(G, O)
( )(c o) ~ s~

where s~(G, O) is the dielectric function correspond-
ing to the Hamiltonian H~(X). Equation (24) is the
principle result of this section. It makes sense
only if the denominator does not vanish. For bcc
crystals like Li and Na, IGl is always greater than
two times the Fermi momentum and Eq. (24) is
well defined. With rule (ii) in mind, utilizing an
explicit form for the dielectric function of a homo-
geneous electron gas, 4X& can be obtained in analy-
tic form.

Before evaluating Eq. (24) in a particularly sim-
ple approximation, we would like to consider how
Vp may be related to a more physical quantity which
is directly measurable. This may be done by using
our model Hamiltonian H defined in Eqs. (13) and
(17) to calculate, for example, the band gaps pres-
ent in the one-electron band structure. To the ex-
tent that the response of the electron gas to the ex-
ternal potential is linear, as we have already as-
sumed in deriving Eq. (24), the band gap in the
direction of 0 is given by'

aG ——2~z A"v-/&(G, o)~ (as)

where Z~ is the quasiparticle renormalization con-Py
stant and A& is the proper vertex part.
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s(G, O) = 1 —U~Q(G, O),

where Q(G, 0) is the electron polarization function.
In RPA, Q(G, O) is taken to be the free-electron
polarizability given by

(26)

Q'(G, 0) =+ (&';,.—&';.o„)/(&;.6,.-s,-,.), (27)

where n,-=—n;„ is the noninteracting Fermi distribu-
tion. In this approximation [combining Eqs. (24)
and (26)],

with

(28)

The general experimental procedure is well
documented in the literature ' and will not be de-
scribed here. The experiments were carried out
at room temperature and a scattering angle of
170'. One significant difference in this study is
the use of a LiF(600) analyzing crystal to obtain
higher resolution. Because of the sharp discon-
tinuity in J(q) expected at the Fermi surface, the
Fourier-transform method was not used to re-
move finite resolution effects. The trial-and-
error approach described by Phillips and Weiss
was used instead. A main problem in studying the
conduction electrons in Li and Na is the subtrac-
tion of the contribution of the core electrons. The
same procedure described in previous work,
used in removing the 1s electron contributions in
N~, 02, and Ne was used to remove the contribu-
tion from the core electrons. A check was made
after the subtraction to see if the ratio of the ar ea
under the core profile to the area under the con-
duction electron profile was 2 to 1 in Li and 10 to
1 in Na. The ratios were correct within 1%. For
Na impulse approximation corrections were made
for the 1s electrons.

Mg(G) =-Z (n'; —~';,-, ) (6; „-,g- &;,g)/(ep. 6- ep)'

(28)

w-, =-,'~-,/lz, A,"l . (80)

In this approximation 4¹,is exactly the second-
order correction to the momentum density (sec-
ond order in the external potential) for a free-
e1eetron gas in the presence of an appropriately
screened VG, i. e. , WG. The discontinuities in
this additional momentum density 6¹,reflect the
discontinuity in the n;, i. e. , in the spherically
symmetric interacting homogeneous electron li-
quid. For this reason we would expect Eq. (29) to
apply to systems which, to a large extent, have
an almost spherical Fermi surface. Most of the
alkalis including Li are materials of this kind.

IV. EXPERIMENT

There have been numerous Compton scattering
experiments performed on Li ' ' ' and one on
Na. The previous Li experiments have failed to
discern any anisotropy in the Compton profiles
and have been performed on samples which are so
thick that multiple-scattering effects were un-
doubtedly significant. The previous Na experi-
ments did not give quantitative results and in ad-
dition failed to consider corrections to the im-
pulse approximation in subtracting the 1s core
contributions. In this work, the anisotropy of the
momentum density in Li was detected. Multiple-
scattering effects were evaluated, and correc-
tions to the impulse approximation were made for
the inner-shell electrons in Na.

A Na Experiments

The Na samples were studied in a vacuum
chamber. Both silver and molybdenum radiation
were used to remove ambiguities about impulse
corrections. Since Na has the sharpest profile
of any measured Compton profile, the resolution
corrections are very large. Further studies were
made of the resolution corrections by making mea-
surements on polycrystalline Na using Ag radia-
tion and a LiF(400) analyzing crystal, Mo radia-
tion and a LiF(400) analyzing crystal, and finally
Ag radiation and a LiF(600) analyzing crystal.
Thus, a range of approximately 50/o in experi-
mental resolution was spanned. The data were
analyzed independently for each case and the finite
resolution effects were removed. The final re-
sults were compared and the agreement was good
enough (less than 2% differences at q = 0) that one
had considerable confidence that one was correctly
evaluating the finite resolution effects. In other
words, the previously described recipe for de-
termining the resolution function was capable of
spanning the 50% range in experimental resolu-
tion. The final data are essentially the results
obtained using Ag radiation with the LiF(600) ana-
lyzing crystal. The Mo experiments using the
LiF(400) analyzing crystal were used in the core
electron region (q & 2) to help give an accurate
subtraction of the core contribution. The results
for polycrystalline Na are given in Table I and
Fig. 5. For illustration, the experimental results
for Na utilizing Ag radiation before resolution
corrections using LiF(400) and LiF(600) analyzing
crystals are shown in Fig. 6. By comparison
with Fig. 5 one can see that at q=0, the resolution
effects are of the order of 7-8%.

B. Li Experiments

In this case " series of measurements were
made on a l-in. -diam by l-in. -long cylindrical
single crystal which was rotated around its axis to
search for anisotropy and a —,'-in. -thick flat poly-
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TA BLE II. Experimental Compton profiles for Li.
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FIG. 5. Compton profile of polycrystalline Na: solid
line, experiment (data from Table I); dashed line, theory
[identical to curve (a) of Fig. 7].
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Thick
Li (100)

1.037
1.018
0.919
0.773
0.599
0.402
0.187
0.134
0.100
0.072
0.057
0.052
0.048
0.039
0.032
0.021
0.016
0.010
0.004

~(q)
Thick

Li (110)

1.027
1.014
0.931
0.814
0.624
0.418
0.225
0.159
0.106
0.074
0.048
0.032
0.015
0.012
0.008
0.005
0.003

Thick
Li (111)

1.058
1.030
0.941
0.789
0.594
0.402
0.213
0.155
0.114
0.084
0.069
0.050
0.024
0.012
0.003
0.001

Thin
polycryst.

1.125
l. 075
0. 989
0.819
0.602
0.351
0.154
0.114
0.093
0.079
0.061
0.041
0.033
0.020
0.012

crystalline sample to obtain an accurate average
Compton profile. The experimental results for both
samples are shown in Table II. It is immediately ob-
vious from that table that multiple-scattering effects
which broaden out the Compton profile were present
inthe thick Li sample. However, since the thick-
crystal data were intended as a search for anisot-
ropy the 10% error produced by multiple scatter-
ing will only make our anisotropy measurements
10/& too small. Since the maximum anisotropy at
&(0) was 4% and our accuracy of measurements was
only about 1/o, the multiple-scattering effects are
small compared to our uncertainty of measure-
ment. It is also worthwhile to note that the thin
polycrystalline result obtained here gives a larger

value for J(0) and a smaller tail above Pz than all
the pr evious Li results.

V. COMPARISON OF THEORY AND EXPERIMENT

A. Sodium

The experimental Compton profile (along with
estimated experimental error bars) for the con-

1.2

1.0

0.9

TABLE I. Experimental Compton profile for Na.
0.8

a 0.7

0
0. 1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
1.1
1.2

1 ~ 3
1.4

1.398
1 ~ 317
1.222
0.835
0.510
0.153
0.115
0.088
0.062
0.040
0.020
0.018
0.014
0.005
0.001
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FIG. 6. Experimental Ag results for polycrystalline
Na before resolution corrections using LiF (400) (dashed
line) and LiF(600) (solid line) analyzing crystal.
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duction electrons of sodium is plotted in Fig. 5.
Theoretical calculations taking W(gyp) = 0. 02 Ry
(consistent with a band gap &&»o& --0. 04 Ry) in
Eq. (28) and keeping only the 12 smallest recipro-
cal-lattice vectors gave a maximum anisotropy in

J(0) of 0. 15%. The same W&»0& parameter, more
or less independent of the choice of the homogene-
ous momentum density N~, gives a correction hN;
of about 0. 2% for J'(0). These corrections are
much too small to be significant. The two distinct
theoretical curves shown in Fig. 7 are obtained
from published work on the momentum densities
of the homogeneous electron gas. ' ' ' The
curve labeled (a) is obtained by numerical inter-
polation from the results of Daniel and Vosko'
and Lam. ' Their results were interpolated to a
x, value of 3.9V and the appropriate integral [see
Eq. (5)j performed to give the Compton profile.

In both calculations the authors evaluate the
self-energy Z(p, &d) of an electron in the RPA and
then evaluate the Green's function G to lowest or-
der in Z" ", i. e. ,

0 0.5 1.0
q (a.u. )

FIG. 7. Experimental Compton profile (identical to that
in Fig. 5) of Na (dashed line) compared to various theo-
retical calculations: curve (a), RPA calculations of
Daniel and Vosko (Ref. 10) and Lam (Ref. 14); curve (b),
correlation plus exchange calculations of Lam (Ref. 14)
and RPA calculation of Lundqvist (Ref. 12). The two dif-
ferent calculations are indistinguishable in the graph.
For both curves (a) and (b), ~, =3.97.

the probability of short-range encounters. For
this reason we expect exchange to reduce the
high- momentum tail.

(ii) The calculation of Lundqvist'3 is strictly
RPA. It differs from the earlier work shown in
Fig. 7(a) in that it includes the complete geometric
sum in the calculation of G, i. e. ,

G= z
1

(u —p'/2m —Z"~"
(p, a) )

(32)

1.Q

0.8

0.7

0.6

0.5

It is not immediately obvious why this calculation
so closely corresponds to the exchange-corrected
results of Lam.

All three theoretical curves (two of them coin-
cident) are in significant disagreement with the
dashed experimental curve. The theoretical esti-
mates differ by about 3% at q = 0 and there is about
twice as much area above p~ in the experiment as
in the simplest version of the theory.

It is not possible to fix up the disagreement be-
tween theory and experiment by simply increasing
the value of ~, . The effect of doing this for the
RPA results of Lam is shown in Fig. 8. Increas-
ing r, , does, as expected, slightly increase the
size of the tail. The amount of the increase is
still too small, and, apparently, the shape is still
incorrect. The experimental spectrum seems to
be noticeably flatter.

We will return to a discussion of these discrep-
ancies in Sec. VI.

Assuming that the experimental profile reflects
the properties of the homogeneous gas it is pos-
sible to extract the renormalization constant Z~PJ;'
The break in slope at P~ is a direct measure of this
quantity (see Sec. III). In Fig. 9 we show the ex-

G = Go+ Go ZR~~ Go ~ (31) 0.3

The curve labeled (b) is really a composite of
two curves which, for this value of x, , are coinci-
dentally numerically indistinguishable.

(i) The calculation of Lam'4 extends his earlier
RPA calculation by including lowest-order ex-
change in the self-energy but maintaining the ap-
proximation given by Eq. (31). Exchange acts to
keep parallel-spin electrons apart, thus reduce

0.2

0.1

0.5 1.0 1.5 2.0
g/q F

FIG. 8. Rescaled experimental Compton profile of Na
(dashed line) compared to RPA calculations of Lam (Ref.
14) assuming various values of r, .
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perimental point at ~, = 3.9'7 along with the results
of several calculations, for varying ~, , of this
quantity.

B. Lithium

For Li, r, = 3.22 and we obtain the homogeneous
part of the momentum distribution in the same way
as we obtained it for Na, i.e., by interpolating the
various published BPA results. The homogeneous
portion of N; is only about 0. 2 of the measured
spectrums in the tail region.

Unlike the case of Na the inhomogeneous term
is not only significant in the case of Li but domi-
nates the tail of the Compton profile. For this
reason some care must be exercised in the choice
of the lattice potential. Equation (30) tells us that
5't, is determined by the band gap h~ and the quan-
tities Z~ and A4. While the value of hg is rela-
tively well known from experiment, numerical
calculations for Z~ and A4 range from 1.06 to
1.8 and Z runs from 0. 53 to 0.69. ' Using
a ~&»o&= 0. 22 By the various combinations of the
above figures give the range of S'&»o& from 0. 1 to
0, 2 Hy. This value of 8'&»o& is for IGI =1.143
(2p~), the shortest one in a bcc crystal. In addi-
tiontothe 12 shortest (110)G's we want to keep as
well the six next-shortest ones ((100)) in Eq. (28).
Each of these six has lengths 1.616 (2p~) and,
therefore, should have a different value (W&,oo&)

from g&»» given above. Instead of directly cal-
culating 8"&zoo& for this new set of six, we assume

FIG. 9. Renormalization constant Z& vs x, . The theo-
retical points are i, RPA (Lam, Ref. 14); 6, correla-
tion plus exchange (Lam, Ref. 14); , RPA (Geldart etal.
Ref. 11); O, correlation plus exchange (Geldart e& al. ,
Ref. 11); g, RPA (Daniel and Vosko, Ref. 10); Q, RPA
(Lundqvist, Ref. 12); &&, RPA (Rice, Ref. 25).

that it can be obtained from the relation
2

&&oo&
= &&no& I %3~& & I

where y&, y~ are the pseudopotentials of Li at the
shortest and next-shortest 6's, respectively.
From the curve of Animalu and Heine, we find
that I pz/&»&i =0.64. The error introduced by us-
ing Eq. (33) is minimal since the contribution to
the Compton profile from the second set is small,
usually an order of magnitude less than that of the
first set. It does, however, have the effect of
smoothing out the bumps found in the profiles.
Calculated results for the Compton profile of Li
utilizing Lam's BPA results for the homogeneous
part' and g&,oo&=0. 15 By are plotted in Fig. 10.
All curves have the same area.

As shown in Fig. 10 the following features im-
mediately present themselves.

(i) The anisotropy is appreciable. At the origin,
the difference between the profiles amounts to
-4% of J(0). Z(0) for k II (111)is greater than that
for k tl (100) which, in turn, is greater than that
for k il (110). This can be easily understood by
noting that the area under each profile is conserved
and that the number of secondary m surfaces (de-
fined in Sec. II) in the space &I & p&„ is in reverse
order for the different directions of k. In fact,
out of the important 12 6's nearest to the origin,
there are three of them in the space q & p~ beyond
the plane q= pz cutting the (111)axis, while the
number increases to four and five, respectively,
for k parallel to (100) and (11.0). We thus see
that the relative magnitude of the profiles at the
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FIG. 10. Theoretical Compton profiles of Li for
various directions of momentum transfer k: solid line,
k II (100); dot-dashed line, II| II (110); dashed line, k II(111).
W&„o&=0.15 Ry in Eq. (28).
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FIG. 11. Experimental Compton profiles of single-
crystal Li for various directions of momentum transfer
$: solid line, k II (100); dot-dashed line, k II (110);
dashed line, k II (111). Sample is 1 in. thick; multiple-
scattering processes involved.

origin mainly reflects the geometry of the recip-
rocal lattice. Their absolute magnitudes depend
on the strength of the electron-ion interaction.

(ii) The profiles vanish at about 2. Gpz because
of the rapid falloff of N;.

(iii) The main cusp point for each of the profiles
is located at the same point, p = p~ = 0. 596 a.u.

(iv) The height of the main cusp point varies for
different directions of k.

(v) Little bumps appear in the tail for k II ( ill )
and (110).

Secondary cusp points do exist in our calcula-
tions as predicted in Sec. II but are not marked in
Fig. 10 because they are too weak to show up.

A comparison of the single-crystal experimen-
tal data (shown in Fig. 11) with the theoretical
Compton profiles (shown in Fig. 10) indicates that
the first four features are confirmed and that the
experiment is not good enough to either confirm or
negate the last prediction.

In Fig. 12 we present a quantitative comparison
of the theoretical profiles with the polycrystalline
data. The theoretical points are calculated with
several different values of 5'&ffo&, viz. , 0. 10,
0. 15, and 0. 20 Ry, respectively. The homo-
geneous part is the same as that used in Fig. 10.

It is clear that the curve with 5'& ffo) 0. 15 Ry is
very close to the experiment. This value of 5'&ffo&
corresponds to IZ~ A4 I =0.73 (assuming &&t+&
=0. 22 By) which may then be broken down to
agree with the theoretical value of Zp =0.6g 13,25

Pp
and A4 =1.06. However, it is also true that the
uncertainty in the choice of 5' allows one to fit a
wide range of data.

For an anisotropic electron gas, the break in
slope does not give the renormalization constant
since the higher m spheres contribute to the
break. Within the approximation given by Eq.
(15), and for parameters characteristic of Li we
find that the contribution due to hN- is negligible.
The experimental situation is not absolutely clear
since it is by no means trivial to obtain the slopes
from the experimental curves because of signifi-
cant finite resolution effects. These resolution
effects tend to wash out the details near the break
making the exact size of the break, particularly in
Li, uncertain. For this reason the experimental
gq~ for Li has not been included in Fig. 9. How-
ever, as shown in Fig. 12, the experimental result
is certainly consistent with the predictions of the
theory.

VI. DISCUSSION

While there are significant areas of disagree-
ment between the theory and experiment presented
here the areas of agreement seem to indicate
where this discrepancy might come from.

The results presented in Sec. V clearly show
that the relative amount of area (for p & pz) in the
Compton profiles is larger in Li than in Na. This
is contrary to the predictions of calculations where
both metals are viewed as homogeneous interacting
electron liquids. The large tail in Li must be
understood as a manifestation of the dominating
role of the relatively large electron-ion interac-
tion, i.e., size of 5'g.

Quantitatively the weak pseudopotential approach
does, with very little adjustment, give a relatively
good fit to the complete anisotropic Compton pro-
files. We can easily understand the good quanti-
tative agreement vrith the anisotropy data in spite
of the fact that this same kind of approach does
not work in predicting the details of the band
structure. These particular features of the Comp-
ton profile as discussed depend primarily on the
geometry of the secondary m surfaces (i. e., the
lattice structure) and not on the exact value of the
external potential.

The fit to the shape and size of the polycrystal-
line profile of Li with reasonable values of 5'g is
particularly remarkable. On the other hand, the
deficiency in the tail of Na may simply come from
errors in the calculations for the homogeneous
electron gas. In fact, if the homogeneous part is
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FIG. 12. Experi-
mental Compton profile
of polycrystalline Li
(solid line) compared
with theoretical predic-
tions from Eqs. (5), (15),
and (28). The different
set of theoretical points
corresponds to different
values of 8'&fop) in Eq.
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=0.15 Hy; a, S'&&&p&

=0.20 Ry.
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arbitrarily raised to fit the Na tail, we will still
get a good fit to Li data with a slightly different
value of 5'g, since the tail in Li is dominated by
the secondary m surfaces anyway. Of course, it
is also possible that the conventional perturbation
calculation of the homogeneous system presented
here is just not valid, i.e., that

is not the correct starting point in a perturbation
calculation. If this is indeed the case then we will
be forced to deal with a system of interacting band
electrons where core orthogonalization~e and the

modified energy momentum relation of the band
electrons, two effects which have been ignored in
this calculation, will come into play. More in-
vestigations along this line are planned.

Further experiments of higher accuracy will be
of interest in checking the fine structures of the
Compton profiles predicted here. %e also note
that the Na experiment is, in many ways, the most
difficult Compton experiment to perform. The
first difficulty arises because it is such a sharp
profile which, as we have shown, requires that
considerable resolution corrections be made. Sec-
ond, because we are just interested in the proper-



X- RAY COMPTON PROFILES OF Li AND Na:. . . 3681

ty of one of the 11 Na electrons, one has a large
background to subtract. We feel we have coped
successfully with those difficulties but another in-
dependent quantitative measurement of Na would

still be welcomed.
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Evidence of Two Simultaneous Mechanisms for Diffusion of Cu in Pb Single Crystals

A. Ascoli and G. Poletti
Centavo Infoxmazioni Studi Espexienze, Segxate Milano, Italy
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The radioactive-tracer method and sectioning technique were used to measure the diffusion
coefficient of Cu in Pb single crystals under hydrostatic pressures between 1.75 and 9.00
kbar, at temperaturesbetween (206+1) and (326+1)'C. The diffusivityat1. 75kbarisdescribed
by Df, 75 0. 95 x 10 e cm /sec ', which is in good agreement with previoulsy published re-
sults; the diffusivity between 3 and 9kbar is described by D3 t, 9=6.18x 10-2q- 09

cm /sec . Average activation volumes between I'=0 and 1.75kbar are in the range of 0. 7V
(V is the atomic volume of Pb); above P =3.38kbar, they are nearly zero.

I. INTRODUCTION

Diffusion results were interpreted for many
years on the basis of single mechanisms. Recent
evidence, particularly from pressure-diffusion
and related experiments pointed to the possible
coexistence of more than one mechanism in certain
single solvent-solute systems. The diffusion of
noble metals in lead looks interesting seen in this

context. Intermetallic diffusion in all other fcc
solvents is attributed to a vacancy mechanism, but
the low values of the activation energy Q for the
diffusion of noble impurities in lead were inter-
preted ' on the basis of interstitial mechanisms.

Van der Maesen and Brenkman first proposed
that copper dissolves both interstitially and sub-
stitutionally in germanium. Ascoli et al. , on the
basis of pressure-diffusion results and almost


