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The thermal and electrical conductivities of six singly crystals of tin with cadmium (cad-
mium content ranging from 0.24 to 0.97 at. /0) have been measured from 4. 2 to about 80 K.
The lattice thermal conductivity was deduced for three of these samples of cadmium content in
excess of 0.70 at. %, oriented close to 78' with respect to the tetragonal axis. Values of the
ideal thermal resistivity of pure tin were needed to effect the separation into lattice and elec-
tronic components at higher temperatures, and it was assumed that deviations from Matthies-
sen s rule for thermal resistivity were governed by measured electrical-resistivity deviations
and the Wiedemann-Franz law. The lattice thermal conductivity was analyzed in terms of
phonon scattering by electrons, point defects, and anharmonic phonon interactions. Below
12 K the three samples gave a lattice thermal conductivity proportional to T and of magnitude
1.5x 10 T W cm K, rising to a maximum of about 0.045 W cm K" near 40 K. -: Devia-
tions from Matthiessen's rule for the electrical resistivity were obtained for all six samples.
These deviations show a T2 dependence at low temperatures. This is inconsistent with a two-
band model but suggests phonon-assisted impurity scattering. A theoretical difficulty asso-
ciated with this mechanism is discussed.

I. INTRODUCTION

Previous experimental investigations of the ther-
mal conductivity of tin alloys gave information on
the lattice thermal conductivity in the supercon-
ducting state, and made it desirable to determine
the lattice component in the normal state above
4. 2 K. There is a surprising lack of electrical-
and thermal-conductivity data from 4. 2 to 77 K.
The present measurements were made to deter-
mine the lattice component, but in order to sepa-
rate the lattice and electronic components with
some confidence, it was found necessary to mea-
sure the thermal conductivity of pure tin in that
temperature range, and to study the deviations
from Matthiessen's rule of the electrical resis-
tivity. The measurements on pure tin have been
reported previously'; the present paper reports
the measurements on six single crystals of dilute
alloys of cadmium in tin. All samples have their
axis oriented nearly perpendicular to the tetragonal
axis. The cadmium content varies from 0. 24 to
0.97 at.%. Only three samples, those with most
cadmium, could be used to deduce an adequate
measure of the lattice thermal conductivity, which
agreed roughly with theoretical expectations. All
the samples provided information on the dependence
of the deviations from Matthiessen's rule with tem-
perature and solute content.

TABLE I. Resume of all measured samples. The con-
stant of proportionality 5 was determined by a computer
fit to the measured deviations from Matthiessen's rule
(Ap;) according to the relation Dp; = 5 ppT .

Sample
No.

Cd impurity
(at. k)

Sample axis
relative to

crystal c axis
(deg)

Po
(pQ cm)

pure 99.999% tin and 99.999% cadmium obtained
from the Jarrell-Ash Co. , Waltham, Mass. They
were single crystals grown by the Bridgeman tech-
nique in precision-bore glass tubing, either 2- or
3-mm i.d. The samples are summarized in Table
I. Samples 6-8, 3 mm in diameter, are the iden-
tical samples grown and reyorted by Gueths et g). ,

3

who designated them as Nos. 5-7. Samples 3-5,
having the lowest cadmium content, are of 2-mm
diameter, prepared by a method described pre-
viously. ' Also listed is the angle between the sam-
ple axis and the tetragonal axis of the crystal, as
determined by an optical goniometer. ~ The values
of p0 are the residual resistivities, measured at
4. 2 K. The solute content given is deduced from
the residual resistivity, using the linear relation
pa=1. 39&&10 ' Qcm (at.%) ', taken from Gueths
et al. ' for perpendicularly oriented samples. The
values of p0 in the case of samples 6-8 are values
obtained in the present work; they are nearly iden-

II. EXPERIMENTAL METHOD

A. Sample Preparation

All the samples used in the experiment were
prepared from Johnson-Matthey spectroscopically

0.24
0.41
0.57
0.74
0.90
0.97

86
90
83
79
78
77

0.330
0.560
0.782
1.020
1.206
l.346

5.25x 10
5, 25x 10 ~

5.89x 10 '

12.02 x 10
3.38 x 10"5

6.46x 10 5
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tical to the values previously reported. All the
samples are single crystals 5-7 cm in length.
All samples were sealed in vacuum and annealed
at approximately 180 'C for 350 h prior to the low-
temperature measurements. The accuracy of the
optical orientation is felt to be within 1.5 .

S. Cryostat and Measurement

The variable-temperature cryostat that was
utilized for this experiment is the same one used
in measuring the pure-tin samples reported in a
previous paper. ' It consists basically of a ther-
mally isolated platform and heat exchanger that is
mounted inside a vacuum chamber. The chamber
itself is large enough so that four samples can be
measured at the same time. This fact minimizes
the waiting period tHat is required for thermal
equilibrium at the higher temperatures. The
vacuum chamber of the variable-temperature cryo-
stat is surrounded with liquid helium after each
transfer and the thermal platform inside the cham-
ber is cooled by a steady flow of helium vapor.
The samples are suspended in vacuum from the
thermal platform with thermal-conductivity mea-
surements being made by measuring the thermal
gradients that are applied along each sample's
length. Temperature control is provided by means
of a standard regulating circuit that controls the
current to a heater that is mound over the heat ex-
changer.

All temperatures were determined by monitoring
the electrical resistance of Cryocal, Inc. , ger-
manium resistors that were calibrated according
to the manufacturer's specifications. Each resis-
tor was attached to small copper clips that also
served as potential probes for the determination of
electrical resistivity. Once placed on a sample,
these clips were not disturbed until all thermal-
and electrical-conductivity measurements mere
completed. This eliminated any geometrical error
associated with relating the tmo different sets of
data. On each sample, however, separate experi-
mental runs were required for either a thermal-
or electrical-conductivity measurement. The ex-
perimental procedure by which all thermal- and
electrical-conductivity measurements were made
was identical to that described in the earlier work'
with the probable errors associated with the pres-
ent measurements being identical in most respects
to those mentioned there. However, in the case
of alloys, the low-temperature electrical-resis-
tivity values are now much higher and therefore
easier to measure. The probable error asso-
ciated with any low-temperature electrical-resis-
tivity measurement was found to be never more
than 0. 5% below 20 K or 0. 67o above 35 K. These
limits were obtained with resistivity currents up

to —,
'

A, which were small enough as not to cause

any measurable heating of the sample over short
periods of time. As an extra precaution against the
occurrence of this effect, the resistance of the
germanium sensors attached to the copper clips
on each sample were continuously monitored in
order to be certain that no measurable temperature
gradient was present during a resistivity measure-
ment.

All thermal-conductivity measurements were
corrected for stray heat losses resulting from the
wiring connections on the warm end of the sample.
A small correction for the heat generated in the
leads carrying current to the sample heaters was
also made. The heaters themselves consist of
small copper spools over which VO ft of 0.0025-in.
Evanohm wire is mound noninductively. This wire
provides a resistance on the order of 9000 0 that
was found to be constant to within 0. 1% at all tem-
peratures from 4. 2 to V5 K. Heat losses due to
radiation were minimized by enclosing all of the
samples inside a copper-foil radiation shield that
was held at the temperature of the thermal plat-
form. Only when temperature differences greater
than 3 K were applied to the sample, usually at
temperatures somewhere above 60 K, was it found

necessary to employ a small radiation correction.
At worst, this correction never exceeded 1% of
the heater pomer. The probable error in the ther-
mal conductivity results essentially from a fixed
error in the geometrical factor and a calibration
error associated with the uncertainty in the true
temperature. The latter increases with tempera-
ture, as specified by Cryocal, Inc. , and results in

a total probable error order of 1% at temperatures
above 40 K. At lower temperatures the probable
error gets smaller, being close to 0. 5% below

20 K.

III. EXPERIMENTAL RESULTS

A. Thermal Conductivity

The total thermal conductivity was determined

by the longitudinal heat flow, and the thermal con-
ductivity K is given by E= QI/(A n, T), where Q is
the steady heat flow, 4 is the cross-sectional area,
L, is the distance between the points of thermometer
attachment, and b, T is the temperature difference
between them. These measured values of K are
shown by the solid curves of Fig. 1 for the six al-
loy samples. The thermal conductivities of two

pure-tin crystals, P-1 and P-S, reported earlier, '
are also shown. These samples are oriented near-
ly parallel (6') and perpendicular (72') with re-
spect to the tetragonal axis.

In general, the behavior of all six alloyed sam-
ples is as expected; the conductivity decreases with

increasing solute content. Since all of these sam-
ples have nearly perpendicular crystallographic
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lines converging on a logarithmic scale. As in
the thermal conductivity, the resistivity of sample
6 is again anomalous, crossing the curve of sam-
ple 7 at approximately 50 K.

Most of the measured resistivity curves could be
represented by the relation
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FIG. 1. Total measured thermal conductivity of all six
alloy samples and the two pure samples.

orientation they will all fall below the pure (72')
sample P-3. As can be seen from the curves,
samples 3-5 all exceed the parallel sample P-1 in
conductivity above 60 K. The only anomalous be-
havior in the total thermal conductivity appears in
the measured values of sample 6 above 20 K.
Here, the total thermal conductivity dips down be-
low the values obtained for sample 7, a sample
with more cadmium present. Samples 7 and 8 both
show very similar behavior, with their conduc-
tivities approximately parallel over the entire tem-
perature range. We believe that the solute con-
tent in sample 6 may be inhomogeneously dis-
tributed. The two most dilute alloy samples (3 and 4)
show broad maxima in their thermal conductivity
at ayproxima, tely 25 and 40 K, respectively; the
maximum of sample 4 is less pronounced.

p(T) = p, + p, (r)+ b p, , (2)

where Lp,. is a. function of po and T, and by defini-
tion vanishes if p0=0 or if T=O.

4

E 8
v 7

6

cL. 0.7 -5

where the term po is the residual resistivity, as
given by p4 2 in Table I. An adequate fit of all the
experimental data was obtained by taking P = 11.54
x 10 6 Q cm and setting 8 = 125 K.

Thus one can regard the electrical resistivity
as additively composed of a residual resistivity po
and an ideal resistivity p, (T), the latter being in-
dependent of po. This additivity is Matthiessen's
rule. It follows from theory if certain simplifying
assumptions are made. The form of p, (T) chosen
here is also based on a simplified model. In actual
fact one would expect p, (T) to depart from the
Bloch-Gruneisen form chosen above, and one would
also expect p, (T) not to be independent of po. The
latter departure, or deviation from Matthiessen's
rule, can be expressed in terms of the following
expression for the total resistivity:

B. Electrical Resistivity

The results of the electrical-resistivity mea-
surements made on the six samples by the poten-
tiometric technique can be seen in Fig. 2. Again,
the measured values for the two pure samples
P-1 and P-3 are shown by the two dashed lines for
comparison. The electrical resistivity behaves
as expected with the samples of highest solute con-
tent showing a dominance of the residual resistiv-
ity po up to 10 K. At higher temperatures, the ad-
ditive effect of the ideal resistivity p,. causes the
total resistance to increase, with the family of
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FIG. 2. Electrical resistivity of all six alloy samples
and the two pure samples.
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FIG. 3. Lattice thermal conductivity derived from Eq. (4).

(4)

The thermal and electrical residual resistivities
9'o and po are related by the Wi.edemann-Franz law

Wg= pg/LT,

where T is the temperature and L is the Lorenz
constant.

The essential difficulty that always arises with
this type of analysis is the determination of the in-
trinsic resistivity «&. It has sometimes been ap-
proximated by «, deduced from thermal-conductivity
measurements on pure samples. This essentially
neglects the contribution of the lattice component
in a pure sample by assuming all of the conduction
to be electronic. In this case, the intrinsic resis-
tivity 5', is obtained from the thermal conductivity
K~ and the residual resistivity po~ of a reasonably
pure metal by

IV. LATTICE THERMAL CONDUCTIVITY

A. Experimental Determination

The total thermal conductivity K of any aQoy
specimen can be given by

K=K, +Kg,

where K, is the electronic component and K, is the
lattice component. The electronic part K, can be
regarded as the reciprocal of the sum of the resid-
ual and intrinsic thermal resistivities «o and 8', .
The lattice component K can then be obtained from

W) = (1/g ) —pa |, /L T .

In view of the anisotropic transport properties
of tin, one must take care to determine K by em-
ploying measurements of both pure and alloyed
samples of nearly identical crystallographic orien-
tations. The values of F and po~ from sample P-8
were thus used in evaluating K, from the alloy sam-
ples 6-8. The other three samples did not con-
tain sufficient cadmium to allow for an adequate
separation of the lattice term. The criterion for
the lattice component to be separable is a suffi-
ciently high residual resistivity, as first discussed
by Kemp et a$. '

The values of the lattice thermal conductivity
thus obtained for these three samples are shown

in Fig. 8. Except for a characteristic T depen-
dence in the lattice conductivity below 10 K most
of the points exhibited erratic behavior, especially
at higher temperatures. This suggests that the
estimate of «,. was inadequate. A modification of
Eq. (4), which would increase the value of the lat-
tice contribution at higher temperatures, had been
suggested previously. This modification consists
of adding an additional term to the denominator of
Eq. (4), representing the contribution to the elec-
tronic thermal resistivity «, as a result of devia-
tions from Matthiessen's rule. Writing this con-
tribution as 6«, , the total electronic thermal re-
sistivity can be given by

& =«o+«+&« ~

Analogous to the relation between the residual
electrical resistivity po and the thermal resistivity
«o, it is assumed that

(8)

where hp, are the measured deviations from Mat-
thiessen's rule for electrical resistivity.

The lattice thermal conductivity K, can then be
found from

E = K—1/(Wo+ W, +b, W)),

where AW, is given by (8) and increases with tem-
perature, as does b,p, . Tl)is procedure leads to
higher values of K~ than does (4).

Uncertainties in the specimen geometry also in-
troduce uncertainties in ~p, . However, since Ap,
is typically of the order of 10% of p, or larger, and
since the effective specimen geometry could be de-
termined to within 1%, the uncertainty in Ap,. is,
at worst, about 1(P/&&

Following the procedure outlined above, the lat-
tice conductivity E~ for samples 6-8 was redeter-
mined by means of Eq. (9). The results can be
seen in Fig. 4 where the three sets of data now

follow a more acceptable behavior throughout the
entire temperature range.
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FIG. 4. Lattice thermal conductivity of tin for the
same three samples shown in Fig. 3, but derived from
Eq. (9).

The probable errors of K, thus determined are
indicated in Fig. 4 at two temperatures. Different
quantities entering Eq. (9) have their maximum
errors at different temperatures; this fortunate
circumstance keeps the over-all error in reason-
able bounds over the temperature range shown.
At higher temperatures, however, uncertainties in
E and in the calculated values of K, make deter-
minations of A increasingly uncertain.

The procedure used depends on the assumption
that the deviations from Matthiessen's rule Ap,. and
hW, for electrical and thermal resistivity are
related by (8), i.e. , by the Wiedemann-Franz law.
The relation between these deviations must depend
on the mechanism which causes them. Basically,
one can ascribe deviations from Matthiessen's
rule to three types of causes'0: (a. ) changes of the
"virtual crystal" with alloying, (b) additional tem-
perature-dependent scattering processes associated
with solute atoms, and (c) two or more groups of
electrons with different relaxation times contribut-
ing to the conductivites (two-band effects).

The first cause can be disregarded for dilute al-
loys. Deviations due to the second cause obey the
%'iedemann —Franz law, as long as the scattering
processes are reasonably isotropic in angle. The
third type of deviations will generally not obey
relation (8), but b, W, would be expected to be less
than this relation would indicate. This follows
because the electrical-conduction relaxation time
is more sensitive to the geometry of the Fermi

surface.
One would thus expect Eq. (4) to underestimate.

K, , and Eq. (9) to overestimate it, with the con-
sequent uncertainty increasing with increasing tem-
perature. However, the fact that (9) led to a rea-
sonable dependence of K with temperature may in-
dicate that in the present alloys the deviations
from Matthiessen's rule are to a large degree of
the second type (additional processes). We shall
see below that this conclusion is confirmed by the
dependence of Dp, on solute content and tempera-
ture: The observed dependence is not consistent
with the two-band model.

g2 k&u/kr+(+) 4d
g 2 a/ T2 (

kto/kT 1)a (1O)

The relaxation rate 1/r is assumed to be addi-
tively composed of contributions from various pho-
non scattering processes. As long as r(v) does
not vary too rapidly with co, the effect of anhar-
monic normal processes is small, "and we shall
disregard them. In the present case only three
processes need to be considered. These are scat-
tering by the free electrons, scattering by point
defects, and anharmonic three-phonon interactions
involving the zone boundaries (umklapp processes).
The over-all relaxation time 7 (u&) can thus be given
by

where 7„ is the relaxation time of phonons as
limited by phonon-electron interactions, v'~ by point
defects, and 7 „by umklapp processes. The point
defects to be considered are, of course, the solute
atoms. Surprisingly enough, the isotopic composi-
tion of tin must also be considered.

The relaxation time for point defects v'~ can be
expressed in the form'

S 3 =Aco
1 3g 2 co

G mv
(12)

where //3 is the volume per atom and 1/G is the
fractional concentration of defects. The quantity
$ is a scattering factor that depends on the par-
ticular defect involved, and A. is defined by Eq.
(12). The relaxation time r„varies as 1/&u; this
scattering mechanism dominates at low tempera-
tures where K ~T . One can thus express'
v'„ in terms of the measured lattice thermal con-
ductivity, or rather K, /Ta at very low tempera-

B. Theoretical Interpretation

The lattice thermal conductivity can be expressed
in terms of the spectral contribution to the specific
heat, an average phonon velocity p, and a relaxa-
tion time v. . Using a Debye model for the specific
heat and assuming v' to be a function only of the
phonon frequency e (rad/sec), one readily finds
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tures, by S2=1g2x10 5+28x10 /100f, , (18)

=7.2 p cd=Ceo
p (13)

where, from (14),

B=2@k/(Mzr O~) .

(16)

(16)

By adjusting the parameters A., B, and C one can
fit theoretical curves derived from (15) to the ex-
perimental results.

A suitable Debye temperature OD was obtained by

employing data of the specific heat of tin' and cal-
culating the variation of e~ with temperature from
these values. " Since most of the lattice conduc-
tivity values were taken below 60 K an average
value of O~ =145 K was obtained from the specific-
heat data.

To obtain a theoretical value of A, the factor
S /G2is to be broken into two parts. One part
arises from the distortional strain field around
each cadmium atom; the other arises from the
fluctuation of the atomic mass of all the atoms
about the mean mass. It so happens in the present
case that the major contribution to the mass-fluc-
tuation term comes from the isotopes of tin; the
cadmium atoms have the same mass as one of the
isotopes, and their concentration is low. Thus

S /G=f, 3y (bR/R) +~g2 Zg f, (AM( /M)

where C is defined by the above equation.
The relaxation time for umklapp processes can

be written in the form"

1 p I5T QP

Mv

where M is the atomic mass, y is the Gruneisen
constant, and ~~ =)58/8 is the Debye frequency.

One can now express the lattice thermal conduc-
tivity, from (10) and (11), in terms of a, reduced
frequency x= 5&v/kT;

where the first term describes scattering due to
distortion about the cadmium atoms, and the sec-
ond term is the isotopic mass effect. In the pres-
ent case the mass fluctuation contributes about 12%%u~

to the total.
The value of v taken to calculate A was 1.75

x10' cm/sec. The theoretical values of A for sam-
ples 6-8 are given in Table II.

The parameter B, describing the strength of the
anharmonic interactions, was obtained from Eq.
(16) to be B= 1.8x10 'y' K ', where we take y to
be an adjustable parameter.

The integral in Eq. (15) was then repeatedly
evaluated numerically with A and B being adjusted
until a best fit to the experimental data of each
sample was obtained. These values of A and B
(or actually 2y ) were then compared with the theo-
retical values of A obtained from (12) and (18) and

B with y=2. Table II lists the results of this
analysis with the experimental values being those
that gave the best fit to the data. In all cases the
term representing the phonon-electron scattering
[Eq. (13)j was taken to be a constant.

The lattice conductivities determined by this fit
are shown in Fig. 5, and may be compared to the
experimental data of Fig. 4. Also shown in Fig.
5 is the lattice conductivity given by an empirical
relation

lt (] 13+ Q ]0)x]0-5T .21%0,+/p 0, 21k Q. R

taken from Gueths et gl.3 This dependence was
obtained from an analysis of the thermal conduc-
tivity in the superconducting state. The broken
line in Fig. 5 wa, s obtained from (19) for a residual
resistivity of 1&&10 Q cm, close to that of sam-
ple 6. As can be seen, the empirical relation over-
estimates the lattice thermal conductivity, par-
ticularly at higher temperatures, but agrees better
below the superconducting temperature, which is
the range analyzed in Ref. 3.

In examining Table II we find that the experi-

Here f, is the atomic fraction of cadmium, f, is the
fraction of the various isotopes of tin, y is again
the Griineisen constant, nR/R is the fractional dif-
ference in the radius of solute and solvent atoms,
hM,. is the difference between the mass of isotopic
species and the average mass M. The distortion
term is in the form obtained by Carruthers. ~5 (See
also Ref 11.) We take y= 2, and for nR/R we take
—4x10 3, a value obtained from the change in lat-
tice spacings on alloying tin with cadmium. '7 The
isotopic abundances were obtained from Ref. 18.
The effective value of S~ thus becomes, for low

cadmium concentrations,

TABLE II. Experimental and theoretical scattering
parameters for lattice thermal conductivity obtained for
three samples. ~

Parameter
Sample No.

7

g (Theor. ) 0.74x 10 0.86 x 10 0.94x10
A (Expt. ) 2.57x 10-42 2.21x 10 2.37x 10"42

2y (Theor. ) 8.0 8.0 8.0

2y (Expt. ) 8.0 12.0 16.0
g jr')-' 1.8 x 10-4 2.1x10-' 1.86x 10-4

'Theoretical values were obtained from the best infor-
mation available. The experimental data were derived
from the best computer fit to the data.
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E~ /T = 1.5x 10 W cm ' K 3 . (20)

Since the electron-phonon interaction controls not

only K but also the electronic-conduction proper-
ties, one can theoretically relate these quantities.
As pointed out elsewhere, 3 it is most advantageous
to compare g with the ideal thermal resistivity at
low temperatures, since the same frequency range
of phonons are involved in both, and since the ef-
fect of umklapp processes is less pronounced than
in the electrical resistivity.

Assuming a spherical Fermi surface, a Debye
model for the phonon spectrum, and an electron-
phonon interaction of the same strength for all
electrons and all polarizations, one obtains the
following relation 3:

the dominant mechanism, follows the T dependence
expected from simple theory (e. g. , Ref. 18); its
magnitude is given approximately by

K, /r'=slue, r'/O'Iv"' (21)

OP02 I I I I I l I I a I I I l I

4 7 IO 20 40 70

TEMPERATURE, T ( K)

FIG. 5. Values of the lattice thermal conductivity cal-
culated for Eq. (15) using the parameters A, 2y, and
(K~/T ) given in Table II for the three samples. The
values determined by Eq. (19) for sample 6 are also shown
for comparison.

mental or best fit values used for A. and B are al-
ways larger than what would be expected from the-
ory. This fact in itself is not unusual, since most
of the discrepancies observed by other investiga-
tors are also in this same direction. »9 ~» Further-
more, when Gueths et al.3 calculated low-tempera-
ture lattice conductivity values for the three sam-
ples measured here, they used empirical values
for the scattering parameter S, larger than the
theoretical values given by Eq. (18). The dis-
crepancy between theory and experiment in their
measurement is similar in magnitude to the dis-
crepancy in ours. It should also be remembered
that the value of nR/R used here is a very rough
estimate. We have identified ~/R with Aa/a,
the fractional change in the lattice parameter nor-
mal to the tetragonal axis. The inclusion of Cd
in Sn must also cause electronic changes in the
lattice. If these are opposed to the changes due to
distortion, one may argue that the true values of
AR/R should be larger in magnitude. To fit our
measurements as well as those of Gueths et al. ,

3 one
would require that nR/R should be about —7 x 10 ~.

The present measurements give the first deter-
mination of the lattice conductivity of tin from
single-crystal alloys above the superconducting
transition temperature The latti. ce conductivity
below 12 K, where phonon-electron scattering is

where K, is the ideal electronic thermal conduc-
tivity at temperature T, O is the Debye tempera-
ture, and N, is the number of electrons per atom.
Taking the 10 K value of E, obtained in our previ-
ous measurements of pure tin, ' i.e. , K, T = 1&&10

W cm K, taking 0= 145 K as above, and taking

+, =4, we obtain a theoretically expected value of

K~/Z'a=1. 2x10 Wcm ~ K ~, (22)

which may be compared with the experimental val-
ue of Eq. (20).

Before one rejoices at this good agreement, the
following facts should be considered:

(a) The agreement is very sensitive to the choice
of 0; with 0= 165 K, for example, the theoretical
value of E, would be reduced by a factor of almost
1.7, leading to a discrepancy of a factor of 2.

(b) The model of a spherical Fermi surface,
where all parts of the Fermi surface contribute
equally both to the electronic conduction and to pho-
non scattering, is too simple, and not in accord
with the model used to explain the anisotropic con-
ductivities of tin. » According to that model only a
fraction of the spherical Fermi surface contributes
to the conductivity. If only half the Fermi surface
contributes to electronic conduction, but the pho-
non-electron scattering is the same on all parts of
the Fermi surface, the ratio K~/K, should be in-
creased by a factor of 2. If parts of the noncon-
ducting Fermi sphere are eliminated because of
contact with zone boundaries, this ratio would be
further increased. If, on the other hand, the elec-
tron-phonon interaction is stronger on the noncon-
ducting segments of the Fermi surface, as it well
may be because the proximity of zone boundaries
makes the electrons less free, the ratio K~/K,
would be reduced again. The agreement with (21)
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FIG. 6. Measured deviations from Matthiessen's rule for
all six alloy samples.

Deviations from Matthiessen's rule, asdefined by
Eq. (2), have been determined from the measured
electrical resistivities of the six alloy samples,
from their residual resistivities, taken to be their
resistivities at 4. 2 K, and from the ideal electrical
resistivity p, (T) of tin in the same orientation. The
latter was deduced from previous measurements~
of the ideal electrical resistivities of two single
crystals of tin. These deviations are displayed in
Fig. 6 as functions of temperature.

The deviations generally increase with increas-
ing solute content and with temperature, except
for sample 3. All the deviations are substantially
larger than p& at the same temperature, but are,

may thus be a fortuitous cancellation of the above
factors.

(c) Finally, it should be remembered that X» in

tin departs strongly from a T ~ dependence, ' and
that the specific heat varies faster than T in that
temperature range. We had previously invoked
the anomalous temperature dependence of the spe-
cific heat to account for the temperature dependence
of K&. One may, of course, argue that the effects
of dispersion will be less pronounced in K~ than in
the specific heat, because the integral (15) gives
less weight to the higher frequencies. However, it
is clear that a more detailed theoretical treatment
is required.

V. DEVIATIONS FROM MATTHIESSEN'S RULE

of course, only a small fraction of ".he total resis-
tivity. Except for sample 3, all deviations vary
roughly as T below 40 K.

The deviations from Matthiessen's rule are not
only of intrinsic interest, but are related to corre-
sponding deviations from additivity of the electronic
thermal resistivity [Eq. ('7)] discussed above. In

principle, one can attribute deviations to three
causes'0 (as pointed out above): (a) changes in the

band structure and the phonon spectrum due to al-
loying; (b) additional temperature-dependent scat-
tering processes associated with solute atoms, in
par ticular, phonon-assisted impurity scattering
processes, where electrons are scattered by solute
atoms with the emission or absorption of phonons.
To first order these processes arise either from
the phonon-induced displacement of the impurity
potential (Koshino effect ) or from the distortion
of the impurity potential by the strain of a phonon
and (c) deviations which arise because two or more
groups of electrons contribute to the conductivity.
The reciprocal of each partial conductivity is com-
posed of an ideal and a residual resistivity. If
these two resistivities scale differently for each
group, the over-all resistivity shows a deviation.
This is typified by the two-band effect of Sond-
heimer and Wilson. +

It can reasonably be assumed that any deviations
in Matthiessen's rule caused by changes in the
phonon spectrum or the band structure due to al-
loying would be smaller than the observed devia-
tions. We are dealing with dilute alloys of less
than 1-at.% solute content. The fractional change
in electron concentration is comparable, and the
change in elastic properties is quite small. We
would expect Sp, /p, due to this cause to be of the
order of 1%. The observed deviations are much

larger. Thus we shall only consider either the
two-band model or phonon-assisted impurity scat-
tering.

The two-band model is attractive because we

believe, from the anisotropies of the electrical and

thermal conductivities, that there are bvo regions
which contribute mainly to the conductivities, one
about the tetragonal axis, and a series of equiva-
lent regions perpendicular to it. At low tempera-
tures the former has a relatively higher ideal elec-
trical resistivity, and this is reflected in an elec-
trical resistivity anisotropy which is temperature
dependent and rises rapidly below 40 K.' However,
while the detailed expressions for the deviations
are complicated and contain parameters which are
not easily derived from first principles, the pres-
ent deviations are in conflict with the following lim-
iting results which the two-band model predicts:
At low temperatures, where po» p&, 4p& should be
independent of po and proportional to p, (T), while
at higher temperatures, where p&» po, 4p& should
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be independent of T and proportional to po. The
residual resistivity is too high for the second limit
to apply to the present measurements, but the first
limit is clearly appropriate over most of the tem-
perature range; yet the measured values of &p&

are clearly not independent of po but increase
roughly proportionally to po.

Very roughly, one can fit the measured devia-
tions to an expression of the form

where pe is the residual resistivity and b is a pa-
rameter.

A computer fit of the measured deviations shown
in Fig. 6 was then made to the above relation with
an optimum constant being determined for each
sample. The values obtained are listed in Table
I for all six alloy samples. Kith the exception of
the odd sample No. 6, the constant 6 had an aver-
age value of 5. 2&&10 'K

The dependence on p, suggests that the deviations
arise from phonon-assisted impurity scattering.
Our data are not sufficiently extensive, nor is the
fit to (23) so good, that one can rule out contribu-
tions from the two-band effect or decide i:ts relative
importance. The fact that the major contribution
to ~p& comes from phonon-assisted impurity scat-
tering lends support to the procedure used to cal-
culate K, and to deduce E».

In the limit of low temperatures, when p, ~T',
4p~ o- T' if the additional scattering arises from
the distortion of the impurity potential, and &pq

o- T if it arises from the displacement (Koshino
effect~~). The observed bp, varies as T2; this
would favor the Koshino effect, except that the ob-
servations of ~p& do not extend to really low tem-
peratures, as evidenced by the fact that in the
same temperature range (15-40 K), p~ varies as
T ' . It is thus not clear to what extent the phonon-
assisted impurity scattering should be ascribed to
the strain model~3 and to the Koshino effect. 2~

One difficulty with the Koshino effect, where the
additional scattering arises from the displacement
of the impurity potential, is that one can show that
this effect vanishes for a free-electron gas. ' Qn
the other hand, if the wave function of the conduc-
tion electrons is heavily modulated, some effect
remains, and has to be considered together with
the distortion effect. ~ Normally, one thinks of the
conduction electrons in tin to behave like free elec-
trons, so that the Koshino effect should be small.
Clearly the deviations from Matthiessen's rule in
tin alloys merit further theoretical and experimen-
tal study.
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Pseudopotential Calculations of the Electronic Structure of a Transition-Metal
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The electronic band structure, density of states, and ~2{&), the imaginary part of the di-
electric constant, are calculated for niobium nitride using the empirical-pseudopotential
method. The results are compared with non-self-consistent and with the self-consistent aug-
mented-plane-wave calculations. A discussion of the Fermi surface is included.

I. INTRODUCTION

We have recently developed a scheme, ' which is
a simple modification of the usual form of the em-
pirical-pseudopotential method (EPM) for simple
metals and semiconductors, to calculate the elec-
tronic properties of noble metals' and a transition
metal —niobium. The advantage of this scheme is
its simplicity and its flexibility. In the case of the
noble metals and the transition metal, this empir-
ical scheme involves less (8) parameters than pre-
vious pseudopotential-tight-binding schemes. It is
also unnecessary to know a Priori the region in the
Brillouin zone (BZ) where the hybridization between
the s and d electrons is strongest for these crys-
tals. All one needs are the energies at a few high-
symmetry points inside the BZ and the width of the
d bands. The energies and the width of the d bands
can be determined by optical measurements3' and
photoemission experiments, respectively. Fur-
thermore, the atomic pseudopotential extracted
from one calculation can be used at least as a start-
ing potential for other compounds with the same
atom as a constituent. It is this flexibility which
enables us to calculate the electronic properties of
a series of compounds.

In this report we concentrate on a transition-
metal compound. This class of compounds is ex-
tremely interesting. Some of these compounds are
high-temperature superconductors, and others ex-
hibit interesting metal-insulator transitions. It is
felt that a vast amount of basic knowledge about
solids can be obtained through studies of these

kinds of crystals, and it is, therefore, necessary
to have an effective method to study the electronic
properties of these compounds. We have antict-
pated in Ref. j. that the EPM can be used for this
purpose. Here, we report the first energy band
structure of a transition-metal compound (niobium
nitrade) obtained by using the EPM. We would like
to make a few comments about the significance of
the present calculation: (a) Despite the fact that
the band structure presented is fitted to first-prin-
ciples calculations (due to the lack of experimental
information) the results indicate that it is now pos-
sible to determine with even more accuracy the

energy band structure of interesting transition-
metal compounds if optical and photoemission data
are available. (b) NbN is a high-temperature
superconductor with 7=15.7'K. ~ We anticipate
that the pseudopotential derived here for NbN can
be used in the future to study the origin of the high
superconducting transition temperature for this
compound. Furthermore, if more optical and

photoemission da, ta relating to the transition-metal
compounds are available, one can use the results
of the EPM to predict the superconducting transi-
tion temperature. (c) Experimental studies on NbN,

up to present, are restricted to mechanical, elec-
trical, and superconducting properties. If optical
data were available we could refine our calculation.
For the present, we give a calculation of the imag-
inary part of the dielectric function as a rough pre-
diction of the optical spectrum. (d) Earlier theo-
retical studies were done by Mattheiss (who also
summarized results for similar compounds) using


