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The electronic band structure, density of states, and €(w), the imaginary part of the di-
electric constant, are calculated for niobium nitride using the empirical-pseudopotential
method. The results are compared with non-self~consistent and with the self-consistent aug-
mented-plane-wave calculations. A discussion of the Fermi surface is included.

1. INTRODUCTION

We have recently developed a scheme, ! which is
a simple modification of the usual form of the em-
pirical-pseudopotential method® (EPM) for simple
metals and semiconductors, to calculate the elec-
tronic properties of noble metals® and a transition
metal—niobium.* The advantage of this scheme is
its simplicity and its flexibility. In the case of the
noble metals and the transition metal, this empir-
ical scheme involves less (8) parameters than pre-
vious pseudopotential —tight-binding schemes. It is
also unnecessary to know a priori the region in the
Brillouin zone (BZ) where the hybridization between
the s and d electrons is strongest for these crys-
tals. All one needs are the energies at a few high-
symmetry points inside the BZ and the width of the
d bands. The energies and the width of the d bands
can be determined by optical measurements®® and
photoemission experiments, ® respectively. Fur-
thermore, the atomic pseudopotential extracted
from one calculation can be used at least as a start-
ing potential for other compounds with the same
atom as a constituent.? It is this flexibility which
enables us to calculate the electronic properties of
a series of compounds.

In this report we concentrate on a transition-
metal compound. This class of compounds is ex-
tremely interesting. Some of these compounds are
high-temperature superconductors, and others ex-
hibit interesting metal-insulator transitions. It is
felt that a vast amount of basic knowledge about
solids can be obtained through studies of these

kinds of crystals, and it is, therefore, necessary
to have an effective method to study the electronic
properties of these compounds. We have antici-
pated in Ref. 1 that the EPM can be used for this
purpose. Here, we report the first energy band
structure of a transition-metal compound (niobium
nitrade) obtained by using the EPM. We would like
to make a few comments about the significance of
the present calculation: (a) Despite the fact that
the band structure presented is fitted to first-prin-
ciples calculations (due to the lack of experimental
information) the results indicate that it is now pos-
sible to determine with even more accuracy the
energy band structure of interesting transition-
metal compounds if optical and photoemission data
are available. (b) NbN is a high-temperature
superconductor with T'=15.7°K.” We anticipate
that the pseudopotential derived here for NbN can
be used in the future to study the origin of the high
superconducting transition temperature for this
compound. Furthermore, if more optical and
photoemission data relating to the transition-metal
compounds are available, one can use the results
of the EPM to predict the superconducting transi-
tion temperature. (c) Experimental studies on NbN,
up to present, are restricted to mechanical, elec-
trical, and superconducting properties. If optical
data were available we could refine our calculation.
For the present, we give a calculation of the imag-
inary part of the dielectric function as a rough pre-
diction of the optical spectrum. (d) Earlier theo-
retical studies were done by Mattheiss® (who also
summarized results for similar compounds) using
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the augmented-plane-wave (APW) method and by

Schwarz® who used the self-consistent APW method.

There exist large discrepancies between the two
APW results. As we will show the results of the
EPM fit Schwarz’s calculations better than Mat-
theiss’s results. This paper will be presented in
four sections. In Sec. II, we discuss the method
of calculation. The results are given in Sec. III.
Finally, Sec. IV presents the summary and con-
clusions of this study.

II. METHOD OF CALCULATION

The general form of the pseudopotential Hamil -
tonian has the following form:

= —% V2LV (F)+ Vy (), (1)

where V,(¥) is the local pseudopotential and V. (F)
is the nonlocal pseudopotential. The potential
V.(¥) is expanded in the reciprocal lattice

Vo ®)=Dav(|G|)eS" T, (2)

where G is a reciprocal-lattice vector in units of
(2n/a), a is the lattice constant and is equal to

4.39 A.7 V(IG|) is the pseudopotential form factor.

We truncate the series at |G|2=12. NbN has the
rocksalt structure; the origin of the coordinate
system is taken at the Nb atom and the position of
N atom is at 3a(1,1,1). The truncation, then,
leaves two antisymmetric form factors, V4, at
IGI2=3 and 11 and three symmetric form factors,
VS, at |G|%=4, 8, and 12.

Vyi(F) contains two separate parts: (a) A d-wave
nonlocal potential to account for the part of the po-
tential for the d electrons of the Nb atom which is
over canceled in V,(¥). The form of this d-like
Ve (F), centered at the Nb atom, is the same as
given in Ref. 1 and has the following form:

ViEE) =2, PIV,(|F - R, | )P, (3)

where R, is the lattice vector. P} and P, are pro-
jection operators. They project out the /=2 com-
ponent of the wave functions when the matrix ele-
ments of the V,’ff(x") are calculated over a conve-
nient basis:

Vy(|F-R,|)=4, for |F-R,| <k,
=0 otherwise, (4)

where A, and R, are treated as disposable param-
eters. Since we want to obtain good convergence
for the energy of the d band using a plane-wave
basis, we introduce a damping factor of the form
(as in Ref. 1):

&+G|ViE(F)k+GY

. e 2. - .4,
-exp—a(zik (Je+G]| —K)) (k+G|V,}Ea(F)|k+G)
33

xeXp[—a(z—;—l’r('T{+6'|—K)>a], (5)

where a and « are treated as parameters and kz
is taken as the Fermi momentum of Nb.

(o) A p-wave nonlocal potential since the core
states of the N atom is (1s)? and there is no p-like
core states. The valence states (25)%(2p)® have
both s and p characters. Similar to the case of
boron nitride (BN)!® we introduce a nonlocal
pseudopotential for the p electrons. This p-like
nonlocal pseudopotential takes the following form:

VELE) =20,PIV(|F - R, - 7|)P,, (6)

where PI and P; are projection operators similar
to P, but they project out the /=1 component only.
R, is the same lattice vector defined above. ¥
=3a(1,1,1) so that V;(¥) is centered around the N
atom in each unit cell:

V(|F|])=Ape® for |F|<R,
=0 otherwise, (7

where A, and B are treated as parameters. The
value of R, is set equal to the ionic radius!! 0.25 A
of N*, it is not varied during the fitting process.

The pseudopotential Hamiltonian, then, is diag-
onalized over plane-wave basis states. In order
to obtain convergence for the energies at I', X, and
L to within 0.1 eV, we use control energies 12
E;=20.1and E,=40.1 in units of (2r/a)? the size
of the matrix is of the order of 100X 100 and there
are about 175 plane waves contributing to the Low-
din-Brust perturbation. 12

III. RESULTS

Because of the lack of optical and photoemission
data for NbN, we decided to use the APW results
to obtain values for the parameters in our theory.
We started by extracting the N potential from BN,
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FIG. 1. Energy band structure of NbN,
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TABLE 1. Parameters for the pseudopotential for NbN.

Parameters for

Parameters for

Parameters for nonlocal d nonlocal p
local pseudopotential pseudopotential pseudopotential
VA[IG12=3@1/a)?]=0. 4442 Ry R,=1.184
V4 (11) =0, 0600 @=0,118 . R(=0.254:

VS (4)=-0.1812 k=1.73 @7/a) a=1,153"1

VS (8)=-0.1411
VS (12) =—0. 0661

A,=-4,8624 Ry
a=4.394

Ay=—0.67Ry/A

We then scaled both the extracted N potential and
the Nb potential to the lattice constant of NbN.
These scaled potentials are then adjusted to fit the
energies obtained by the first-principles band cal-
culations, We first tried to fit the results obtained
by Mattheiss as we had done for Nb with the hope
that a consistent Nb pseudopotential usable for
both materials might be obtained. However, we
obtained a reversal in thé order of the Ly and L,
states for the valence bands. It was impossible

to reverse this ordering without giving up the
agreement for the energy gaps at " and X, We
found that further variation gave results similar to
the self-consistent APW results by Schwartz® and
we then used this calculation to obtain our param-
eters. The ordering of the L; and L, states was
still the main difficulty. We finally managed to
obtain the same ordering as in Ref. 9, by sacrific-
ing the agreement of the position of the X; band
derived from I'j;. The resulting form factors and
the parameters relating to the Vv, (¥) are listed in
Table I. We do not compare these values of the
pseudopotential to the scaled ones for two reasons:
(a) We obtained the Nb results using Mattheiss’s®
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FIG. 2. Density of states of NbN,

results for pure Nb. In this calculation we use

the results of Ref. 9, and the results between Refs.
8 and 9 are quite different. Therefore, we do not
expect that the Nb potential from the present cal-
culation will be consistent with the one obtained

in Ref. 4 and without optical data we cannot de-
cide which one is more accurate, (b) The scaled
N potential from BN was not expected to be accu-
rate, because only one piece of experimental infor-
mation is used to determine the potential.

The band structure along various symmetry di-
rections is given in Fig. 1. The best agreement
between this calculation and the ones in Ref. 9 is
for the I' point of the BZ. A comparison of a few
important energy gaps between the present results
and Refs. 8 and 9 is given in Table II. The density
of states derived from the band structure is plotted
in Fig. 2. The Fermi energy is at 3.3 eV above
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FIG. 3. (a) Shape of the Fermi surface for band 5;
(b) shape of the Fermi surface for band 6; (c) shape of
the Fermi surface for band 7; (d) shape of the Fermi
surface for band 8.
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TABLE II. Comparison of important energy gaps
obtained from EPM and APW calculations.

Energy gaps Schwarz Mattheiss Fong—Cohen
Symmetry (APW self-consistent) eV (APW) eV (EPM) eV
Ty —Ty5 (s-p) 6.54 9.67 6.52
Xg —Ty5(p-p) 2.39 1.2 2.25
X5 —Ty5 (p-p) 0.6 0.38 0.9
Tys~TDy5e (p-a) 1.14 5.24 1.14
Ty—Ty, 3.11 7.08 3.14
Ly—Tys 5.67 3.58 4.84
Ly—Ty 3.51 2,22 4,21
X3—Ty5 2.01 -2.27 1.74
Tis—X 6.94 10. 09 2.68

I'ys. The peak in the density of states for the
lower bands is about 0.8 eV lower than the corre-
sponding one in Ref. 9 measured with respect to
T'y5. This shows that our bands near K are lower
in energy than the APW results. The peak of the
density of states for the higher bands is at 4.9 eV
above I';;. The APW results show a peak at

4.4 eV, The general shape and the relative mag-
nitude of the peaks for both results agree quite
well. The Fermi surface for bands 5, 6, 7, and
8 are given in Fig. 3. Band 9 is omitted because
the Fermi surface for this band is a very small
pocket centered around T (from the I'j, level). Ex-
cept for band 6, the shape of the bands is very
similar to the ones in Ref. 9. For band 6, the
bending of X, gives a small pocket near X. One
plausible reason for the bending of X, is due to the
hybridization. As we mentioned in Ref. 4, the
pseudopotential results for Nb showed stronger
hybridization than the APW results. Here, the
hybridization is evident for the two A, bands, and
it causes a lowering in energy of the band X;. In
order to provide some information about the optical
properties of NbN and to stimulate experimental
work, we give the joint density of states and €,,
the imaginary part of dielectric constant due to
interband transitions only, with dipole matrix ele-
ments calculated by using pseudo-wave-functions
in Figs. 3 and 4. The peak at 0.1 eV in both the
joint density of states and €,(w) is due to 6—-7
transitions. However, the structure in €, at 0.6
eV is from 5-6 transitions. This structure is
caused by the matrix elements calculated in the
pseudo-wave-functions approximation.

1V. CONCLUSION

We have presented preliminary results for NbN
using the empirical-pseudopotential method. The
energies were fitted to a self-consistent APW re-
sult by Schwarz.® The general agreement can be
considered to be consistent to within approximately
0.5 eV. The main purpose of this calculation is to
show that the empirical-pseudopotential method can
now be applied to transition-metal compounds. In
the future, when optical data become available,

systematic studies on these compounds can become
feasible, and we expect that one can improve on
the results presented here for NbN.
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FIG. 4. (a) Joint density of states of NbN. (This is
the same as the imaginary part of the dielectric function
with constant matrix elements.) (b) The imaginary part
of the dielectric function, €(w), of NbN with dipole matrix
elements calculated from pseudo-wave-functions.
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The cohesive energy and zero-pressure density of the alkali metals have been calculated
using the self-consistent augmented-plane-wave method and the statistical (Xa) exchange-
correlation approximation. For the value of @ which makes a single determinant of atomic
spin orbitals satisfy the virial theorem, the lighter alkali metals are computed to have co-
hesive energies and zero-pressure densities which are too large (errors of 22 and 16% for
Li) with respect to experiment. To test the sensitivity of these results to the choice of «, the
same calculations have been performed with o set equal to 2. This choice of @ produced more
uniformly good results for all the alkali metals with the largest errors occurring for cesium
(errors of 7 and 9%, respectively). It is suggested that these results may be a consequence
of the large change in the valence electronic charge density that occurs when the lighter
alkali-metal atoms come together to form the solid. It ¥ not suggested, however, that o =2

be used in all energy-band calculations.

I. INTRODUCTION

In recent years an approximate method® (called
the Xa method) has been developed for calculating
the bulk properties of solids under pressure. The
method is essentially one in which the exchange-
correlation potential energy in a one-electron ef-
fective Schrddinger equation is approximated by a
term proportional to the one-third power of the to-
tal electron charge density. The X«o approxima-
tion has already been applied to several solids with
varying degrees of success, 25 put there is still a
great deal of uncertainty both as to the accuracy
and to the range of applicability of the method. It
appeared that it would be informative to apply the
Xa method to a whole family of closely related
solids. Specifically, it was hoped that some under-
standing could be gained from the way the Xa meth-

od treated the various members of the family, and
that perhaps some general over-all trends might
be made manifest.

The obvious choice for such a family of solids
is the alkali metals. Because of their relative
simplicity, the alkali metals have long been a
testing ground for new approximate methods in
solid-state theory. Furthermore, there is now an
abundance of experimental information®? available
on these metals.

II. DESCRIPTION OF THE CALCULATION

In the X approximation, the total energy of a
crystal may be written® %9

<EXa>=<TXu>+<UXm> ’ (1)

where (Ty,) is the total kinetic energy and (Uy,) is
the total potential energy of the crystalline system.



