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The cohesive energy and zero-pressure density of the alkali metals have been calculated
using the self-consistent augmented-plane-wave method and the statistical (Xz) exchange-
correlation approximation. For the value of n which makes a single determinant of atomic
spin orbitals satisfy the virial theorem, the lighter alkali metals are computed to have co-
hesive energies and zero-pressure densities which are too large (errors of 22 and 16% for
Li) with respect to experiment. To test the sensitivity of these results to the choice of ~, the

same calculations have been performed with o. set equal to 3. This choice of n produced more
uniformly good results for all the alkali metals with the largest errors occurring for cesium
(errors of 7 and 9%, respectively). It is suggested that these results may be a consequence
of the large change in the valence electronic charge density that, occurs when the lighter
alkali-metal atoms come together to form the solid. It S not suggested, however, that n = 3

be used in all energy-band calculations.

I. INTRODUCTION

In recent years an approximate method' (called
the Xa method) has been developed for calculating
the bulk properties of solids under pressure. The
method is essentially one in which the exchange-
correlation potential energy in a one-electron ef-
fective Schrbdinger equation is approximated by a
term proportional to the one-third power of the to-
tal electron charge density. The Xn approxima-
tion has already been applied to severa1 solids with

varying degrees of success, ' but there is still a
great deal of uncertainty both as to the accuracy
and to the range of applicability of the method. It
appeared that, it would be informative to apply the
Xn method to a whole family of closely related
solids. Specifically, it was hoped that some under-
standing could be gained from the way the X& meth-

od treated the various members of the family, and

that perhaps some general over-all trends might
be made manifest.

The obvious choice for such a family of solids
is the alkali metals. Because of their relative
simplicity, the alkali metals have long been a
testing ground for new approximate methods in
solid-state theory. Furthermore, there is now an
abundance of experimental information ' available
on these metals.

II. DESCRIPTION OF THE CALCULATION

In the X~ approximation, the total energy of a
crystal may be written2, 3, 8, 9

where (T» ) is the total kinetic energy and (Ur„) is
the total potential energy of the crystalline system.
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The total electronic charge density at the point 1
is assumed to be related to a set of one-electron
wave functions by the expression

p(1) =Q, n, u*, (1)u, (l) . (2)

1/3
p(1) 9o' —p(1) dvi (6)

An effective Schrodinger equation for the set of
occupied one-electron wave functions in Eq. (2) is
obtained by varying (E»,) in the usual manner while
constraining the occupation numbers to remain
unchanged. The resulting one-electron equation
must in general be solved in an iterative fashion.

Slater' has shown that an equilibrium state of
an electronic system in the Xn scheme is obtained
when the occupation numbers in Eq. (2) obey Fermi
statistics. In the work reported here, we were
interested in the zero-temperature properties of
the alkali metals. Therefore, at each stage of itera-
tion the set of n&'s was chosen according to zero-
temperature Fermi statistics. "

From thermodynamics, the pressure acting on a
system in equilibrium at zero temperature is de-
fined to be equal to the negative of the volume de-
rivative of the total energy of the system. In the
Xn approximation, this relation is

d&E» )
dV

Fortunately, the pressure in the Xu approximation
can be expressed in a form which is in some ways
more computationally convenient. It can be
shown ' ' that the self-consistent solution of the
one-electron Schrodinger equation satisfies a virial
theorem of the form

&V= ' (2&T .&+ &U .&)

In this expression, n& is the occupation number of
the ith one-electron state. If we assume the
nuclei to be fixed, then (T»,) is just the total
kinetic energy of the electrons. In Ry energy units,

(T»,) =-Z, n, f u*;(1) v', u, (l)dv, . (2)

The potential energy (U»„) can be conveniently
expressed as a sum of four terms:

(U», ) = U„+ U„+ U„+U„, ,

where U,, is the interaction energy of the charge
density p(1) with the nuclei, V„ is the potential
energy of interaction of the nuclei with one another,
and U„ is the classical electrostatic energy of in-
teraction of the charge density p(1) with itself.
Finally, U„, is the Xn approximation to the ex-
change-correlation energy (and self-energy correc-
tion) of the electrons. We will assume that spin
polarization of the charge density is unimportant,
in which case

Both expressions for the pressure have their rela-
tive merits. Equation ('7) has the advantage that it
requires explicit knowledge of the system at only

the volume V, whereas Eq. (6) requires knowledge
of (E»,) as a function of the volume in the neighbor-
hood of V. On the other hand, Eq. (7) for the pres-
sure is susceptible to the computational errors in

(T» ) and (U» ). According to the variational prin-
ciple, these errors will tend to be larger than those
in (E„.&.

"
The cohesion of an elemental crystal is defined

theoretically to be the difference between the total
energy per atom of the' crystal and the total energy
of the isolated atom in its ground state. In the
Xn method, the cohesion can be expressed as

&=(E» & &E» & (6)

where we will adopt the approximation of using the
same value for n in both atomic and crystalline
calculations. In this paper, the cohesive energy
is defined to be the maximum value of the cohesion.

In the work reported here, the lattice structure
was chosen to be the experimentally observed bcc
arrangement of the alkali metals. At each lattice
constant, a starting potential for initiating the
iterative solution of the one-electron equation was
generated by superimposing self-consistent atomic
charge densities obtained from a Herman-Skillman 4

calculation. The one-electron equation was then
solved by an iterative procedure using the augment-
ed-plane-wave (APW) expansion method of Slater. "
The APW basis set was chosen to be large enough
to assure that the kinetic energywould be converged
to less than 0. 001 Ry. For the sake of simplifying
the computations, the muffin-tin approximation'
was made, with the radius of the muffin-tin sphere
in all cases chosen to be equal to one-half of the
nearest-neighbor distance.

Two approaches to the selection of n were taken
in this work. One of the methods was to choose a
to be the value n„, , which makes the total Xn
energy of the isolated alkali metal atom equal to
the total energy of a determinantal wave function
with the occupied Xo.' wave functions as the space
part of the spin orbitals. ' Schwarz" has deter-
mined n„, for the alkali metals lithium, sodium,
potassium, and rubidium. He found that for a given
atom, o.'„, was very close to the value of & which
made the total Xo.' energy equal to the total Hartree-
Fock energy calculated by Mann. The value of
&„, for cesium was reported in a previous paper by
the present author to be 0. 69941. The other op-
tion that was studied is to choose n to have the
value —,

' as suggested by Kohn and Sham' and Gas-
par.

In the lighter alkali metals, the largest single
source of computational error is believed to be in
the finite sampling of the Brillouin zone associated
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with the valence band. Calculations of states with-
in this band were performed at the equivalent of
128 uniformly spaced points in the full zone. For
all the alkali metals, it was found that the first s
band and the first P band under the valence band
were narrow enough to be adequately sampled by
16 uniformly spaced points in the Brillouin zone.
All other core states were treated in an atomiclike
manner but in the crystalline self-consistent po-
tential.

The computations were carried out on an IBM
360/65 computer using double-precision arithmetic.
The numerical operations in both the atomic and
crystalline problems were performed on the Her-
man-Skillman radial mesh. '4 In the heavier alkali
metals, the errors introduced by this finite radial
mesh were about as large as those introduced by
the BrQ1ouin-zone sampling. Within the model
system employed, the numerical errors in the com-
puted cohesions and pressures of lithium are be-
lieved to be no more than 0. 003 Ry and 1. 5 kbar,
respectively. Similarly, for cesium the errors
should be no greater than 0. 002 Ry and 1.0 kbar.
The errors in the computed cohesions and pres-
sures of the other alkali metals should lie between
those of lithium and cesium.

III. RESULTS

TABLE I. Theoretical results at
observed zero-pressure densities.
error for a quantity implies that its
approximation was smaller than the

Xo,
Alkali cohesion
metal (Ry)

% error
cohesion

the experimentally
Here a negative /o

magnitude in the X~
experimental value.

XG,

pressure % error
(kbar) density a

& =~et
Na
K
Rb
Cs

Li 2
3

Na
K
Rb
Cs

0.148
0.096
0.075
0.066
0.061

0.124
0.087
0.068
0.061
0.057

+22
+16
+9
+3
+1

+2
+5
—1
—5

7

—20. 7
—6.3
—1.4
+0.1
-0.1

+2 ~ 2
+0.5
+1.6
+2.0
+1.2

+16
+7
+3
—1
+2

~Errors given for Na, K, and Rb are estimates.

For each of the alkali metals, two calculations
of the theoretical cohesion and pressure were per-
formed at the experimentally observed low-tem-
perature zero-pressure lattice constant. In one
set of calculations, & was chosen to be equal to
a~ (Table I, top-half) and, in the other, n was
chosen to be equal to -', (Table I, bottom-half). Fur-
ther calculations were performed on the lithium
and cesium systems at other lattice constants so
that the volume dependence of the total energy and

TABLE II. Information on the alkali metals.

Alkali Atomic
metal No. a& a

Experimental
lattice constant

(a. u. )

Experimental
cohesive energy

Q&y)

Li
Na
K
Rb
Cs

3
11
19
37
55

0.780 87
0.730 44
0.720 72
0.705 25
0.69941

6.597
7.984
9.874

10.55
11.42

0.121
0.083
0.069
0.064
0.061

aSee Refs. 18 and 5.
"See Ref. 6.
K. A. Gschneidner, Jr. , Solid State Phys. 16, 275

(1964).

pressure of these two metals could be determined.
In particular, the theoretical zero-pressure den-
sities were established. For the other alkali
metals, however, no calculations were performed
at lattice constants other than the experimental
ones. Nevertheless, it is possible to estimate the
errors in the zero-pressure densities that would
be obtained for these other metals by comparing the
theoretical pressures obtained at the experimental
lattice constants with the experimentally known~a

compression curves. The percentage difference
between the theoretical and experimental zero-
pressure densities are given in the last column of
Table I. These results can be compared with the
experimental zero-pressure lattice constants and

cohesive energies given in Table II.
The most striking features of the n= &„t results

in Table I are the close agreement between experi-
ment and theory for cesium and rubidium and the
ordered decrease with respect to atomic number
in the agreement for the other metals. It is signifi-
cant that the lighter metals have calculated cohe-
sive energies which are too great and theoretical
zero-pressure lattice constants which are too small. .
Specifically, these results would seem to imply
that the choice n= n~ overestimates the exchange
correlation in the lighter alkali metals. If this
conclusion is correct, then using an a less than e„t
should improve the results for the lighter alkali
metals and degrade those of the heavier ones. The
data given. in the bottom-half of Table I appear to
at least tentatively support this argument.

As has been mentioned earlier, the cohesion
and pressure of lithium and cesium have been cal-
culated at a number of different lattice constants.
The results of these calculations are tabulated in
Tables III and IV. For the purposes of locating
the theoretical zero-pressure lattice constants and
calculating the bulk moduli, it was found conveni-
ent to fit the computed cohesions of lithium and
cesium to polynominals in the volume. In all cases,
the highest-order polynominal possible was used;
i. e. , the order of the Lagrange polynominal in each
instance was one less than the number of computed
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TABLE III. Calculation of the cohesion and pressure of
lithium.

TABLE V. Comparison of theoretical and experimental
results for lithium and cesium.

Volume~

110.72 0, = ~„t
116.30
122.07
131.07
143.60

131.07 o. =
~

137.31
143.56
150.38

Cohesion
(Ry)

+0.149 213
+ 0.149 666
+ 0.149 779
+ 0.149 391
+ 0.148 024

+0.123 125
+0.123 620
+0.123 842
+ 0.123 825

P (virial
theorem)

{kbar)

+16.8
+7.0
—1~ 3
11~ 2

-20.7

+15.2
+8.1
+2.3
—3.0

+17.0
+7.2
—1.1

—11.0
—20. 6

+15.2
+8.3
+ 2.4
—2.9

Volume of the primitive unit cell in units of cubic
atomic units.

Cohesive
energy

(Ry)

X~(~ =0.78087) 0.150
Experiment 0.121 ~

Xcy(o. =0.66666) 0.124

Cs Xz(~ =0.69941) 0.061
Experiment 0.061
Xo, (g =0.66666) 0.057

Lattice
constant

(a.u. )

6.2351
6.5971"
6.6403

11.50
11.42"
11.75

Bulk
modut, us

0 bar)

162
123
115

18
22'
14

K. A. Gschneidner, Jr. , Solid State Phys. 16, 275
0.964).

Reference 6.
Reference 7.

TABLE IV. Calculation of the cohesion and pressure of
cesium.

Volumea

500. 0 ~ =~~
579.7
665. 5
750. 6
976.6

1230.2

Cohesion
(Ry)

+0.050 85
+0.057 00
+0.060 15
+0.06105
+0.058 82
+0.053 12

P (virial
theorem)
(kbar)

+14.5
+7.0
+2 ~ 7
—0.1
—3.0
—3.9

(kbar)

+15.1
+8.1
+3.1
+0.2
—2.4
—4. 7

points. The internal consistency of these calcula-
tions can be checked by comparing the pressures
computed from these polynominals (-dE/d V) with
the pressures obtained by the virial theorem as
has been done in the last two columns of Tables
III and IV. It can be seen that the agreement be-
tween P (virial theorem) and P (-dE/dV) is not
nearly as good for the cesium data as it is for the
lithium data. The cause of these small discrepan-
cies in the cesium calculations is mainly the mar-
ginal adequacy with which the cesium compression
curve can be fitted by a fifth-order polynominal.

In Table V, we give the computed zero-pressure
cohesive energies, lattice constants, and bulk
moduli of cesium and lithium and compare them
with experimental values. As we would predict
from Table I, an n of 3 gives the best results for
lithium, whereas for cesium, +„, seems to be the
more appropriate value to use.

Uc Uen+ Unn+ Uee . (10)

hT is the difference in the total kinetic energy per
atom of the crystal and the total energy of the iso-
lated atom. 6 U, is the difference in the classical
potential energies of the crystal and the atom, and
6 U„, is the difference in the exchange-correlation
potential energy of the crystal and the atom. In
Table VI we have tabulated these differences for
lithium and cesium at the two values of o. The en-
tries in these tables have been obtained from La-
grange interpolating polynominals evaluated at the
theoretical zero-pressure volumes. It is reassur-
ing to see that within the computational accuracy
the virial theorem is satisfied; i. e. , C = —aT.
However, the most interesting aspect of Table VI
is that it reveals the large role played by 6 U„, in
the binding of these metals. In particular, we see
that for both lithium and cesium, AU„, is larger
than the cohesive energy. It is also interesting to
note that b, U, is relatively insensitive to the choice

TABLE VI. Contributions of the total kinetic energy,
the classical Coulomb energy, and the exchange-correla-
tion energy to the cohesive energy of lithium and cesium.

Another point of interest is the contribution of
each term in the total energy expression to the
cohesive energy of the alkali metals. From Eqs.
(1), (4), and (8), the cohesive energy can be written

C = aT+ ~U, + aU„, ,

where

500.0 ~ =3
578. 8
665. 5
750. 6
976. 6

1314.0

+0.043 30
+ 0.050 60
+ 0.054 90
+ 0.056 60
+0.055 90
+0.049 80

+ 17~ 7
+9.2
+4.3
+1.2

2 ~ 1
—3.4

+17.4
+10.2
+4.8
+1.4

1~ 3
—6.5

Ll

AT AUc
(Ry) Sy)

0.780 87 —0.1493 + 0.1142
0.666 66 —0.1240 + 0.1032

&Uxc
Sy)

+ 0.1850
+0.1446

Cohesive
energy

Sy)
+ 0.1499
+ 0.1238

~Volume of the primitive unit cell in units of cubic
atomic units.

Cs 0.69941 —0.0616 +0.0333
0.666 66 —0.0550 + 0.0328

+0.0896
+ 0.0793

+ 0.0613
+ 0.0571
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of n, whereas 67." and b, U„, are strongly affected.
This last observation tends to support the notion
that by reducing 0'., we are reducing the exchange-
correlation energy contribution to the calculated
cohesive energy of the alkali metals.

IV. DISCUSSION OF RESULTS

The results of Table I can perhaps be understood
in terms of the following arguments. From the
works of Schwarz' and Lindgren and Schwarz,
we know that the optimum n for an electron system
is probably a functional of the electronic charge
density. In particular, we might suspect that
as the lattice constant of an alkali metal is de-
creased from infinity, the value of the optimum n
for the system should decrease. Of all the alkali
metals, lithium has the largest cohesive energy,
and, therefore, probably has a valence electronic
charge density which differs most radically from
the valence charge density of the isolated atom.
Using an atomic optimized n in the lithium crystal
is consequently not a particularly good approxima-
tion. Cesium on the other hand has a relatively
small cohesive energy, and an atomic optimized
0.'for such a solid is much more appropriate.

Several other workers ' have done similar total
energy calculations on lithium . The lithium calcu-
lation in the present paper is most easily compared
with the work of Rudge. Using an a of —,

' and the
muffin-tin approximation, Rudge obtained a theo-
retical lattice constant of '7. 11 a. u. , a cohesive
energy of 0. 084 Ry, and a bulk modulus of 109
kbar. These results can be compared with those
given in Table V. Although there are some minor
differences between the calculation of Budge and the
one described here, it does not appear that they
could be the source of the large discrepancies in
the computed results for the cohesive energy and
the equilibrium lattice constant. Liberman, ' who
has performed a somewhat similar bulk property
calculation on lithium, obtained results which are
in closer agreement with the n= —,'results in Table

V than they are with those of Budge. Nevertheless,
a satisfactory explanation of the disagreement be-
tween the results of Rudge and Table V is lacking.

It should be emphasized that only the bulk prop-
erties of the alkali metals near zero pressure have
been considered in this work. Furthermore, the
bulk properties of a solid essentially depend only
upon the character of the valence electronic charge
density. Ne should, therefore, be careful not to
generalize these results to energy band calculations
of other properties or to bulk property calculations
in other solids. In particular, the present author
does not at this point recommend the use of n= —,'in
all energy-band calculations.

Another point worth making is that this calcula-
tion neglects both the corrections to the muffin-tin
approximation and relativistic effects. From the
works of Budge and Painter and Ellis, we know

that the non-muffin-tin contribution to the one-
electron energies of lithium is less than about 0. 005
Ry. Such a correction to the cohesive energy is
not large enough to change the qualitative results
for lithium but could possibly affect those of cesium.
As for relativistic effects, there should be no

problem with lithium but cesium is again a ques-
tionable case. In summary, it can be said that the
results reported here for the lighter alkali metals
are less likely to be severely different from rela-
tivistic non-muffin-tin calculations than are the
results for the heavier elements.
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Electron-Phonon Function o.2 (m)F(u) for Thallium
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A good deal of agreement is found to exist between the phonon spectrum derived from super-
conducting tunneling experiments and that obtained by inelastic-neutron-scattering data. How-
ever, some discrepancy has been observed in thallium. We discuss the reasons for these
differences, and show how they can be largely eliminated by the proper choice of force con-
stants and pseudopotentials.

1. INTRODUCTION

Inelastic neutron scattering yields the phonon
dispersion curves in metals and other systems,
usually along high-symmetry directions. These
are fit by a Born-von Karman force-constant
model, which is then used to generate the phonon
frequency distribution E(~). Fora strong-coupling
superconductor, such as thallium, there exists
an independent method of obtaining very much the
same information. It is superconducting tunnel-
ing ' on diodes involving strong coupling systems.
In the current-voltage characteristics of such de-
vices there exists an image of the phonons.

The I-V data can be "inverted" by the technique
of McMillan and Bowell to yield the electron-
phonon function n (&u)E(tu). This function may be
thought of as a product of some average electron-
phonon coupling strength ua(cu) times the phonon
frequency distribution E(&u). Inasmuch as the
assumption that o'~(&u) does not vary significantly
with energy is valid, we obtain an independent
measure of E((u) which can be compared with neu-
tron da.ta.

A review of such comparisons has been made
by Howell and Dynes. Generally, a considerable
degree of agreement is obtained between these two
techniques. At the moment, however, thallium
appears to be an exception.

H. DISCUSSION

Worlton and Schmunk (WS) have recently used
neutron inelastic scattering to measure the thallium
phonon dispersion curves along two high-symmetry

directions at 7V and 296 'K. They analyzed their
data in terms of the modified axially symmetric
(MAS) force-constant model, and used a least-
squares-fitting procedure to derive the force con-
stants. Since we are primarily interested in low-
temperature calculations, we restrict our attention
to their 77 K results, for which VfS present three
force-constant models. %e discuss model 1A
because its fit to experiment is as good or better
than the other two models.

The dispersion curves as predicted by the VfS
model 1A are shown in Fig. 1, where we have used
the lattice parameters a = 3.4496 A and c = 5. 513'7
A. The labeling of the symmetry points along the
horizontal axes follows the convention of Koster.
It is interesting to note that the more than linear
increase in some of the acoustic modes, for small
q, has been predicted by van der Hoeven and
Keesom' on the basis of specific-heat measure-
ments in thallium.

The density of phonon states is

where V is the total crystal volume and N is the
number of unit cells. The integration is over the
first Brillouin zone (FBZ) and the sum on j extends
over six phonon branches. The phonon frequency
of the (qj)th mode is &u~(q); and the normalization
condition /du&E(&u) = 6 applies.

The frequency distribution E(&u), calculated using
the 1A model, is shown in Fig. 2 by the dashed
line. The I- V characteristics of thallium have
been mea, sured, " and the dots in this figure


