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tial used to process the neutron data. A set of
force constants (WSM) has been found which re-
produces the observed peak structure in u'(&u) I'(~).
Two very different empty-core model pseudopo-
tentials have been obtained which give very similar
u (~)F(&u)'s; and very good agreement with experi
ment is obtained. We have included band-structure
effects only in an average way through the band
effective mass. It should be noted that inclusion
of the actual Fermi surface may modify the agree-

ment somewhat. These two pseudopotentials take
different band-mass values and thus give different
specif ic-heat effective masses.

We point out that Figs. 7 and 8 indicate that
thallium is a case where u'(& ) shows a strong in-
crease in the low-energy region above its value
near the high-energy end of the spectrum. This is
significant since it may not always be justified, even
as afirstapproximation, toignore the energy depen-
dence of ua(&u) when comparing ua(&u)F (v) to E(&u).
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The temperature dependence of the electrical resistivity of sodium and potassium is calcu-
lated both at constant pressure and at constant volume for the following extensive temperature
range: for sodium from 50 K to the melting point, and for potassium from 20'K to the melt-
ing point. Excellent agreement with experiment is obtained. It is found that the significant
difference between the constant-pressure and the constant-volume temperature dependences
of the resistivity is completely explained by explicitly taking into account anharmonic effects
on the phonon spectrum and on the polarization vectors. The contribution due to the volume

dependence of the screened electron-ion-interaction matrix elements is also included.

I. INTRODUCTION

One of the fundamental problems of solid-state
physics is the calculation of the temperature depen-
dence of the dc electrical resistivity p of metals.
The problem has received serious attention from
many workers since the advent of quantum mechan-
ics. Among the most important early contributions
are those of Bloch, ~ Bardeen, ~ Ziman, and Bailyn.
An excellent and detailed account of these papers,
as well as aQ progress up to about 1960, is given
by Ziman. Since I960, interest in the problem
has not lessened, as evidenced by the many recent

calculations of p(T) just for Na and K.
Of particular interest is a comparison between

the temperature dependence of the resistivity at
constant pressure p~(T) and at constant volume

p~(T). Only the very recent paper by Hayman and
Carbotte" reports a calculation of both p~(T) and

~(T). However, such a calculation requires a
better treatment of anharmonic effects than that
presented by Hayman and Carbotte. The goal of
this paper is to predict quantitatively for Na and K
both p~(T) and p„(T) by a careful analysis which
takes proper account of anharmonic effects on the

phonon spectrum as well as on the polarization
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vectors. %e achieve our goal in that for both
metals our calculations for both p~(T) and p„(T)
are in excellent agreement with the measured
values. The discrepancy never exceeds 5%, and is
usually much less, throughout the following exten-
sive temperature range for which the accurate data
of Dugdale and Gugan~ are available —for K, from
20 'K to room temperature, and for Na, from 50
'K to room temperature. Below these temper-
atures, there is no distinctionbetween p~(T) and p~(T).

In Sec. II we describe the formalism we used to
calculate p(T). The resulting expression contains
the structure factor (discussed in Sec. III, with

anharmonic effects considered in Sec. IV) and the
screened electron-ion-interaction matrix elements
(discussed in Sec. V). We present the results of
our calculations in Sec. VI. In Sec. VII we give
a critical discussion of previous work. The sum-
mary follows in Sec. VIII.

II. FORMALISM

For our calculations, we use the weak-coupling
theory' to describe the electron-phonon interaction
and the Boltzmann equation' to describe the trans-
port theory. The variational solution ' of the
Boltzmann equation gives, for a cubic metal,

vAp f f [dS(k~)/M(k, )][dS(kp)/u(kp)][4(k, ) —4'(kp)] P(kq, kp)
2e')IP (I d k' u(P) 4 (k') [sfp(k')/&&(k')]}

(2. 1)

where Qo is the atomic volume and the surface in-
tegrals are taken over the Fermi surface, with

k, and kR being the wave vectors of the initial and
final states of the scattered electron, having ener-
gy E(k') and velocity u(k') in state k'. The function
4 (k') is proportional to the deviation caused by the

electric field on the Fermi distribution function

f(P) from its equilibrium value fp(k'),

f(k') =fp(k') -@(k')
s@(~i ~ (2. 2)

The variational principle states that the function
4(k') which minimizes the right-hand side of Eq.
(2. 1) gives the exact Boltzmann-equation solution
for p.

The function P(fc~, kp) is proportional to the tran-
sition probability for scattering an electron through
k=kR-k& from state k~ to state kR. For the case of
a general Bloch electron, this function is quite
complicated and we shall not bother to write it
down. Instead, we shall discuss only the much

simpler cases of Na and K, whose very nearly
spherical Fermi surfaces imply that, for the cal-
culation of p, one plane wave correctly represents
the pseudo-wave-function, %hen this is so,
P(k„kp) factors into the product 3 (k)vp(k), where
4 (k) and v(k) are structure factor and form factor,
respectively. The resulting simplifications were
the primary motivation for choosing Na and K for
the resistivity calculations. The properties of

$(k) and v(k) will be the subject of Secs. III-V.
To proceed further in the calculation for p, we

must make a choice for C(k). The standard (sim-
plest) choice' for a trial function is 4(k) ~k ~ F,
where F is the applied electric field. At high
temperatures the electron scattering is effectively
elastic and for elastic scattering the standard trial
function is exact. However, even at low tempera-

!
tures where the inelasticity of the scattering be-
comes important, we have found~~ that the same
choice for 4(k) is still an excellent approximation.
Inserting this 4(k) into Eq. (2. 1) and exploiting the

spherical symmetry of the Fermi surface yields
RkpmR

(T)= dkk v (k)S(k), (2. 3)

where n is the density of electrons, m is the elec-
tron mass, k~ is the Fermi momentum, and S(k)
is the angular average of the structure factor

S(u)= (4p)-~ f dn„-S(k) . (2. 4)

III. STRUCTURE FACTOR

For Na and K, for the structure factor' S(k) we
use the one-phonon harmonic approximation

'""=~a r'B

The expression for p(T) given in Eqs. (2. 3) and

(2. 4) and indeed even the more general expression
Eq. (2. 1) ignore phonon drag. p That is, it is as-
sumed that the phonon distribution equilibrates
quickly compared with the electron-phonon relaxa-
tion time, and therefore the electrons are always
scattered by the thermal-equilibrium distribution
of phonons. %e have calculated the contribution of
phonon drag to p(T) for all temperatures and we
find~~ that, although it is a very important effect at
very low temperatures (~ 3-4'K for Na and K),
phonon drag may be safely ignored over the tem-
perature range considered here.

%e close this section by emphasizing that the
simplicity of Eq. (2. 3) for p is only apparent. In

reality the expression for p contains complicated
3-dimensional integrals even for the simplest cases
of Na and K, and one can obtain reliable numerical
results only by detailed computer calculations.
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[k f,(q)]'
fexp[h ~,(q)/ke T ] —I) (I —exp [-h &,(q)/k sT ])

(3. 1)
where M is the ionic mass and & ~(q) and f,(q) are
the frequency and polarization vector, respectively,
of a phonon of branch & and wave vector q. The
vector q is just the scattering vector k "folded
back" into the first Brillouin zone:

Q, [A„(q) M(u~(q-)&o]$~(q) = 0 . (3.4)

The first advantage of the Born-Von Karman
method is that an experimental determination of
8,&(R ) enables one to calculate ~~(q) and (~(q) for
all q throughout the Brillouin zone. The force con-
stants out to five nearest neighbors have been mea-
sured by means of neutron scattering for both so-
dium (at T=90 K) and potassium ~ (at T=9'K).
The second advantage is that A (q) is periodic in

G„, as is clear from (3.3). Therefore, from Eq.
(3.4), it follows that for the Born-Von Karman
method the very important periodicity properties
of the phonon frequencies and polarization vectors
are automatically satisfied:

q =k —G„,
where G„ is one of the reciprocal-lattice vectors.
For a given', there are a unique q and G„ that
satisfy (3.2).

Evaluation of S(k) involves overcoming two dif-
ficulties. First one must know ~„(q) and $,(q) for
each phonon of each branch throughout the entire
Brillouin zone. Second, for each k, one must
determine which G„ is needed to reduce k to q.
These two difficulties are both overcome by the
Born-Von Karman analysis, "according to which
&u, (q) and f~(q) are the eigenvalues and eigenvectors,
respectively, of the dynamical matrix A(q). The
matrix elements of A (q) are given by

A „(q)=+„8„(R„)e'~ ' "~, (3. 3)

where the interatomic force constant 8,&(R„) is the
force in direction i acting on an atom at the origin
as a result of a displacement in direction j of an
atom at lattice site R„. Thus, &u~(q) and $,(q)
satisfy

curves for S(k) are given in Fig. 1 for K at T= 50
and 280 'K. Note that the shapes of the two curves
are rather similar, though they differ radically in
magnitude. As k increases from 0 to k~, S(k) in-
creases by less than a factor of 2, whereas, as k
increases from k~ to 2k~, S(k) increases by nearly
a factor of 20. [It should be pointed out that at
very low temperatures (T~ 10 'K), which we do not
discuss in this paper, the curves for S(k) look very
different from Fig. 1. ]

The explanation for the rapid increase of S(k)
. with k is the following: In almost every direction,

&u, (q) increases as k increases until k passes
through the Brillouin-zone boundary and umklapp.
scattering becomes possible. Then ~,(q) decreases
as k increases. When ~k ~

- 2k+, &u~(q) becomes
relatively small. Therefore, as ~k( -2k&, the
denominator of Eq. (3. 1) is rapidly decreasing
while the numerator is increasing, leading to the
rapid increase of S(k) for large k. Since large k
dominates the integral in Eq. (2. 3), one can under-
stand why an exact treatment of umklapp scattering
is crucial for a reliable quantitative calculation of
p(&).

It should be mentioned that, if k=G„, then q=0
according to (3.2), and the denominator of (3. 1)
vanishes. However, there is no actual singularity
in the transition probability P(k„ka). When
k-G„, one must use at least two plane waves for
the pseudo-wave-function and P(k„k~) no longer
simplifies into the factorized form $(k)v (k). In-
stead, one must use the more general form, which

05—
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0.0 5

0.0 2

0.01

~i(I ) = ~ (q+G.) = ~.(q),

h, (k) = $,(q + G„)= 4(q) .
(3. 5) 0.005

Hence, for any given k, we can calculate exactly
the phonon frequency and polarization vector ev n
for umklapp processes without having to know which
6„is needed to reduce k into the first Brillouin
zone. The computational advantages of the Born-
Von Karman method can hardly be overestimated.

The bulk of the numerical work comes in per-
forming the angular integration of Eq. (2. 4), be-
cause s(k) is a highly anisotropic function. Typical

0.00 2

0.0
I

0.5
x= k /2kF

1.0

FIG. 1. Quantity SCA;) for K at T = 50 'K and at T = 280
K, vrhere the temperature has been increased at constant

volume. The two curves are very similar in shape.
They differ only by a scale factor, as is evident by the
constant vertical difference between the curves on a log
scale.
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remains finite for k~- k, =G„. For Na and K, this
situation never arises because in every direction
in the Brillouin zone lk~ = 2k~ is significantly short-
er than the relevant G„. Therefore, for all k, we
expect one plane wave to suffice for the pseudo-
wave-function. We have explicitly verif ied this
by calculating the correction to P(k~, ka) obtained by
using two plane waves for the pseudo-wave-function.
We find that, except for very low temperatures
which we do not consider here, using a single plane
wave leads to anegligible error in p of lessthan 1%.

We now turn to the calculation of S(k) for small
k. It should be recognized that we cannot use the
compressibility sum rulea~

S(0)=nksTg (3. 6)

S(0) =nksT(&+ pr) ', (3. 8)

which does not satisfy the sum rule because of the
presence of the Y.

For Na and K, the deviation between S(0) and the
sum-rule result nksTyis about 80and 50%, respec-
tively, depending somewhat on the temperature.
Moreover, even the more general expression (3. 8)
is valid only for an elastically isotropic solid and

hence not appropriate to Na and K. One can ap-
preciate how highly anisotropic Na and K are by
comparing s(k) in different directions of k for
tkI -0. For K, for exa.mple, for low 4, the ratio
of s(k) in the [111]direction to s(k) in the [110]
direction is 2. 65.

IV. ANHARMONIC EFFECTS

The harmonic one-phonon approximation for
S(k), given by Eq. (3.1), can be improved in two

ways. First, we can ascribe a finite lifetime
1/1 „(q) to the phonons. Numerical evaluation shows

where X is the isothermal compressibility. The
sum rule is not satisfied because a metal in the
solid phase is not a homogeneous system, a re-
quirement for the applicability of the sum rule.
To see this explicitly, let us consider an elastically
isotropic cubic metal (not Na, or K, which are
elastically quite anisotropic) for which the three
elastic constants are related by c»=c» —2c44.
Then, for small k, expanding Eq. (3. 1) gives

S(k)=3(l)= ' Z [ (3. V)
M „+(u,(q)]'

Since our system is imagined to be elastically iso-
tropic, we may conveniently choose k=q in the

[100] direction. Then the sum over X gives only

the term k2/&u~= v, 2=nM/c~„where v, is the longi-
tudinal sound velocity in the [100] direction. Final-
ly, noting that for an elastically isotropic solid the

inverse compressibility or bulk modulus 8= cyy

3 c44 RDd the shear modulus Y = c44, we obtain

that, even with the generous estimate I'„(q)/&u~(q)
= 0. 2, this improvement changes p by only a few

percent at all temperatures. Furthermore, this
lifetime effect is almos t independent of temperature.
Therefore, in our study of the temperature depen-
dence of p(T) we may neglect entirely the finite
lifetime of the phonons.

The second improvement to 3(k) is to include the

temperature dependence of the phonon frequencies:
~~(q)- ~, (q, T). This effect is not only numerically

significant, but is of particular importance for an ac-
curate calculation of p(T) over a, wide temperature
range. Moreover, including the temperature depen-

dence of ~„(q) is vital for distinguishing between

p~(T) and p~(T), the constant-pressure and constant-
volume temperature dependences, respectively.

When we consider temperature increases at con-
stant pressure (generally atmospheric pressure
= zero pressure), &u,(q) changes for two reasons.
First, there is a volume effect, i. e. , the lattice
constant increases with temperature. In essence,
we obtain a different crystal at every temperature.
This volume effect always reduces u&~(q) because
the farther apart the ions are, the weaker the force
constants and hence the lower the frequencies.

Second, ~,(q) changes owing to an amplitude ef-
fect; i. e. , with increasing temperature the ampli-
tude of the vibrating ions increases. Since there
are anharmonic (i.e. , higher than second order)
terms in the expansion of the interionic potential
as a power series in the amplitude, the frequencies
depend on the amplitude of vibration. One cannot
say a Priori whether the amplitude effect will in-
crease or decrease ur, (q). In fact, some of the

~„(q) increase with temperature, whereas others
decrease.

Qf these two effects, the volume effect is con-
siderably more important than the amplitude effect.
Therefore, we expect and find that for temperature
changes at constant pressures, where both volume
and amplitude effects occur„ the temperature de-
pendence of &u~(q) is several times greaterthanfor
temperature changes at constant volume, where
only the amplitude effect occurs.

In principle, one can determine the temperature
dependence of the ~~(q) for all q from neutron-
scattering measurements of the force constants
8,&(R ) carried out at two different temperatures.
Since the 8,~(R ) vary linearly with temperature
above about 50 K, we immedia, tely obtain the
8,~(R ) and hence ~~(q, T) for all temperatures.
Unfortunately, for both Na and K neutron-scattering
measurements sufficiently detailed to obtain the

8q~(R„) have been performed at only a single tem-
perature (90'K for Na and 9 K for K). There-
fore, for these metals we must calculate the
temperature dependence of v, (q).

For low q there is no problem. One may use
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macroscopic elasticity theory to express the

v, (q) interms of the three independent elastic con-
stants c», p», and c44. Fromthe measured temper-
ature and pressure dependence of the c's (datadis-
played in Table I), one may calculate [8&v,(q, T)/
BT]~ and [8&vi(q, T)/BT]» for all polarizations and
directions in the low-q region. The result is that
the proportional frequency change [&~(q, T)] '
x [8&v, (q, T)/BT] is independent of I qi/q, where

q,„ is the distance to the Brillouin-zone boundary in
the direction under consideration and the temperature
derivative is understood to be taken at constant

q/q, rather than at constant q. For high q,
we assume that the proportional frequency change
exhibits the same behavior; i.e. , we assume that
throughout the Brillouin zone [&ui (q, T)] '[8&v,(q, T)/
BT] is independent of the magnitude of Iq I/q ~.
However, this quantity does have a strong depen-
dence on the direction of q and on the polarization

This assumption is made very plausible in the

Appendix. There do exist some measurements
for &u~(q) for K at higher temperatures, and these
few measurements are indeed consistent with our
calculation of [8(ui(q, T)/BT j~.

As the temperature increases, not only the ~~(q)
but also the polarization vectors t „(q) change. The
procedure for calculating this temperature depen-
dence f,(q, T) is analogous to the procedure used
for calculating &u, (q, T). We use the elastic con-
stants to compute [8$,(q, T)/BT]~ and [82~(q, T)/BT]„
for small q and assume that throughout the Bril-
louin zone these derivatives depend only on the
direction of q and on ~, but not on the magnitude
of iql/q . This effect of including (,(q, T) is
rather small, being an order of magnitude less
important than (u~(q, T) in the calculation of the tem-
perature dependence of p. The reason for this is
that along the symmetry direction the phonons must
be either pure longitudinal or pure transverse.
Hence, the E~(q) are temperature independent along
the symmetry direction. For a cubic crystal there
is no region in the Brillouin zone that is very far
from one of the symmetry directions. Therefore,

the temperature dependence of the $~(q) must be
weak for all q.

What is relevant to our calculation of p(T) is,
of course, the effect on S(k) resulting from the

temperature dependence of &u,(q) and of t,(q).
From the integral for p(T), Eq. (2. 3), we see that
the upper limit 2k~ also depends on temperature.
It is convenient to eliminate this temperature de-
pendence by changing the variable of integration
to x= k/2k~. We therefore define AS(x) as the

change in S(x) due to the temperature dependence
of a~(x) and 5~(x) only

~S(x) = S(x, T, ~(x, T), j(x, T))
—S(x, T, &(x, T —&T), f(x, T —AT)) . (4. 1)

&s(x) 1 h~, (x) '~ «u, (x)
$(x) . 12 k~T ~(x) (4. 2)

Consider first the region 0&x 0. 6, where only
normal scattering occurs. The ratio &~~(x)/&u, (x)
is independent of x (and always negative, except
for certain directions at constant volume), but
&u,(x) increases with x, explaining the increase of
the curves up to x= 0. 6. Another significant effect
in the low-x region is the change of the direction
of the j~ as a function of temperature in the off-
symmetry directions of the Brillouin zone. This
implies a temperature dependence to the extent
to which transverse phonons contribute to AS(x)/S(x)
because of the factor [k ~ $,(q)] . This is particular-
ly striking for the constant-volume case for which in
many regions of the Brillouin zone the transverse

Note that in the definition of &S(x), we do not include

the change with temperature of the factor ka~ which

arises from S(x)~ kzx . In Fig. 2 we plot both

[&S(x)]~/S(x) and [&S(x)]v /S(x) as functions of x
for Na for &7.'= 200 'K from 90 to 290 'K.

We may understand qualitatively the behavior of
these curves by examining the expression AS(x)/
S(x) for a single polarization in a, general direction.
We make a high-temperature expansion of Eq.
(3. 1), valid at T= 290'K, to obtain

TABLE I. Measured values and temperature and pressure derivatives of the elastic constants of Na and K. The units
for c and Bc/BT are 10 && cgs and Bc/BP is dimensionless. The values given for c refer to room temperature; (Bc/Bp)z
is independent of temperature; (Bc/BT)& and (Bc/BT)~ are nearly independent of temperature above about 100'K. Below
100 'K, (Bc/BT), and (Bc/BT)~ decrease somewhat below the given values.

c
(Bc/BT)~
(Bc/Bp)~
(Bc/BT)~

c11

771+ 10
—0.41 + 0.02

4.2+ 0. 2
+0.14+ 0.02

Sodium+"
c12

648+ 10
—0.31 + 0.02

3.7+ 0. 2
+0.16 + 0.02

c44

435 + 10
—0.66+ 0.04

1.7+ 0.1
—0.42 + 0.02

370+ 10
—0.21+ 0.02

4.3+ 0.2
+ 0.19+0.02

Potassium' ~

c12

314+ 10
—0.17 + 0.02

3.8 + 0.2
+ 0.20 a 0.02

c44

188 s 10
—0.38+ 0.03

1.6+ 0.1
—0.23 + 0.01

R. H. Martinson, Phys. Rev. 178, 902 (1969).
"W. B. Daniels, Phys. Rev. 119, 1246 (1960).
%7. R. Marquardt and J. Trivisonno, J. Chem. Phys.

Solids 26, 273 (1965).
"P. A. Smith and C. S. Smith, J. Phys. Chem. Solids

26, 279 (1965).
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FIG. 2. Relative change in Sb;) for Na owing to the
temperature dependence of &„(q) and $),(q), at both con-
stant pressure and constant volume.

V. ELECTRON-ION-INTERACTION MATRIX ELEMENTS

We now turn to the determination of the form
factor v(k) for the matrix elements of the electron-
ion interaction. We use the pseudopotential for-
mulation in which v(k) is just the pseudopotential
form factor. Although v(k) is a function only of the
magnitude of k, this formulation includes in full

~,(q) have a temperature dependence opposite in
sign to that of the longitudinal co~(q). Therefore,
changing the direction of the $„and hence the rela-
tive contribution of transverse and longitudinal
phonons, may even change the sign of &S(x)/S(x).
This explains the negative values for [&S(x)]v/S(x)
for x&0. 2.

For x& 0. 6, umklapp scattering becomes impor-
tantand the transverse phonons ~» and co~z become
as important as the longitudinal phonons &~. The
combination of elastic constants entering co»,
and &~ is such that, for most q, the ~» and ~~2
have a much stronger temperature dependence than

This explains the relatively sharp rise of the
curves in the region 0. 6&x 0. 8. For x 0. 8 the
curves again drop. This occurs because for
x & 0. 8 the dominant contribution to S(x) comes
from the vicinity of the t110] direction and, in these
directions, &S(x)/S(x) is small. This occurs first
because the phonons that contribute most have a
rather small temperature dependence, and second
because ~„(x) itself is decreasing as x approaches
unity.

In summary, not only can one calculate quantita-
tively the anharmonic effec ts on the structure fac tor,
but one can also understand all these effects quali-
tatively. It is worth emphasizing that a complete
understanding of these effects is important not only
for the calculation of p(T), but for the temperature
dependence of the other transport coefficients as
well.

its nonlocality. This can be seen in the following
way. We require the matrix element of the pseudo-
potential between plane-wave pseudo-wave-functions
(k, lv Ikz) = v(k„ka). This matrix element is a func-
tion of k, and k~ separately, and not just of their
difference k, because the pseudopotential is an
operator and not merely a function. Because the
screened ion is spherically symmetric, the matrix
element is actually a function of only three inde-
pendent variables, rather than six, v(k„k~)-v(k, k&, ka). The expressionfor p(T) contains only
matrix elements describing scattering processes
where both the initial state k~ and the final state
k2 lie on the Fermi surface. Since the Fermi sur-
face is spherical for Na and K, we have k, = k2 = k~
and thus v(k, k&, ka) =v(k, k~, k~) —= v(k), where k is
restricted to be smaller than 2k&. Therefore, al-
though our expression for the form factor v(k) is
written as a function of a single variable k, it in-
cludes in full the nonlocality of the pseudopotential.
These matters are discussed more fully in the re-
cent review article by Wiser and Greenfield.

While there exist various calculations of v(k), it
has become clear that none of these is sufficiently
accurate for calculating p(T). Therefore, we have
taken an empirical approach. We use the phenom-
enological potential of Harrison and fix its single
parameter P by equating p,~,(To) to p,„„(TO)at a
specific temperature To. This completely deter-
mines v(k) and enables us to calculate p~(T) and
pv(T) at all temperatures.

The phenomenological potential of Harrison is

( )
—(4ve /k )+P

n,~(k)
(5. 1)

where Qo is the atomic volume. For the screening
function e(k) we use the Hartree dielectric function

~(k)=1+ „, ln + —,(5. 2)
1 1-x' 1+x 1

kr aox 4x 1 —x

where x=k/2k~ and ao is the Bohr radius. The
first term in the numerator of Eq. (5. 1) is the
Fourier transform of a (monovalent) point-ion
Coulomb potential and the second term (P) repre-
sents deviations from this simple potential. These
deviations arise from the effective repulsive po-
tential that is central to the pseudopotential formu-
lation, from corrections to the point-ion Coulomb
potential in the interior of the ion core, from the
approximate and local nature of the Hartree dielec-
tric function, and from other smaller effects.

The phenomenological potential (5. 1) differs from
the true potential in several respects. First of
all, one obtains (5. 1) by normalizing the plane-
wave pseudo-wave-functions to unity. However,
the scattering amplitude theorem of Austin, Heine,
and Sham2~ shows that it is the true wave function
and not the pseudo-wave-function which must be
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normalized to unity. Inserting the proper normal-
ization factor~' would require us to divide the v(k)
of (5. 1) by 1 —5',, I (k~1 c)I, where ~k~) is a normal-
ized plane wave of wave number kz and ~c) is an
ionic core wave function. The sum over all core
wave functions (call it Z) requires performing
three integrals for Na and five integrals for K.
The integrals were carried out by Harrison
for a series of metals and he found that the value of
Z is typically about 0. 1, being somewhat smaller
for Na and somewhat larger for K.

The second approximation contained in (5. 1) is
that the constant P is properly a function of k.
The point of using the phenomenological potential is
to account for both the normalization constant Z
and the k dependence of P(k) by means of suitably
chosen constant P,« ..

—(4me~/k2) + P(k) —4ve

1 —Z ka + Peff (5. 3)

We shall now justify using this simple form for
v(k) to calculate p(T). Let us first consider high
temperatures T»8v (8v is the Debye temperature).
For high temperature, one can readily see from
Eq. (3. 1) that S(k) factors into TxE(k), where F(k)
contains no explicit temperature dependence. Then,
Eq. (2. 3) can be written

p(T)~ T fo dkk v (k)E(k)~ T fodxx'v (x)F(x),
(5. 4)

where x =k/2k+. Aside from the slight volume de-
pendence of v (x), the only temperature dependence
of the integrand lies in the implicit temperature
dependence of F(x), arising from the anharmonic
effects on e~(x) and the (~(x). We have already
plotted in Fig. 2 the relative temperature change
in F(x), since bE(x)/E(x) = bS(x)/S(x). From the
figure we see that, both at constant pressure and
at constant volume, bE(x)/F(x) is nearly indepen-
dent of x for x" 0. 6. However, it is only in this
region of x that the various proposed forms ' for
v(x) differ from each other; for lower x, all pro-
posed forms are equivalent. Therefore, for the
calculation of p(T) at high temperatures, the pre-
cise functional form of v(x) is actually irrelevant,
as long as it contains one parameter chosen to give
the correct value of the integral in Eq. (5.4).

At lower temperature T&Q &, the factorizat:ion
of S(k) into TXF(k) is no longer valid, and the func-
tional form of v(k) is very important. The appro-
priateness of our choice for v(k) is demonstrated
by the fact that we obtain excellent agreement with
experiment for both p~(T) and p~(T) over the entire
temperature range we are here considering, i.e. ,
down to 50 'K for Na and down to 20'K for K. How-
ever, we wish to emphasize that at still lower tem-
peratures our potential becomes inadequate to cal-
culate p(T) Indeed, it c.an be shown'7 that every

one-parameter potential becomes inadequate to cal-
culate p(T) at sufficiently low temperatures. In

our analysis of the very-low-temperature regime, '
we show how to generalize (5. 1) to obtain a poten-
tial valid over the entire temperature range, from
the melting point down to absolute zero.

We now turn to the volume or k~ dependence of

P which results from the nonlocality of the pseudo-
potentj. al. Harrison s explicj. t, calculations28
demonstrated that this dependence is negligible for
Al. Our calculations for p(T) and, in particular,
its volume derivative B(lnp)/9(lnV) show that one
may safely ignore this effect for Na and K as well.
The validity of ignoring this kz dependence of P

has also been established in previous calculations
of p(T) for liquid Na, where it was found' that the
effect of including the k~ dependence of the A, (E~)
parameters of the Abarenkov-Heine model poten-
tial ~ was completely negligible. These A, (Z~)
parameters are analogous to P(k~) in the Harrison
po tential.

In summary, we find that the phenomenological
potential of Harrison, Eq. (5. 1), is perfectly ad-
equate for calculating p(T) for both Na and K from
T= —,'Q~ to melting point. The single constant
P„, is the only parameter in the calculation of p(T)
throughout the entire temperature range considered,
both at constant pressure and at constant volume.

It remains to determine the parameter P,«by
selecting a temperature To at which to equate
(p~)„„with (pv),„„. The best over-all fit to the
p(T) data is obtained by choosing To= 200 'K for
both Na and K. For this choice we find, in units
of Ry (Bohr-radius)3, the values

P„,= 27. 0 for Na

=42. 7 for K. (5. 5)

A change in P,«of 0. 3 and 0. 4 for Na and K, re-
spectively, corresponds to a change in p(T) of 3%.
This is the maximum change in p(T) that is com-
patible with the data, as we shall see in Sec. VI.
These changes in P,«correspond to changes in
v(2k+) of only 0. 0008 and 0. 0006 Ry for Na and K,
respectively.

We plot in Fig. 3 the curves for v(k) for Na and
K at the density corresponding to room tempera, —

ture. We see that for both Na and K v(k) is very
nearly zero at 2k~, being slightly negative for Na
and slightly positive for K.

VI. CALCULATIONS AND RESULTS

Having determined both the structure factor
6 (k) and the form factor v(k), we are ready to per-
form the triple integral for p(T) prescribed in Eqs.
(2. 3) and (2. 4). All calculations were performed
on the IBM 360/50 system of the Computation Center
of Bar-Dan University.
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FIG. 3. Form factor v(k) for Na and K at the density
corresponding to room temperature.

In making comparisons with experiment we are
fortunate in having available the accurate data of
Dugdale and Gugan, who measured both p~(T) and
p»(T). For Na and K, there is no distinction be-
tween p~(T) and p»(T) below 50 and 20 'K, respec-
tively. Over the short temperature range from
room temperature to the melting point, data for
p»(T) do not exist for either Na or K.

Our results for p~(T) and p»(T) for Na and K are
presented in Tables II and III. The third and fifth
columns of each table give the percentage discrep-
ancy between calculated values and experiment.
%e see that for both Na and K the results are ex-
cellent, with the discrepancy between theory and
experiment never exceeding 5% for any tempera-
ture, either for pg(T) or for p»(T). The quality of
this agreement can be appreciated by noting the
very large change in p(T) over this temperature
range.

Of primary interest in this work is the distinc-
tion between pg(T) and p»(T). In the sixth and
seventh columns of Tables II and III, we compare

the experimental and the calculated values of
(p~- p»)/p». We see that at room temperature
pg(T) and p„(T) differ appreciably, by 22% for Na
and by 36% for K. Our calculated values for the
percentage differences are in excellent agreement
with experiment over the entire temperature
range.

There are four contributions to the difference
between the calculated values of p~(T) and p»(T).
The first two result from the different temperature
dependence of ur, (q) and g~(q) at constant pressure
and at constant volume. The third and fourth con-
tributions are the explicit volume dependences ap-
pearing in v(k) and in the factoraa kza which are
present in pg(T) but absent in p»(T). The contri-
bution of each effect is listed in Table IV, where
&p/p means the percentage change in p„„(T)re-
sulting solely from the change in the listed quan-
tity with temperature and/or volume over the
range from T=90'K to T= 290'K. For example,
&p/p corresponding to &u, (q, T) means
[Pago x((o(290'K)) —Pago K(~(90 K))]/
pago K((0 (290 'K)), where by pago „(~(90'K)) we
meanthe resistivity calculated with all the temper-
ature-dependent quantities evaluated at 290 'K, with
the exception of the &u, (q, T), for which we use their
value at 90 'K. %e see from Table IV that by far
the greatest contribution to n,P/P comes from the
~„(q, T). Even at constant volume, the tempera-
ture dependence of the cu~(q, T) makes a significant
contribution to p(T) Therefo. re, all those previous
calculations that ignored the temper ature dependence
of the phonon frequencies have a built-in error
whose magnitude is evident from Table IV.

It is worth noting that &p/p resulting from the
volume change of va(k) is positive for both Na and
K. To understand this, it is convenient to write
the volume change of v (k) as the product
2v(k)nv(k). In the range of k that dominates the
integral for p(T), &v(k) is always negative. ao For
both Na and K, v(k) is also negative throughout

TABLE II. Comparison between the calculated and experimental values for Na for pp(T), pz(T), and the difference
between them.

T
('K)

50
60
80

100
120
160
200
240
280
295

[p, (T)j„„
(pn cm)

0.317
0.475
0.805
l.146
1.484
2. 166
2.874
3.626
4.432
4.750

!
~porc pexpt

pexyt p

+5.0
+1.5
—2.5
—3.5
—3.0
-0.5
+0.0
+1.0
+3.0
+4.0

[py(T)]
(IL(, Q cm)

0.314
0.469
0.788
1.108
l.416
2.001
2.566
3.123
3.676
3.882

!
I paLic pegpt

(%)

+4.5
+2.0
—2.0
—3.0
—3.5
—1.5
+0.0
+l.0
+2. 0
+2.5

0.01
0.01
0.02
0.03
0.05
0.09
0.12
0.16
0.22
0.24

0.01
0.01
0.02
0.04
0.05
0.08
0.12
0.16
0.21
0.22
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TABLE III. Comparison between the calculated and experimental values for K for p&(T), p~(T), and the difference
between them.

T
('K)

20
30
40
60
80

100
120
160
200
240
280
295

[p~(T) ],~t
(pQcm)

0.107
0.285
0.496
0.944
1.389
l.836
2.294
3.250
4. 281
5.418
6.673
7.190

!
t~calc ~empt

p
(%)

—5.0
—4.0
-4.0
-4.0
-4.0
—4.0
—2. 5
—1.0
+1.()

+1.5
+2.5
+3.0

[pp'(T) l ~pt
(pQ cm)

0.107
0.283
0.490
0.921
1.329
l.716
2.102
2.824
3.543
4. 264
4.991
5.272

&care &empt

(Vo)

—5.0
-4.0
—3.5
—3.5
—3.5
—3.5
—3.0
—2. 0
+0.0
+1.0
+2.0
+2.5

0.00
0.01
0.01
0.02
0.04
0.07
0.10
0.16
0.22
0.28
0.35
0.37

0.00
0.01
0.01
0.02
0.05
0.07
0.09
0.15
0.21
0.27
0.34
0.36

this range of k, leading to a positive bp/p.
Dugdale and Gugan'6 also reported their values

for the volume derivative of the resistitivy &(Inp)/
S(lnV) at constant temperature. This quantity is
of special significance because it measures di-
rectly the difference between p~(T) and p„(T). In
Table V we make comparison between our calcu-
lated values and experiment. From the excellent
agreement we may draw an important conclusion.
The major contribution to the volume derivative
of p arises from. the volume derivative of the
u&~(q). Since this derivative has not been mea-
sured, we computed it in the same approximation
used to compute the temperature derivative of
&u,(q). From the fact that the calculated volume
derivative of p is in excellent agreement with the
measured value, we may conclude that the approxi-
mation used to determine the volume derivative of
the +~(q) is very good. Furthermore, precisely
the same approximation was used to determine the
temperature derivative of the &u~(q). This lends
further support to the argument presented in the
Appendix to justify our approximation.

Finally, we see here confirmation in our pro-
cedure, which neglects the volume dependence due
to nonlocality of the parameter P,«. If its volume
dependence were significant, it would surely con-
tribute to the volume derivative of the resistivity,
and prevent us from obtaining the good agreement
that we in fact find.

One sees from Table V that s(lnp)/s(lnV) is
larger at lower temperatures. The reason for
this can be understood by examining the functional
dependence of S(k) on &o„(q) as given in Eq. (3.1).
For high temperatures [ksT ~h!u„(q)], expanding
the exponentials gives s(k) ~ [&u~(q)] ~, whereas for
low temperatures (ksT «ku&~(q)], dropping the
negative exponential and the unity gives S(jt)
~ exp[ k&o,(q-)/ksT] Since. the exponential de-
pendence of s(Tc) on &u~(q) is much more sensitive
than the inverse-square dependence, we find that
for low temperatures the derivative of s(%), and

hence p, with respect to &u&, (q) is appreciably larger.
Recalling that the major contribution to s(lnp)/S(ln V)

arises from Bar„(q)/BV, we can see why the volume

derivative of p is larger at lower temperatures.

TABLE IV. Contribution to the temperature dependence
of p (T) for Na and K from quantities having an implicit
temperature or volume dependence. The ratio 4p/p
denotes the percentage contibution to p(T) arising solely
from the listed quantity over the temperature range from
T =90'K to T =290'K.

TABLE V. Calculated and experimental values for
Na and K for the volume derivative of the resistivity at
low temperatures and at high temperatures. The un-

certainty in the calculated values results from the ex-
perimental error in the pressure and temperature de-
rivatives of the elastic constants (see Table I).

Temperature
or volume
depend ence

~"i (q)
&i (q)
I' (k)
kj;

Total

(&p/p)&
{'ic)

+18.0
—1.0
+4. 5
+3.5

+25 0

Na

(+P/P) V

('./c)

+8.5
—1.0

~ ~ ~

+7.5

(b,p/p) p
('c)

+25. 0
—1 5
+3.0
+4. 5

+31.0

(~pip),
(t )

+6, 0
—1.0

~ ~ ~

+5. 0

T(K)

a(ln V)

8 (ln p)

50'K

6.3+0.1

6.5+0, 5

Na
290'K 30 'K

K
290 'K

4.4+ 0.1 7.3+ 0. 1 5.7+ 0.1

4. 6 +0, 4 7.4 +0.3 5. 8+0.2
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VII. DISCUSSION OF PREVIOUS WORK VIII. SUMMARY

~,(q, V) = ~,(q, Vo) [1+y( V —V )/ V ], (7. 1)

where y is the GrGneisen constant, Vo is a refer-
ence volume, and V is the volume at temperature
T. This approach is equivalent to the following
two approximations. First, anharmonic effects
on p„(T) are completely neglected. Second, the
temperature dependence of the mr~(q) is assumed
to be the same for all q and for all X. For low q,
one may test these approximations explicitly by
calculating both the constant-volume and the can-
stant-pressure temperature dependence of the
&u~(q} by means of macroscopic elasticity theory.
Performing such a calculation shows that each of
these approximations seriously underestimates
the temperature dependence of the ~,(q). The ar-
gument given in the Appendix suggests that (7. 1)
will be similarly inadequate throughout the Bril-
louin zone. We have calculated (b,p/p)~ due to
co~(q) for both Na and K according to the approxi-
mation (7. 1) and we obtain 8% for Na and 11% for
K. This is less than half of our result (18% for
Na and 25% for K), which is based on a treatment
that includes anharmonic effects exactly for low q
and to very good approximation throughout the
Brillouin zone.

In summary, we see that anharmonic effects on
the phonon spectrum constitute a large contribu-
tion to the temperature dependence of the resistiv-
ity. Therefore, one cannot make a meaningful
comparison between p~(T) and p~(T) without a pro-
per treatment of this important effect.

The only previous calculation for any metal of
both p~(T) and p„(T), permitting a comparison
between them, is that of Hayman and Carbotte
(HC). " The calculation consists of two steps.
The first step is to calculate the temperature de-
pendence of the resistivity at constant volume and
without anharmonic effects. There is, at this
stage, no difference between p~(T) and pv(T). The
second step is to include the anharmonic effects,
as well as all explicit volume dependences. The
first step of the HC calculation is very similar in
spirit to our own work, and the results are quite
comparable. However, we are here interested in
the difference between p~(T) and pv(T), which re-
sults exclusively from the second step of the calcu-
lation. Both our analysis and our results for this
second step are completely different from those
of HC.

There are four contributions to the difference
between p~(T) and p„(T). These are listed in
Table IV. A glance at the table shows that by far
the largest contribution arises from the anharmon-
ic effects on the phonon frequencies ~„(q). To cal-
culate this, HC used a GrOneisen-type approach,

We wish to demonstrate that for all q it is rea-
sonable to obtain the temperature dependence of
the ar„(q) by assuming that [~~(q, T)]'[8&v~(q, T)/BT]
is independent of the magnitude of Iql/q ~, where
the temperature derivative is understood to be
taken at constant q/q . Let us first consider the
symmetry directions. For each symmetry direc-
tion (and only for the symmetry directions), for
each polarization the phonon frequency can be ex-
pressed in terms of the interplanar force con-
stants 4„(T) by means of

N

uP(T) =M Q 4„(T)[1—cos(nvq/q, )], (Al)

where M is the mass of the atom, the sum over n

is taken out of N planes of atoms, and q ~ is the
distance to the Brillouin-zone boundary in the
direction under consideration.

It turns out that for each polarization, in each
of the three symmetry directions ([100], [110],
[111]),one term dominates the sum over n, since
one of the 4„(T) [call it C„(T)]is about 10 times
larger than any of the others. Thus, to a very
good approximation, we may write

~ (T) = M C'„(T)[1 —cos(mmq/q }]. (A2)

The approximation given in (A2} is especially good

In this paper, we have compared the constant-
pressure and constant-volume temperature depen-
dences of the resistivity for Na and K. This was
achieved by incorporating into the calculation the
constant-pressure and constant-volume tempera-
ture dependences of the phonon frequencies and
polarization vectors, as well as the volume depen-
dence of the k~ factors and of v(k). Excellent
agreement was obtained with experiment. We also
computed the volume derivative of the resistivity
at constant temperature and again obtained com-
plete agreement with experiment.

We conclude from these results that it is possi-
ble to achieve excellent agreement with experiment
for both p~(T) and p„(T) over the entire tempera-
ture range in the solid, provided that proper ac-
count is taken of anharmonic effects on phonon
frequencies and polarization vectors.

We are presently extending our calculations to
include the polyvalent metals to see whether simi-
lar good agreement can be achieved for this signif-
icantly more difficult problem.
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sc (T)

(AS)

in the important [110]direction, where for Na the
largest 4„(T) is S6, 67, and 1660 times larger
than the next largest 4 „(T) for the longitudinal and
two transverse polarizations, respectively.
From (A2) it immediately follows that

1 8(u(T) 1 etc (T) 1
tc(T) eT 2tc'(T) aT 24 (T)

independent of q/q
For a bcc lattice, there is no region in the Bril-

louin zone which is very far from one of the sym-
metry directions. Therefore, it is reasonable to
expect that for all directions, not just for the sym-
metry directions, our procedure for obtaining the
temperature dependence of the &o~(tl) is a very good
approximation.
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