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The elastic moduli g&&, c&2, and c44 and the magnetic susceptibility X of single-crystal Nb3Sn
have been measured as a function of temperature below 300 K. Detailed comparison is made
between the egperimental results and the predictions of simple one-dimensional band models.
It is found that the behavior of the el.astic moduli q&& and q~2 above and below the cubic-tetrag-
onal transformation at 45 K is well accounted for by the band model with an effective Fermi
temperature of 80 K. Unlike the case of USSi, the modulus g44 is observed to undergo a con-
siderable softening at low temperatures. This softening is not predicted by the theory. The
susceptibility displays the predicted maximum near the lattice-transformation temperature.
However, the decrease of y in the tetragonal state, associated with a drop in the electronic
density of states, is not nearly as large as expected. Furthermore, the cubic-state X data in-
dicate a much larger Fermi temperature (230 K) than is obtained from the z„and c fp data.
We review these anomalies in terms of available band-structure calculations. The implica-
tions of our experimental, results for superconductivity in Nb3Sn are discussed.

I. INTRODUCTION

The P-tungsten compounds Nbasn and V~si show
a crystallographic transformation', 2 from a high-
temperature-cubic to a low-temperature-tetragonal

lattice state which causes a number of physical
quantities to behave anomalously. Strong tempera-
ture variations have been observed for the magnet-
ic susceptibility~ and the Knight shift4 in Vssi and
for the isomer shift in Mossbauer experiments5 on
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NbeSn. The electrical resistivity of NbsSn as a
function of temperature exhibits a behavior which
deviates strongly from the commonly observed
linear dependence at higher temperatures. The
most drastic effect is found in the elastic moduli, ~

where the stiffness c»-e» against a tetragonal de-
formation becomes very small in the vicinity of the
lattice- transf ormation temperature.

The compounds NbsSn and V3Si are superconduc-
ors&o, ii with high transition tempera, tures of 18 and
17.1 K, respectively. The work of Testardi et al. '3

suggested a connection between high- transition-
temperature superconductivity and lattice instabili-
ties. Thus, there is considerable interest, from
the point of view of superconductivity, in the physi-
cal nature of the structural transition observed in
Nb38n and VSSi.

An explanation of the observed anomalies has been
sought in terms of rapid changes of the electronic
density of states near the Fermi level. ~'~'s

Most of the investigations, both theoretical and
experimental, however, have been devoted to the
compound VSSi, in which the crystallographic trans-
formation occurs only approximately 4 deg above
the transition to superconductivity. Niobium stan-
nide is much better suited for studies of the effect
of the lattice transformation on normal-state prop-
erties, since the range in which the crystal is
crystallographically transformed, but not super-
conducting, covers more than 25 deg. ~

In this paper we present experimental results of
the magnetic susceptibility and sound velocities as a
function of temperature obtained from a single
crystal of Nb Sn which undergoes the lattice trans-
formation. We have observed an anomalous be-
havior in all these quantities and have examined
the extent to which this behavior may be described
by a simple electronic band model. This model
utilizes the idea of I abbe and Friedel of a nar-
row d band caused by electronic overlap in the
transition-metal chains of the P-tungsten structure.
Instead of the tight-binding approach, a simple
model density-of-states function'6'~~ is assumed
and the effect of strain is described in a deforma-
tion-potential formalism. We find that while the
model quantitatively describes the behavior of the
elastic moduli c» and c,a over the entire measured
temperature range, we are unable to account for
the temperature dependence of the elastic modulus
c«and the magnetic susceptibility.

II. SAMPLES AND EXPERIMENTAL TECHNIQUES

The Nb3Sn crystal used for all of our measure-
ments was grown by an HCl-gas-transport tech-
nique. '8 Previous ultrasonic experiments' were
performed on the crystal, which did not mxiergo
a lattice transformation. The crystal was subse-
quently annealed for about 50 h at 1000 'C in vacu-

um. By this treatment the lattice constant was
slightly reduced~ to 5. 291 A and the crystal clearly
showed the spontaneous tetragonal deformation~'
below about 45 K. In preparation for the present
ultrasonic measurements, a pair of parallel (110)
faces was polished to optical quality. After mea-
surement of the sound modes with direction of prop-
agation along (110), a pair of (100) faces was also
polished.

In the ultrasonic experiments three different sound
modes were excited with the direction of propagation
n ~~ [110]. The direction of polarization for these
modes was e II [110], [110], and [001]. In addition,
longitudinal waves in the [100]direction were ex-
cited. The corresponding phase velocities
V,(n~nyr, „e,eae, ) were measured at 40 MHz by the
pulse-echo method in a single-ended array, with

quartz transducers bonded to one face with DC-200
silicon oil. The temperature was determined by a
copper-constantan thermocouple, which was sol-
dered to the sample-holder base plate. The ac-
curacy in temperature is about 0. 5 K.

The magnetic susceptibility X was determined
by the Faraday-balance technique, suspending the
crystal from an electrobalance in an inhomo-
geneous magnetic field. The sample weight in
zero field is 0. 1646 g. The measurements were
done at a field H = 5.46 kOe with constant-force
pole faces such that H I VH I

= 5. 45&&10~ Oe~/cm.
The magnetic force on the sample (typically 2&& 10 g)
could be measured to a precision of +5 p,g; the ac-
curacy or reproducibility among experiments was
about 2%. The experiment was calibrated against
a crystal of pure niobium at 300 K.

Susceptibility-versus-temperature data were ob-
tained by warming the sample slowly from liquid-
neon to liquid-nitrogen temperature or from liquid-
nitrogen to room temperature. Quasicontinuous
data were obtained at various heating rates and the
results were independent of rate to within the pre-
cision of the experiment. It was necessary to nor-
malize the results of the neon-to-nitrogen experi-
ment to the high-temperature data at VV K because
of the calibration changes in g which occur among
the various runs.

A chromel-alumel thermocouple was used to mea-
sure temperatures between VV and 300K. For mea-
surements between 2V and 85 K, a chromel-versus-
gold (with 0. 07-at. % iron) thermocouple was used.
Both thermocouples were placed in the 1.5-cm-
diam quartz tube in which the sample hangs. Ther-
mal contact was effected by an atmosphere of pure
helium gas and both thermocouples were calibrat-
ed in situ. A possible source of systematic error
in this method of temperature determination is a
difference in the thermal response of the sample-
and that of the thermocouple due to the finite rate
of temperature change. This error was estimated
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III. EXPERIMENTAL RESULTS

Figure 1 shows the velocities of the four differ-
ent acoustic modes as a function of temperature.
The solid curves represent the smoothed experi-
mental data. The limiting precision of the experi-
ment, as represented by scatter of experimental
points, is approximately + —,/0. No corrections
for thermal expansion and transducer effects have
been made. Common to all four curves is a de-
crease with temperature in the range 50-300 K,
which is strongest for the mode (n&nzn~, e~eps)
= (110, 110). The lowest value obtained at 49. 8 K
for this type of wave is 0. 5X 10' cm/sec, which
is 18% of the room-temperature value. Below
this temperature no echoes could be detected due
to high attenuation which sets in near the transfor-

O
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FIG. 1. Experimental sound velocities V, versus tem-
perature. In the notation (n. fs2+3s ef@2+3), the first tnp-
let n& denotes the direction of propagation, the second e&

indicates the direction of particle motion. The solid
curves represent smoothed experimental data.

by measuring X, versus T for another sample of
Nb3Sn both with the present experimental arrange-
ment and in a vibrating-sample magnetometer with
a temperature-controlled Dewar. Although the lat-
ter arrangement is less sensitive to changes in X

than the Faraday balance, the data were definitely
obtained in thermal equilibrium. From these mea-
surements it is estimated that the uncertainty in
temperature in the Faraday balance experiments
was +3 K.

mation temperature and is present throughout the
tetragonal state. High attenuation also prevented
measurements of the longitudinal mode (100, 100)
below 46. 2 K. The curve for V,(110, 001) shows
a change in slope at about 49 K and continues to
decrease as the temperature is lowered, whereas
the longitudinal velocity V,(110, 110) reaches a
minimum at the same temperature and is restored
to its high-temperature values as T- 0 K.

These results differ in three ways from those
of previous measurements made by Keller and
Hanak' on the same crystal before annealing: (i)
The temperature at which the velocity of the "soft"
shear mode (110, 110) goes to very small values is
considerably higher (49 K instead of 32 K); (ii) the
velocity of the shear mode (110, 001) continues to
decrease at temperatures below the collapse of the
soft shear mode; and (iii) the longitudinal velocity
(110, 110) exhibits a minimum.

Using the formulas for a cubic crystal and a density
of 8. 87g/cm', all three elastic moduli canbe calculat-
ed above 49 K from these data. Since the velocities
of four modes were measured, the three c» are
overdetermined. Thus, the elastic modulus c»
may be determined directly from V,(100, 100) or
deduced from the other three measured velocities.
Below 49K, the missing information due to the ob-
served high attenuation in the (110, 110)and (100, 100)
modes is replacedby the assumption that the bulk
modulus 8 = —,'(c»+ 2c,~) remains constant at its 49 K
value. This extrapolation is suggested by the very
slow variation of I3 above 49 K in the "normal"
sense (i.e. , slightstiffeningatlower temperatures),
and as will be shown in Sec. IV, is also justified
on a theoretical basis. In Fig. 2 these derived
elastic moduli are plotted as a function of tempera-
ture. The solid curves are the smoothed results
of the computations of the c»(T). In the tetragonal
phase the values correspond to averages over the
various orientations of microscopic domains. The
values for c», derived directly from V,(100, 100),
coincide well with those inferred from the other
three velocities only for temperatures above ap-
proximately 62 K. Below 62 K there is a discrep-
ancy [dotted curve in Fig. 2(b)]which increases with
decreasing temperature, the directly measured val-
ues being higher than the deduced values. This
discrepancy is discussed in Sec. IV A.

Figure 3 shows the mass susceptibility g of
Nb38n as a function of temperature from 27 to
300 K. Four runs in the high-temperature range
(77-300 K) and three in the low-temperature range
(27-85 K) gave the temperature dependence shown
to within the precision of the experiment (0. 5/0).
The maximum in X, occurs at T ~= 56+3 K; the
fractional change [y(56) —y(300)]/X(300) = 0.29. Earl-
ier measurements'6'~7 of y(T) for apowdered sample
of Nb38n gave T ~ = 60 K, in agreement with the
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arranged in chains within the body-centered-cubic
lattice of the partner metal Sn or Si, form narrow
threefold-degenerate d bands. K the number of
conduction electrons has such a value that the Fer-
mi level lies close (-10 meV) to one edge of the d
bands, the application of elastic deformations or a
magnetic field lifts the degeneracy of the d bands
and gives rise to contribution to the c» and y
which are temperature dependent in the common
experimental temperature ra,nge 1 K & T & 103 K.
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A. Elastic Moduli

The quantitative description of the behavior of
the elastic moduli may be derived from an expres-
sion of the free energy G of the lattice, consisting
of atomic cores and the system of d electrons, as
a function of temperature T and uniaxial elastic
strains &&..

G(T& 6) = gA~~(61+ ~2+ 6~) +Adam(6gtg+ fang+ E3&g)

0.2—
0 l00

T (K)
200 300

+A2(4e44'+5e+)6+ fE&&~

FIG. 2. Elastic moduli versus temperature, calculated
from measured sound velocities in the (110) and (100) di-
rection. Panel {a) gives the behavior of the bulk modulus

8; panel (b) gives c&~ and e&2, and panel (c) shows c44.
The solid lines represent the smoothed results of the com-
putations of the c&& from the two measured shear velocities
and the (110) longitudinal velocity. The dotted curve in Fig.
2(b) indicates the behavior of c&& below 62 K as inferred
from V,{100,100). Below the lattice transformation, com-
parison is made to the theoretical c~& [dashed curve in
Fig. 2(b)] obtained from the band model with To = S0 K.

present work. The value for the powdered sam-
ple, ~~'~7 X(300):—1.9x10 6 emu/g, agrees with the

present results y(300) = 2. 03&&10 emu/g, to well
within the 10% accuracy of the early work, but the
precision was not sufficiently high to permit the
detailed quantitative a.nalysis given in Sec. IV.
Further measurements from VV to 300 K on a pow-
dered sample of Nb38n show that the temperature
dependence of g is independent of whether the sam-
ple is a powder or a single crystal.

IV. THEORY AND DISCUSSION

Clearly, the observed anomalies in the elastic
and magnetic behavior are closely related to the
cubic-to-tetragonal lattice transformation near
45 K, which has been studied in detail by x-ray '~ 'ao

and neutron diffraction. '~ Following Labbe and

Friedel, the lattice transformation in Nb38n and

in the isomorphous compound VSSi is a direct con-
sequence of the A-15 (P-tungsten) lattice structure
and the special electronic band structure resulting
from it. The transition-metal atoms Nb or V, being

The coefficients A» represent the elastic moduli

X (IO emulg )
I I

Nb, Sn

2.6 - lo

2.5 — ~~I

2.4—

2.3
I

Ta= 230 K
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22- I

I
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To= 80 K
(CUBIC ) ~a

2.0-
To =230 K
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I.S--

l.8
0 50 I 00 I 50 200 250 300

FIG. 3. Magnetic susceptibility p versus temperature.
The x's represent points obtained from warming runs
from liquid nitrogen, while the Q 's represent points, ob-
tained during runs from liquid neon. The various curves
represent calculations of X{T)for the indicated values of

To ~
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Under this assumption, the condition for the con-
servation of d-band electrons is written

3
N= ,N,kT Eln-(1+e(e& s('~'r)=const=NokT, .

(5)
The quantity To is a measure of the Fermi energy
Ez(0) = kTO of a hypothetical nontransforming mate-
rial at 0 K.

Under the spontaneous tetragonal deformation '

&„ the d band is split into subbands with the den-
sity of states 2NO and —', No. Their band edges are
displaced ' from E&=0 to Ef = —VE, and Ez 3
=+ 2U&, . Using these values and introducing the
Fermi distribution function at the band edge E, by

f(E ) (1 + e (e( aa &,/2 T )-1 f
we get, for the elastic moduli,

o 'f(fl 91+ fa)~'
22

=
2

= 11 -NOU'fa(f1 +f2)&3'4+ 2fa»

12 =A12+ NOU f1f/3(f1 + 2f2)

c22 A12+NoU f/3(f1 + 2fa),

C44= C55 C66 A44 '

(8)

(9)

In the cubic state the mean positions of the band
edges coincide,

f, -fo=f(0)=(1+e &" ) ', (12)

and the following expressions for the elastic mod-
uli are obtained:

C11 A11 o NOUfO

(c11—c1a) = (A11 -A12) —' NOU'fo ~

(13)

(14)

Upon cooling to the transformation temperature,

arising from electrons other than those in the d
band. The Fermi energy is denoted by E&, the den-
sity of d electrons by N, and the density of states
of both spins by N(E). The interaction of the d
electrons with the strain field E is expressed in
terms of the shifts E& in the band-edge energies:

E( = U[S ( —2(C1+ Ca+ Ca)], 1 = 1, 2, 3.

The strain effect is described by a single deforma-
tion-potential constant U, characterizing a uniaxia1
deformation along one cube axis. The elastic
moduli c» are defined as second derivatives of the
free energy wiih constant electron number N in the
d bands:

8 6
O'Eg&g (3)

It has been shown previously 6' ~ that a good fit to
experimental data can be obtained by a constant
density-of-states model:

(i
N(E) = (4)

the Fermi occupation number fo at the band edge
attains higher and higher values, so that the nega-
tive electron term in (14) more nearly compensates
the lattice contribution A» -Af2. At the point of
lattice instability this cancellation is nearly total.
Detailed studies' have shown that the first-order
lattice transformation to a spontaneous tetragonal
distortion t,(T,) occurs at a temperature T, where
the compensation is about 98%:

2 NOUfo I r = 0.984(A11-A12). (15)

The transformation is believed to be complicated
by material inhomogeneities. 'O' For temperatures
T, =45. 5K& T4 52K, a small precursor strain is
observedf ' in x-ray investigations. This pre-
cursor is believed to arise from small regions of
the crystal which become unstable with respect to
tetragonal distortions above T,. Because these
regions are clamped by the neighboring stable ma-
terial, the full value of the spontaneous strain
is not achieved. After the bulk of the crystal has
softened according to Eq. (15), domains ' appear
showing the full value af e,(T,).

In the limit of very low temperatures only one
of the three subbands is occupied, so that the Fer-
mi occupation numbers f1 and fa reach the values
1 and 0, respectively. Thus, the electronic con-
tributions to the elastic moduli vanish, and the elas-
tic moduli are restored 'f' to their stiff lattice val-
ues A». In the high-temperature limit the Fermi
level E~ moves out of the d band and lies in an
overlapping low-density s band. The electronic
part of the elastic moduli approaches a constant
which is determined by the value of the s-band
density of states.

From Eq. (11), it is seen that the elastic mod-
ulus c44 is predicted to be temperature independent.
This result is a direct consequence of the assumed
"one dimensionality" of the model, since a simple
shear does not alter the distance between adjacent
atoms on a transition-metal chain to first order in
the applied strain.

In the cubic region T & T, the temperature varia-
tion of cff and cfog is governed by the Fermi occupa-
tion number fo. We find that the best fit of the ex-
perimental data [Fig. 2(b)] for c11 and c12 to Eqs.
(12)-(14) is obtained for To= 80 K. With this value
of Tp the experimental curves of cff and cfz can
be fit to within 2% over the temperature range
49 K & T & 300 K. Including the effects of d-elec-
tron screening of the acoustic mode and the re-
normalization of c»-cfog due to coupling to an optic
mode gives small corrections to Eqs. (12)-(14)
which do not appreciably alter the value26 of Tp.

Using the value Tp= 80 K, we find the fit to the
experimental cff and cf2 yields the following values
of the coefficients Aff A f3, and NpU:
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A„= 2.94x10' erg/cm,

A~a= 0. 84x10~P erg/cmP,

NpU =7.47x10 erg/cm from Eq. (13) and c»
= 7. 86x 10~ erg/cm

from Eq. (14) and c» —c,p .
The 5%%up difference between the values of NpUp ob-
tained from the analyses of the cff and the cff cf2
data arises from a slight temperature dependence
of the bulk modulus B= —,

' (c»+ 2cqp). In the approxi-
mation of our theory B =-,'(A, ~+ 2A, p), independent
of electronic effects inboth the cubic and tetragonal
state. Experimentally, as can be seen in Fig. 2(a),
there is a gradual decrease in 8 at high tempera-
tures presumably due to ordinary thermal expan-
sion. The experimental fits implicitly contain this
variation, as can be seen by computing Bfrom Eqs.
(13) and (14) with the parameters given above:
B = (1.54+0. 08f,)x 10' erg/cm'. Upon cooling from
300 K to the lattice transformation, fp increases
from about 0. 3 to 0.8, thereby giving rise to the
observed temperature dependence of B.

The above parameters, obtained from the cubic-
state data, allow us to calculate the elastic mod-
uli c», cf~, c», and c~ in the tetragonal state.
Using Eqs. (7)-(10) and the experimental' &,(T),
we obtain the calculated c» shown in Fig. 2(b). As
can be seen from the figure, the agreement between
theory and the experimental domain-averaged elas-
tic moduliis very good; the predicted restoration '7
of the lattice moduli A.&~ at low temperatures is ob-
served, although not quite as rapidly as is predicted
by the theory.

The discrepancy between the moduli c», calculat-
ed from velocities measured in the (110) and (100)
direc tions requires explanation. This discrepancy
is believed to arise from material inhomogenei-
tiesf9'~0 which result in spatial variations of the
sound velocities. In an inhomogeneous crystal,
the pulse-echo method measures the average of the
reciprocal velocity (v,~).. From the relation
((v,~)) ~ ~ (v,), it follows that those regions of the

crystal which have undergone the most severe
elastic softening give rise to a velocity, determined
from the transit time, which is always less than
the average velocity throughout the crystal. Since
the most drastic softening occurs for the cff cfog

mode, a calculation of c» using V,(110,110) results
in values of c» which are lower than the crystal
average. 'Ihe c~~ values determined from V,(100,
100) are less affected by crystal inhomogeneities,
and the lowest temperature (46. 2 K) at which the
longitudinal mode (100, 100) could be observed
lies closer to the transformation temperature (45. 5

K) determined from x-ray studies. ~P'~ It follows,
therefore, that'the values of the parameters A.ff,

x(T) = x.„+x.+ x,(T), (16)

where X„~ and X, are temperature-independent or-
bital and s-band contributions, respectively, and

g(T) is a temperature-dependent d-electron con-
tribution given by

CO

X,(T)= p, ', Z, N(E-E,)-'
i=i ql Eg SE

N(E-E) — — «. (17)
3J S (E)

sE

Here pp is the Bohr magneton, f(E) is the Fermi
function, and J is a Coulomb-interaction energy.
For the case of the simple model density of states
(4), Eq. (17) yields

4(T) = ,'Npkp 0f,/(1 ——Pfs),

where p = —,'NOJ is a dimensionless interaction term.
Equation (18) differs from previous results' '

in that interaction effects are included here explicit-
ly by the denominator in Eq. (18).

In the cubic state T& T, =45. 5 K, we have, as
noted in Sec. IVA, all E; = 0 and f, =fp. The sus-
ceptibility is then

X(T) = Xorb+ Xg+Npkafp/(I —Pfp). (19)

Thus, the cubic state x(T) is expected to increase
with decreasing temperature in a manner governed

Af~, NOU, and To given above should be viewed as
characteristic of the softer parts of the specimen.
Small variations of these parameters may be ex-
pected throughout the sample.

As shown in Fig. 2(c), the elastic modulus c44
softens considerably at low temperatures, while
the theory predicts [Eq. (11))a temperature in-
dependent c44. This behavior is much different
than that observed7 in VSSi, where c44 decreases
by only a few percent upon cooling from 300 to 21K.
Furthermore, unlike the other elastic moduli of
Nb~Sn, the decrease of c44 is not reversed below
the lattice transformation. Neutron-diffraction
experiments~3 indicate, surprisingly, that the soft-
ening of this mode extends to the edge of the Bril-
louin zone. None of this behavior is understood in

terms of the present theory.

B. Magnetic Susceptibility

We shall discuss the magnetic susceptibility re-
sults in terms of a theory which treats Coulomb-
exchange interactions in the random-phase approxi-
mation. The result of Clogston may be ea,sily
generalized to include the possibility of three non-
degenerate subbands. We assume, in the spirit
of the one-dimensional model, that interactions be-
tween electrons in different subbands can be neg-
lected. One then finds for the susceptibility
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X(0) = X»pb+ X»+3NQPB/'(1 0). ' (20)

The factor & in Eq. (20) reflects the fact that the
low-temperature d-electron density of states at
the Fermi energy in the tetragonal lattice state
is predicted to be only —, of the (hypothetical) cubic-
state value.

From Fig. 3 it is seen that the cubic-state data
for X(T) are very well reproduced by Eq. (19) with
the values No = 2. 36 states/eV atom, (X„»+X,) = 1.52
&&10 emu/g, p, =-,', and To= 230 K. This value of
To is far larger than that deduced from the elastic
moduli data. As can be seen from Fig. 3, an at-
tempt to fit the data with To= 80 K gives much
greater curvature in X(T) than is observed experi-
mentally. The value of To required to reproduce
the experimental X(T) is relatively insensitive to
the value chosen for p, . For example, if we take
p, =0, the required value of To decreases only to
200 K, while the derived value of No rises to 4. 01
states/eV atom. Increasing p beyond the value —',

raises the required To above 230 K, thereby in-
creasing the discrepancy between the results of the
susceptibility and the elastic modul. i analyses.
The value p, = 3 for Nb38n is regarded as reasonable
because the value No= 2. 36 states/eV atom so ob-
tained from the p data analysis is in good agreement
with that estimated from the specific-heat density
of states and the McMillan electron-phonon inter-
action. ""

The inability of the theory to reproduce the sus-
ceptibility and elastic constant data with the same
effective Fermi temperature cannot be ascribed
to the particular choice Eq. (4) for the density of
states N(Z). Equations (13) and (14) for the cubic
state c;» and Eq. (19) for X hold for any N(Z) pro-
vided that N~ fo is replaced by

(21)

Aside from the small effect of the interaction term
p, in Eq. (19), the temperature-dependent part of
the c;, and X is predicted to be proportional to go(T).
Thus, a single choice of N(Z) and the density of
electrons N should reproduce the temperature de-
pendence of both experimental quantities. The dif-
ference in the functions go(T) required to explain
the results of the two experiments, as represented
by the difference in the derived values of To, is far
beyond experimental error and cannot be accounted
for by reasonable corrections for interactions.

by the same characteristic temperature T0 which
determines the temperature dependence of the cubic-
state elastic moduli. Upon cooling below the lat-
tice-transformation temperature T„xis predicted
to decrease rapidly. At T=0 K, we recall that

f~ = 1 and f» =f3
= 0, so that the low temperature

limit of g is

Figure 3 shows that the peak in )( occurs 10+ 3 K
above the measured lattice-transformation tempera-
ture T, =45. 5 K. This discrepancy is believed to
arise from the precursor tetragonal strain ob-
served~9'~0 above T,.

As can be seen from Fig. 3, although the rnea-
sured X(T) decreases in the tetragonal state as
predicted by the theory, 37 the magnitude of the
decrease is only about 25/0 of the predicted drop.
We find that this discrepancy is increased if,
instead of Eq. (4), one takes N(Z) ~ Z as in the
one-dimensional model. ' ' Assuming a three-
dimensional effective-mass model N(Z) ~ Z~~a im-
proves the agreement somewhat, but the predicted
drop in X(T) below the lattice transformation is
still three times larger than is observed experi-
mentally. Thus, we conclude that the actual drop
in the electronic density of states, as measured
by the susceptibility, is far less than is predicted
by the theory.

V. CONCLUSIONS

We have shown that although certain qualitative
features of the elastic constant and susceptibility
data for Nb, Sn are correctlypredictedby the theory,
several important discrepancies are present. In
particular, while the band structure accounts for
the observed temperature dependence of the elastic
moduli c» and c» it cannot explain the large mono-
tonic softening of c44. The prediction of a maxi-
mum in the susceptibility X near the lattice-trans-
formation temperature is verified, but the tempera-
ture dependence of X in both the cubic- and tetrago-
nal-lattice states is not in quantitative agreement
with theory.

We conclude that the electronic band model pro-
vides a useful framework for discussion of the
many complicated phenomena observed in Nb3Sn.
However, not surprisingly, it appears to be too
oversimplified to account for all the experimental
observations. Recently, Goldberg and Weger
have performed a band-structure calculation for
V3Ga and V3Si using the tight-binding method in-
cluding interchain coupling and interactions be-
tween transition-metal and nontransition-metal at-
oms as well as nearest-neighbor intrachain cou-
pling. ' Sharp density-of-states structure near
the Fermi level is obtained. This structure is
found to arise from a superposition of contributions
from several van Hove singularities and appears
to be a characteristic of the P-W lattice. Since
interactions beyond those between nearest-neigh-
bor transition-metal atoms are included, a tempera-
ture dependent c44 can be obtained, unlike the case
of the strictly one-dimensional model. Further-
more, since the density-of-states structure results
from a combination of van Hove singularities, one
would not expect to be able to represent the re-
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sponse of the entire band structure to a strain by
a single-energy independent-deformation-poten-
tial U. In fact the observation of only a slight drop
in X below the transformation temperature indicates
that only a small part of the electronic density of
states near the Fermi level distorts in a manner
dictated by the band model. On the other hand,
the response of the band structure to a magnetic
field may be reasonably expected to be described
by the single "deformation potential" p&. Thus,
unlike the simple model presented in Sec. IV, the
temperature dependence of the cubic state c» and

c~2 is, in general, substantially different than that
of the cubic state X. It is noteworthy that the elec-
tron-phonon part of the electrical resistivity is
described very well by a characteristic tempera-
ture ' TD= 100 K, similar to the value obtained
from the elastic moduli. This is to be expected
because the deformation potential enters the cal-
culation 3 of the resistivity in a manner similar to
that for the elastic moduli.

Our experimental results have an important

bearing on superconductivity in NbaSn. In contrast
to a previous prediction, the observation of the
slight decrease in the electronic density of states
in the tetragonal state, as determined by the p mea-
surements, indicates that the lattice transformation
should have only a small effect on the superconduct-
ing transition temperature. However, the consid-
erable sof tening observed in c44 at low temperatures,
which is found to extend to the edge of the Bril-
louin zone, should appreciably increase the McMil-
lan electron-phonon interaction through a lower-
ing of the average phonon frequency. 30 This effect
may contribute substantially to the high-supercon-
ducting transition temperature of NbGSn.
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Using the variational method, the electronic contribution to the low-temperature thermal
conductivity of potassium is calculated for a number of different pseudopotentials and a
realistic phonon spectrum. A detailed evaluation of electron-phonon umklapp-scattering
effects is presented. In particular, umklapp processes have a negligible effect on the
thermal resistivity and Wiedemann-Franz ratio below - 2 'K, but significantly enhance both
at temperatures above this. Higher-order corrections to the variational calculation are
evaluated and it is found that these are significantly larger for the umklapp component of the
thermal resistivity than for the normal component. The lattice contribution to the low-
temperature thermal conductivity is calculated and compared with the results for the
electronic component.

I. INTRODUCTION

In an earlier paper' we reported calculations of
the ultrasonic attenuation and electrical resistivity
of potassium which included a detailed evaluation
of the role of electron-phonon umklapp-scattering
processes at low temperatures. In this paper, a
similar treatment has been extended to the thermal
resistivity of potassium.

In Secs. II and III, the electronic contribution to
the thermal conductivity is calculated, including an
explicit evaluation of umklapp-scattering effects.
It is found that above - 2' K umklapp processes
significantly enhance both the thermal resistivity
and the Wiedemann-Franz ratio. The results for
the total thermal resistivity (umklapp plus normal
components) are in reasonable agreement with
experimental observation, 2 although a detailed com-
parison must await more precise experimental
study. In Sec. IV, higher-order corrections to
the variational calculation are evaluated. The
umklapp component is affected by such corrections
to a much greater extent than the normal compo-
nent. In Sec. V, the lattice conductivity is calcu-
lated in order to quantitatively evaluate the relative
importance of heat conduction by the lattice com-
pared to that by the electronic system.

II. THEORY

Taking the phonon system to be in equilibrium,
the variational expression for the thermal resis-
tivity W of a metal due to electron-phonon scatter-
ing (i. e. , in the absence of electron-impurity scat-
tering) is given byo

(1/ks) f f f [y(k') y(k)—]'Pdq dkdk'
I v (E —p, ) y(k )(6fo/6E) dk I

where P is the probability for an electron in a
state of wave vector k to be scattered to a state of
wave vector k through the absorption (or creation)
of a phonon of wave vector &I (k -k=7&+6, with G
a reciprocal-lattice vector). Here v is the elec-
tron group velocity, E is the electron energy, k~
is Boltzmann's constant, and p, is the chemical
potential. The trial function g represents the de-
viation of the true electron distribution f from the
equilibrium Fermi distribution fo:

f-fo=-
~

—
6E
sfo

it is chosen to minimize the right-hand side of Eq.
(1). As a first approximation, we shall use the
standard trial function appropriate to the solgtion


