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A general method is presented for obtaining the electrostatic contributions to the first-,
second-, and third-order Brugger-type elastic constants of metallic and ionic structures. The
electrostatic energy per unit initial volume of a homogeneously deformed lattice is determined
by the Ewald-Fuchs method. General equations for the Brugger elastic constants are found

by taking Lagrangian strain derivatives of this energy expression. Internal-strain contributions,
which occur for nonprimitive structures, have been included. Results are tabulated for six
metallic and five ionic structures.

P

I. INTRODUCTION

Electrostatic contributions can be an important
part of any model calculation of elastic constants.
Since these contributions are constant for a given
structure, it seems appropriate to calculate and
tabulate them for various ionic and metallic struc-
tures. General expressions, which are valid for
any crystalline structure, are presented for the
electrostatic contribution to the Brugger-type
elastic constants. Also given are general ex-
pressions for electrostatic internal-strain deriva-
tives, from which the internal-strain contribu-
tion to the Brugger-type elastic constants can be
obtained. Specific results are tabulated for six
metallic and five ionic structures. Whereas some

of these tabulated results have been reported
elsewhere, this paper serves to increase the ac-
curacy of earlier work, as well as unify all re-
sults.

For metallic structures, the first important
results were those of Fuchs. ' He calculated the
two Fuchs-type second-order elastic shear con-
stants for bcc and fcc metals. By extending
Fuchs's method, Cousins obtained the second-
and third-order shear constants for bcc and fcc
metals. More recently, Cousins4'5 calculated the
first-, second-, and third-order elastic con-
stants of hey metals for various c/a ratios. In-
stead of calculating the Fuchs-type elastic con-
stants, which are linear combinations of the Brug-
ger elastic constants, Suzuki et al. directly cal-
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culated the electrostatic contributions to the
second- and third-order Brugger elastic constants
of bcc metals. For ionic structures, Ghate' has
calculated the electrostatic contributions to the
third-order Brugger elastic constants for NaCl-
and CsC1-type structures, and Blackman has
calculated the second-order electrostatic contri-
butions, including internal strains, for the zinc-
blende structure. In addition to a recalculation
of the results cited above, the new results tabu-
lated in this paper are the first-, second-, and
third-order elastic constants of the wurtzite,
WC-type, diamond, simple cubic, and simple
hexagonal structures; the third-order elastic
constants of zinc blende; and the internal-strain
derivatives, through third order, for the zinc-
blende, diamond, hcp, WC-type, and wurtzite
structur es.

The Ewald- Fuchs method for determining the
electrostatic energy will be discussed in See. II.
General expressions for the Brugger-type elas-
tic constants and tabular results will be presented
in See. III. An explanation of internal strains and
their contributions to the elastic constants will
follow in Sec. IV.

a brief description of the Ewald-Fuchs method.
Using the definition of the I" function, one has

1/x"=[1/1"(n)] f dtt" 'e "' .

By splitting the integral into two parts, one from
0 to mo. and the other from mo to ~, it follows
that

(
lo

) i

[» -1 /8

,
( ell I

R'( „"„]I '
)

where

0

Z exp'
—~iR' ")i' t&

r(E ) V((

(4)

C (x)= f dtt e"'.

Z e~[- v~R'(i), x~'y']

The 8-function transformation for a (Bravais) de-
formed lattice is

II. EV(ALD-FUCHS METHOD

The electrostatic energy, per unit initial vol-
ume, of a homogeneously deformed lattice of ions
ls

&Ze 1

& 2n, ~ s,„, Ig'(„"„)i

Qp i.s the volume per ion of the undeformed state,
e the electronic charge, and s the number of ions
per unit cell. The summations over l and p, p,

(v, g = 0, 1, .. . , s —1) are sums over the Bravais
lattice and unit cell, respectively. The prime on
the summation means the l =0, v= p term is ex-
cluded from the sum. R(t» ) is defined as

R(„'„3=R(„' )- R( „)= [R(l)+7(v)] —[R(+)+ 7'(]/)1, (2)

SQ0
2 ex(r[ (G'((r) x] ex(rl, ),t- iG'(&) I'

4'
(6)

where the G'(h) vectors form the reciprocal lat-
tice of the deformed real lattice and Qp is the
volume per ion of the deformed state. Using this
transformation and defining a structure factor as

gi(G~) (1/ ) Q $ fo"T' (v)-

it can be shown that

Zeee ', r, ( p e e rre(H'(„",)I')ii 2Q ~ v P 1/2 ~20 ivy

where R(l) is a Bravais lattice vector and 7(v) is
the basis vector of the vth ion in the unit cell.
Throughout this payer, primed quantities, such
as R'(„'o ), will refer to the deformed state. s „
is the sign of the ionic charge, i. e. , the charge
of the vth ion is g„Ze. The parameter X is in-
troduced in Eq. (1) to make the summand di-
mensionless. Different choices for the value of
A will be discussed later.

For a given crystal structure the summation in
E(1. (1) can be readily performed, but the con-
vergence is extremely slow. A useful technique
for more rapid convergence is the method orig-
inally devxsed by Ewald for loIDC latt1ces and
extended to metals by Fuchs. " The following is

where

—2e'/2(f )+o ' (3) D, (8)
0

&S'&=(1/s)& S' &»=(1/s)&, S„;

D= J dtt~.1

It should be noted that, owing to the integral D,
U,', diverges unless the average charge per unit
cell (8) is zero. For ionic structures this is the
ease, and U,', by itself represents the electro-
static energy density. For metallic structures.
(s) 40, and f/,', is divergent. However, the elec-
trostatic energy density of metals consists not



ELECTROSTATIC CONTRIBUTIONS TO THE BRUGGER- TYPE ~ ~ ~ 3611

only of U,'„but also of ion-electron and electron-
electron interactions, to be denoted by U,', and

U,', , respectively. For a metal, the jellium
model (a lattice of positive point ions embedded
in a uniform sea of electrons) will be used here.
This is the model used for the electrostatic en-
ergy in the pseudopotential theory of metals. '~

Denoting the uniform electron density by no
= Z (s)/Qo, it follows that

p p Ze
Use+ Uee =

yg 0 cell

x 8 d2g' ix'- K'(')i

g2

2XQO ~Nce

(n,')' A.
d x

(9)
where N„» is the number of unit cells. Changing
variables of integration leads to U,', = —2U,', ,
and then using the I'-function definition, it fol-
lows that"

88 88 2yg ( g
(io)

Thus, the electrostatic energy density U,', for
both metallic and ionic structures may be written

3. &&@-~is ~a
o . ~ ivy

+ o ', ~ (S'(G'(h)) ('4
~o a 4' )

j.
%/ = 2(~&i ~a/ «/)-

y3
2gl/2 (S2) o 1 (S)2

Qo

remembering that (8) =0 for ionic structures. The
parameter 0 is a convergence parameter and is
usually chosen so that the real-lattice and recip-
rocal-lattice sums converge at about the same rate.
However, results are independent of the choice for
0'.

There are two choices for the parameter A, which
are of particular interest here. For A. = (Qo)'/2,
all the strained-volume dependence of U,', is con-
tained in the (1/Qo)'/2 factor outside of the square
bracket in Eq. (11), and the square bracket con-
tains only volume-conserving shear dependence.
This choice is convenient for taking Fuchs-type
strain derivatives of U,', . The second choice, and

'

the one to be used throughout this paper, is
A. = (Q2)' . This choice is convenient for differen-
tiating U,', with respect to the Lagrangian strain pa-
rameters,

where repeated indices are to be summed and 5&&

is the Kronecker 5. The transformation coeffi-
cients ar e given by

where x and x' are the position vectors of a mate-
rial particle in the initial and deformed states, re-
spectively. Derivatives of U,', with respect to

p&~ give directly the electrostatic contributions to
the Brugger-type elastic constants, which will be
discussed in Sec. III.

By performing the appropriate lattice and
reciprocal-lattice sums in Eq. (11), the electro-
static energy for any given metallic or ionic struc-
ture can be obtained. For metallic structures,
the electrostatic energy per ion is usually written
in the form

Z 8 Z g
E„(per ion) = Qo U„= n, = o.2 2, (14)a ' 2~o

where a is the lattice constant and xo is the radius
of the ionic sphere, given by —3m o= Ao. Similarly
for ionic structures, the electrostatic energy per
molecule is written

Z' e' 'I

E„(per molecule) = 2Q, U = c2, a j

15

where 8 is the nearest-neighbor distance. The 0.
coefficients entering in Eqs. (14) and (15) are
known as geometric coefficients when referring to
metals, and as Madelung constants when referring
to ionic structures. We have evaluated these co-
efficients for six metallic and five ionic structures
and have listed the results in Table I. For those
structures involving a c/a ratio, .the evaluations
were performed for the case of ideal close packing
of spheres, i. e. , c/a=1 for the simple hexagonal
structure, and c/a = W2 for the hcp and Wc-type
structures. For the wurtzite structure, c/a= v 2

and u= 8, which gives equal bond lengths and bond

angles.

III. GENERAL EXPRESSIONS FOR BRUGGER ELASTIC
CONSTANTS

Having determined the electrostatic energy den-
sity of a deformed lattice, one can now calculate
the electrostatic contributions to the elastic con-
stants by the method of homogeneous deformation.
Since internal-strain effects may be treated sep-
arately (see Appendix A), here we will only con-
sider the case of zero internal strain, i.e. , w = 0.
Internal-strain contributions to the elastic con-
stants will be treated in Sec. IV. The Lagrangian
strain derivatives of U,', can be easily performed
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(is)

(see Appendix B), thus yielding the electrostatic
Brugger elastic constants

&" U„'(q, w=0)
i)klan

~~iy 8 kl ' ' ' q=o

Introducing the dimensionless parameters r =R(„'o„)/
Qo

~' and g = Oo~s G(h)/2w, the expressions for the
first-, second-, and third-order elastic constants
are

2 2

C;; = — „,{o'~'(I/s) Z s „s„(2«)~,~,. c„(,(omlrl')
0 ivy

+o ' ~ I~(g) I'lX~J 4o(o '&Ig I') —(2« ')ag~C, i(o '~lg I'8 —o '(»'X&;)
h

2 2

c.';., =, ,', .4'" (I/s) ~'&.~.(»o)'~, ~;~,~, c „g,(-lr I') +. ' ~'l&(g) I'Ix,. 4o(o "lg I')2no lvv h

(17)

—(2«') I „»C„(o'~lg I')+(2«'Pg;g;g. ac.2(o '~lgl')l —o (~)'X&»,), (is)
and

2 2
O'„'„„=- „Tn (o"'(I/s) Z s„s., (2 «)'r, ~, r, r, ~ r„c„,z(om Ir I')

0 lvu

+o '~' &(g) I'I:x~»t, +o(o "Ig I') -(2« ')&;; ..C.~(o "lg ')+(2«')' &;&.i,c.2(o "I g I')
h

—(2«) Ag@'aug g 4'+3(o ~
I g I ) j -o ( ) X&sa~ )

where

X;~= 5i~,

Xi/hi ~if ~kl+ ~ik ~fl+ ~i l ~gk ~

Yi yk l
= g iC'y 5k l + 8'N'l& iy + A A & y l

(20)

(2i)

+ g~ A ~pa+ ling «& &~
+ gg A'&'~a ~

ijklmn ~i j Xklmn+ ~ik jlmn+ ~il jkmn

+ &» aid. + &~.Xalg (2s)

i gklmn = gi gg Xk lmn + gi gk Xg l mn + 8'i gl Xgkmn + Ri gm Xkl j

+gi gnXklgm+gj gk Xi lmn+ gg gl Xikmn+ 8') Cm Xklin

+ gy gn Xk l im + gk gl Xi'~mn +A gm Xi~ ln + A Cn Xi) l m

+A gm X(i~n+gi gnXelm+g mg nXOI t i (24)''

~es ~es ~es ~SQ ~es~ IIIIJ J ) ~IIJJKK y ~ J' JJ' JJK ) ~ O'J J'KKK r ~IIII JK s

and C»««, where the subscripts run from 1 to 3
with I J~K. For these types, the elastic con-
stants with Cauchy relations have been listed in
Table II. In that table, as well as the remainder
of this paper, Voigt (reduced) notation is used for
the subscripts whenever referring to specific

TABLE I. Geometric coefficients for six metallic
structures and Madelung constants for five ionic struc-
tures. For metals, the electrostatic energy per ion is
n~(Z e /a) = no(Z e /2yo), where a is the lattice constant
and yo is the radius of the ionic sphere. For the ionic
structures, the electrostatic energy per molecule is
&~(Z e /a) =&R(Z e /R), where B is the nearest-neighbor
dis tance.

Metallic

~afktmn A gg (~atmn ga g t smn) +ga gI (ymnig gmgn sf J )

+gmgn (Iya~t g;gj &q~) ~ (25)

It is easily seen that the coefficients X,&... ,
Y,», ..., and Z,», „, and thus the elastic constants
C';&... , satisfy Cauchy relations, i. e. , the order-
ing of the subscripts is immaterial. Therefore,
in general, all tf:.e elastic constants (through third
order) can be obtained from only two types of first-
order constants C,'I and CJ'„; four types of second-
order constants Crrrr CIIJJ C JJJE and CeII JK

'

and seven types of third-order constants Crrrrrr

simple cubic
fcc
bcc
diamond
simple hexagon~. l
hcp

Ionic

NaCl type
CsCl type
zinc blende
%C type
wurtzite

—1.418 648 7397
—2. 292431 0371
—1.819 6167248
—2.693 3990221
—1.497 855 9763
—1.620 9293075

—3.495 129 1893
—2.035 361 5095
—3.782 926 1041
—1.235 585 6381
—2. 680 266 9939

—1.760 1188842
—l.791 747 2304
—1.791 858 5114
—1.670 851 4055
—1.771 389 4740
—1.791 676 2409

—1.747 564 5946
—1.762 6747731
—1.638 055 0534
—1.235 585 6381
—1.641 321 6274
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TABLE II. General Cauchy relations for first-, second-, and third-order elastic constants. Also listed are co-
efficients used in the general expressions for the elastic constants.

Types
ijklmn

Elastic constants with Cauchy relations
Cg. ..

First order

Cf, C2, C3

C4, C„C,

X,)... +f/Alms

JJJK

IIJK

Second order

Cffs C222 C33

Cf2 =C66, Cf3 = 55, 23 =C44

Cf52 Cf6, C242 C262 C84, C35

Cf4=C56, C25=C46, C36=C45

6gr'

gr +gz2 2

3gJgz'

gzgz

IIJJKK

JJJJJK
JJJKKK

IIIIJK

IIJJJK

Third order

Cfffs C222 2 C333

Cf f2
—Cf662 C f is =Cf55, C f22

—C266

Cf33 C355, C223=C244, C233=C344

Cf28 = Ci44 C255 = C866 C456

Cff5, Cff6, C224, C226, C334, C335

Cf26 —C666, Cf35-C555, C234=C444

Cff4 = C f56 C225 = C246 C336 = C845

Cf25 = Cf46 —C566, Ci24 = C256 = C466

Ci84 =
356

=
4552 f36

—Cf45 = C556

C235 C846 C4452 C236 C245 = C446

45g2r

6gr +3gJ

gr+gz+gk

15gggz'

9gggz

3gzgz

3gzgx

gr+6gr gz
2

g'r g'~+ gzgi+gz gr2 2 2 2 2 2

1og J' gK

3g~ g'K(89+gK)

6gr gag'E2

IfZRK@gr+8Z)'

elastic constants. For convenience, the X,&,

Ã~», ... , and Z,»,~„coefficients, which are used
in Eqs. (IV)-(19) to determine C;f... , have also
been listed.

Calculations have been completed for seven cubic
structures, namely simple cubic, fcc, bcc, NaCl
type, CsCl type, diamond, and zinc blende. The
first-, second-, and third-order elastic constants
with Cauchy relations for these structures are

Cf,' Cff, Cf~= C44 i

11f q ff2 C155 q C123 = C144 = C4M

The electrostatic contributions to these constants

1
Cf, Cs,' Cff, Css Cfg C66 3 Cf 1 y Cfs= C44 i

C111i C222 i C112 C166 5 ( 2C111+3C222)1

122 C266 6 (3C111 2C222) &

Csss ~ Cffs = C155

are listed in Table III in units of Z e /a, where
a is the lattice parameter.

Four hexagonal structures, namely simple hex-
agonal, hcp, WC type, and wurtzite, have also been
considered. For these structures, the elastic
constants with Cauchy relations are

TABLE III. Electrostatic Brugger elastic constants for cubic structures. Entries are in units of Zte /a, where a is
the lattice constant.

simple cubic

U —1.418 648 740
Cf 0.472 882 913
Cff —0.143 189083
Cf2 —0.637729828
Cfff 1 747 954 699
Cff2 1.231 950 057
Cf23 0.724749027

fcc
—9.169724 148

3.056 574 716
—6.849 873 626
—1.159925 261
34.065 579 503
0.091 894 314
5.615 837 678

bcc

—3.639 233450
1.213 077 817

—2. 697 885 714
—0.470 673 868

9.235 126 065
2. 127 151252

—1.900 933165

NaCl type

—13.980 516 757
4.660 172 252

—25. 108469 175
5.563 976 209

164.229 593 204
—19.343 623 664

10.867 366 283

CsCl type

—2.035 361 509
0.678453 836
2. 125 129 382

—2.080 245 446
—16.226 944 863

2. 800 648 978
4. 799 929 272

diamond

—21.547 192 177
7.182 397 392

—23.345 777 443
0.899 292 633

119.055 300 863
—l.163 206 824
—2.170 049 518

zinc blende

—15.131704 416
5.043 901 472

-4.053 717061
—5.538 993 678
17.207 017 149
1.530 784 079

24.633 400 230
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gp +LE pl. Electrostatic Bragger elastic constants for hexagonal structures with ideal structure parameters. Entries
are in units of & e /a, where a is the lattice constant.

U

Ci
C3

C33

Ci2
Ci3
Ciii
C222

C333

Cii2
Ci»

~ C«3
C»3
Ci33

simple hexagonal
(c/a = 1)

—1.729 575 102
0.533 603 351
0.662 368 399

—0.605 973 676
—0.401 414 892
—0.201 991 225
—0.792 845 153

2.324 128 642
—0.532 222 756
—0.708 777 482
—l.248 985 111

1.607 366 288
l.954 724 848
0.651 574 949
l.357 925 970

hcp
(c/a =P)

—2.292 340 210
0.764 635 593
0.763 069 024

—1.288 353 922
—1.137003 974
—0.429 451 308
—0.576 101549

5.026 701 204
2. 217 541 686
5.511268 055

-0.680 155 470
2. 129004 048
2.095 f23 879
0.698407 960
0.086 875 908

WC type
(c/a = 3)

-0.873 690 983
-0.577163952

2.028 018 888
2. 966 252 428

—l.637 033 899
0.988 750 809

—2.223 511382
—15.767 553 741
—19.362 925 160

2. 608 789 547
—5.310733 599-
—1.715362 181

6.247 025 199
2.082 341 733
2.788189975

wurtzite

(./. =i-, .=s
—3.790 469 934

1.237 266 468
1.315 936 998

—2.637 875 499
—3.558 546 850
—0.879 291 833
—0.194632072
12.580 565 280
2.779 206 544

26. 442 451 932
—3.364 702 185

6.436 656 550
3.973 $14:,399
1.324 504 800

—4.324 858 840

1
188 = C144 = 366= 456= 3 C113 q C133 = C344

Electrostatic contributions to these elastic con-
stants for ideal structure parameters are listed in
Table IV in units of Z sea/a4. For all the hexagonal
structures, our choice of Cartesian axes (in Mil-
ler-Bravais indices) has been 1 axis = [1010]; 2
axis= [1210]; and 3 axis= [0001]. It should be
mentioned that, for the hcp structure, Cousins'
has chosen basal axes rotated 90 with respect
to ours. Thus, his C111 corresponds to our C3»,
etc. However, our choice of axes is consistent
with the only two sets of measured third-order
elastic constants for hcp metals. ' 5 Also the dif-
ferent choice of axes eliminates the discrepancy,
noted by Naimon et a/. , in certain Fuchs's con-
stants calculated by Cousins. 4

The results presented in Tables ID and IV rep-
resent a higher degree of accuracy than those of
earlier calculations. However, our results are
essentially in agreement with those reported ear-
lier (fcc, '~' bcc, ' ' ' NaCl and CsCI, ' zinc
blende, ' and hcp'). Also, all results were checked
independently by doing a Fuchs-type calculation for
each structure [Eg. (11) with X= (Qo) ~ ]. Other
useful checks are the relations

C])= —U„, C&sy; = 3U„, Cg gyaa = —15U„,

where, as usual, repeated indices are to be sum-
med. These can be easily derived, for example,
by relating Fuchs and Brugger constants. All
calculations were performed on IBM 360 and
Xerox Sigma 5 computers. Convergence of all
sums was such that the maximum error in the
tabulated constants was +1x 10 '~. The subroutine

for the complementary error function, necessary
to generate the 4 «~ functions, was from an IBM
routine with a relative error of less than 4x10

IV. GENERAL EXPRESSIONS FOR INTERNAL-STRAIN
DERIVATIVES

In order to obtain the internal-strain contribu-
tion to the elastic constants, it is sufficient to
know the energy density of the homogeneously de-
formed lattice as a function of both external and
internal strains (see Appendix A). However, since
the internal strains are determined from the total
energy density, the electrostatic internal=strain
contribution to the elastic constants cannot be ob-
tained directly. It is still possible, though, to de-
termine electrostatic internal-strain derivatives
of the form

~ ~

~ ~ ~

~
~ ~

en U~
U(vP) {Qq) ~ ~ . es

su, (v)sui, (g) a9issrlai. . ) o, 4
{26)

where w~(v) is the internal strain associated with
the vth ion of the unit cell (v = 0, 1, ~ ~ ~, s —1).
These derivatives would be combined with those
arising from other terms of the energy density,
thus resulting in the total internal-strain contri-
bution to the elastic constants.

Using the method of homogeneous deformation,
derivatives of U,',(q, w(v)) can be easily performed
(see Appendix B). Introducing the dim ensionless
parameter t = [v(v) —r(p)]/Qo, as well as
r = R(„'„)/Qo~' and g= Qo~ G(h)/2v, the expressions
for the electrostatic internal-strain derivatives
through third-order are
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2 2
"o'" '""=-2~4/3 ' [""».(2«)~.c.&/2(-Irl')+~ lm~(g, v)(2«')~. cs(~ "Igls)],200 l uAv h

(2'l)

2 2

2@4/3 ~(T ~ v (2«) 3'33'& t/ 4&+3/2 (o'&&
I
r

I )20o s le& v

I
+~ ™a(g,v) [(2« ')g, x 34/c'o(o' &/lg I ) (2«)'@3'&g/c &(o &»Igl')]], (28)

h

2 2

(')
' '" """=

2~4/3 "(o' ' „[(2«)' 33r qCts/2(o&/Irl') —(2«)/&S, C„/2(o»lrl')]200 s l ply

—(r Z' [Rex(g, v) —&3„/s](2«')2 gag, co(o '~lgls)j (29)

-Z2 2 ' (&' ' + [(2«)' 333,c.s/2 (o»lr I') —(2«) 63 4„/2 (o&/lr I')]20o s

—o Z (1/s ) co s (2»g ~ t ) (2« ')' g2 g, c 3 (o ' »
I g I

' )/, (3o)

2 2

~0 ~&jk& 4/3 4 v (2«) 3 3
& 3/ 3 3, c'.3/2 (o'&& Ir I )

1/3 (vp) ~v 1/2 Y. 3 1~12
20() s lu, Av

+ 2 ™(g,v)[(2«')g, x„,», c,(o vlgl ) --. (2«') &, (l;3&»&- lgl &. . )c,(o ~lgl )
h

+ (2« ')'gag&~/~. g& CS(o 'vlg I'))],
2 2

o
&~/~"""=— 4/3

" {&' & [(2«) res', 3'&r/c' 3/2«&/lrl ) —(2«) 5,»&3&/+c3/(2a»Iris)200 le/v

—(»o)(&3» &4/+ '&3/ &q4) C', &/2 (o'v
I
r I')] —o g '

(Re2(g, v) —
i& „/s)

h

x [ (2« ')' (l'3, &/
—f3,g 4@)C 3(~ "Ig I

') —(2« ')'g2&.a g/ C &(~
' v

I g I')]),

g /3 f/( 3 (vq& fls/3 f/(vP&(vq& v v ( &/2 Q [(2 )3 & C, ( I I
2)

Z 8 2$
200 s l

—(2«)'f&3, 3,3/c.s/2(cr»Irl')- (2«)(f&3, 6„+63/5„)c&., /2(o&/Irl')]

(3l)

(32)

—o Z (l/s)cos(2»g ~ t)[(2«') (Y3,&/ t'&3, g&g/)C—s(o '&/lgl ) —(2« ') gag, g&g/C, (o '3/Igl )]},
h

(33)
2

ns f/'"3"""'" '=
4/3

— —"/o'/2 Z f&„[(2m') r r, Sr C,m/ (3o 2Ir &I/) —(2«) 3 „&„S,„C,3/2 (a»Ir ls)]'
204," s

—o' Z rm~(g, v)(2«-')'g, g,g. C,(~-' wig I')], (34)

f/(vp&(vq&(vm& g f/(vp&(vq&(vm& v v ( &/2 g [(2«)3 r 3. 3 @ (ov lr I 2)
S 8 2$$

0 . = —
O 20"' s P q m +5/2

0 s r

—(2«) &,& p, c.s/2((r&&IFI )1 -o' & (i/s)sin(2»g t)(2« ')'gpg, g„cs(o '&/lgl')),
h

U(vp) (oq) (Cm)
0 (36)

where v p, w$ and

2 (G, v ) = S(G) e'o'""&

These internal-strain derivatives are similar to
elastic constants in that they transform as tensors

for any point-group operation (e.g. , U,'p&

=(R~,(R,,hSJ, Uh",", where (R is a point-group sym-
metry element). However, for those space-group
operations which contain a rigid translation, e.g. ,
screw axes or glide planes, the unit-cell label v
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also may change. An important consequence of
this is that U,'~~', and thus the internal-strain
parameter

x„,(v)=(, '
)

need not have the same symmetry as the piezoelec-
tric tensor. An example of this is seen later when

considering the wurtzite structure. Also, it is
easily seen that these electrostatic derivatives
obey the following relations: U,'&~', U '~"~',
U ',~~„', , and U '~"""" ' satisfy C auchy relations
in that the Cartesian indices can be arranged in

any order (e.g. , U'P&'=U'""); and U,.'~~""" is
symmetric with respect to the interchanges p q
and g~ j.

Because the energy density depends on relative
interlattice disglacements, only s —1 of the s in-
ternal strains w(v) are independent. '7 Thus, one

may choose any independent set of internal strains
w (o = 1, . . ., s —1), which are linear combinations
of the w(v),

w = 2'a „w(v) .
v=0

Then, derivatives are related by

8 8

sw(v) „,, "slav

Internal strains only occur in nonprimitive lat-
tices with ions not at centers of symmetry. Thus,
of the 11 structures considered earlier, only five
(diamond, zinc blende, hcp, WC, and wurtzite)
can have an internal-strain contribution to the
elastic constants. Because the diamond and zinc-
blende lattices differ only in the sign of the ionic
charges, they may be considered together. The
same applies for the hcp and WC lattices. How-

ever, since the wurtzite structure consists of two
interpenetrating hcp sublattices, the hcp and WC
structures can be obtained from wurtzite by a
suitable choice of charges. Thus, it is convenient
to consider hcp and WC with wurtzite.

The zinc-blende and diamond structures have a
fcc Bravais lattice with basis vectors 7(0) = (0, 0, 0)
and F(l) = (4 a)(l, 1, 1). To form the two structures,
the signs of the charges in the unit cell are chosen
as s o=+1 and 3, = —1(+1)for the ionic zinc-blende
(metallic diamond) structure. For structures with

two ions per unit cell, there is only one indepen-
dent internal strain. Here it has been chosen as

w = [w(l) —w(0)]/(-,'g),

and thus

su, '
sou, (1) "sm), (0)

'

Then, the independent electrostatic internal-strain
derivatives for zinc blende with Cauchy relations
are

U4 10 057668147' Ug 0 819616921&

U = —4. 188790205, U3 = 10.062167052,

U' = l9. 202879707, U4 = 14.250957256,

O'„= U,', = U,', =16.762780245,

in units of Z e /a . (The notation used here is that
of Appendix A, with Voigt notation used for all
subscripts. ) Since the electrostatic internal-strain
derivatives are proportional to y~ p& for structures
with two ions per unit cell, the results for the (

diamond structure are negative those of zinc
blend e.

The hep, WC, and wurtzite structures have a
simple hexagonal Bravais lattice with basis vec-
tors

f(0) = (0, 0, 0), 7 (1)= (a/M3, 0, —,
' c),

& (2) = (0, 0, uc), i(3)= (a/v 3, 0, [u+ —'] c)

referred to the Cartesian axes. The three struc-
tures can be formed by choosing the signs of the
charges in the unit cell as follows: For metallic
hcp (ionic WC) S()=+1 Sg=+1( 1) and S~= y~=0;
and for ionic wurtzite y~= p, =+1 and p~=y3= —1.
The three independent internal strains will be
taken as

w' = [w (1) w(0)]/t. —, w'= [w(3) —w(2)]/L,

and

w = [w(2) w(0)]/L, —

where L = 2 a& 3. The internal strains w and w~

represent the interlattice displacement in the two

hep sublattices, while w is an interlattiee dis-
placement between the two hcp sublattices. Then,
internal-strain derivatives are taken according to

9 8 9 8

sau) asu~(l) '
aM~ Bag~(3))

(&a~(0)) (tw~(()i)

It is easily seen that derivatives with respect to w

and w3 are zero for hcp and 'NC, since internal-
strain derivatives with respect to w(v) are propor-
tional to 8&„~ Therefore, for these two structures,
the internal-strain label will be omitted and under-
stood to be n= 1. The electrostatic internal-strain
derivatives for ideal hcp with Cauchy relations are



ELECTROSTATIC CONTRIBUTIONS TO THE BRUGGER- TYPE. . .

Ui = 0. 2127573V5,

U = 0. 215120910,

U 3 = 4. 282147161,

U = —1.2064438VO,

U,
"= 0. 014231968,

U2 = 0. 148157929,

US = —i. 23799444V,

Ui = —5. 305020698,

U,
"= —10.800694409,

U4 = —5. 520141607,

Us = 2(U1 —US )= —0. 066962980,

Uii = 0. 010837123,

U22 = U26 = —5 Uii = —0. 006502274,

U12= U16= —5 Uii = —0. 002167425,

U13 = —U44 = U15 = —1.0724565V3,

in units of Z e /as. As was the case for the dia-
mond and zinc-blende structures, the results for
the VfC-type structure are negative those of hcp.

For the wurtzite structure, all three internal
strains must be considered. Instead of using the
internal-strain labels o'. , P, . . . on U;f+; wh"e'n

writing specific derivatives, it is convenient to
Use commas to separate differentiations with re-
spect to the three different internal strains. Then

p e ~ ~ q ~ ~ ~ m i ~ ~ ~es
~wp' ' ~wq' ' ~wm' ' ' ~~ay ' ' ' ~p w~=o

Then, the electrostatic internal-strain derivatives
for ideal wurtzite with Cauchy relations are

U" = —2 U "= 2U' '= —0. 048542322,

U5' ———2U5" ——2U5 ', , 1 1.. .1,

= U = —2U', "= 2U, ~ = 3. 425042335,

US' ——2 US" —2US '- —6. V0445V'705,

2. 335388332

U" = —2U" =2U' ' = —6 13Q547391

U "=U' '= —2. 850152786, U ' '= —1.129619894,
U" = —2U" = 2U' ' = -6, 588461139,

U "=U' '= 0. 987916591, U ' '= 6. 9V1628768,

The indices before the first comma represent de-
rivatives with respect to Cartesian components of
w'; those between commas represent derivatives
with respect to components of zv; and those after
the second comma represent derivatives with re-
spect to components of w . For example,

3 f
13313 Uea—1 —3 —3~'Ni ~W1 ~WS y„o

and

U, , 333 2 U338, , 2 U, 333, 2 U38, , 3 2 U, 33,8

2 U 33 3 2 USS, SS 2 U33113 4 0113,,

4 U 113, 4 U11, ,3 4 013, ,1 4 U, 11,8

U31331 4 U33 311 4 Ui ~ 313 4 U33 ~ 11

= —4U' ' = 79. 550922034,

U33 3 U3, 33, U333 3 2 U11 3 2 U18, 1,

2 US, 11, 2 Ul, 13, 2 Ul, li3 2 US~1, 1

= 2 U ' ' = 13.883995989,

U "= U' ' = 27 750835335

U11 1 U 1131 U1 11 U31 11 28 9572792Q5

U, ii, 14 882310616 Ui, i, 0 659437674

U, ,11
1

Uii"
2

US 311
2

U113 ~

3

U, ,11
3

USS, ,
1

US ~ 33
1

3

U ~ 333
3

U233 3

—2U133 —-2U1 ' = 29. 736157294,

U2
' = 3.060668348, U2' ' ———0. 533267371,

—2UP" = 2U2 ' = 5. 82502083V,

U' ' = —3. 692215035, Us' ' ——5. 52192916V,

—2US" = 2US ' = —4. 908441176,

Ui ' = —7. 530284412 Ui' ' = —2. 5V9319495

—2U1" = 2U1 ' = —4. 450527428,

US
' = 10.120985868 ) Us' ' = —29. 699504851,

—2 Us" = 2 US
' = 41.843360553,

U' ' = —4 680131626,

U&' '= U4' '= —1.449699601,

U4' = -2U4" = —2U4"

= 2U4 ' = 2U' ' =1 680019963,

U "=U'2' = -'(U "—U ")= 5 910821134

Ul, 2, U2, 1, L(U1, 1, Ul, 1,
) 0 596352523

03312 2 01332 2 U 33 2 U, 1,2 2 U, 2, 1

Uii' = Uii' = 13.8998V2705,

U22' = U22' ——U26' = U26' = —5 Uii' ———8. 339923623,

U12 U12 U16 U16 5 U11

U]3' = Uis' = —U4$' = —U44' = U]5' = U15' = 0. 557043495 )

U15 = —2Uis'=2U15'331 33 313

= Uii = —2 Uii' = 2 Uii' = —12. 050251035,

U25 ———2 U25' = 2 U25' ——U~6 = —2 U46' = 2 U46

= —,'(U,"—US' ) = 11.955568228,

11.. .11, 1, ,1 , 1,1 13.. .13,
U5 "-—U5

' = —U5" = —U5
' = Ui "=—Ui

—U', '= —O',"'=—U '= —U '=6. 812479538,
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= Uia = —2 Uiar
r = 2 Ul a' = Uss' = —2 Uss'

= 2 U66' = 3 Uis ———4. 016750345,

U35 = —2U35' = 2U35 = Ui3 = —2U&3" ——2U&3' = U44

= —2U44' = 2U44' = —1.058210294

U33 2U33 2U33 35o 638709114
p

in units of Z e /a .
The space group of wurtzite contains a screw

axis (a twofold rotation about the three axis and a
translation by —a'c). For this symmetry element,
the internal-strain tensors U&&". .." transform as

(pP )ye ~ Q {gq ) cue
U])... = Sp ~ ~ ~ 8 („8), UI, ).. .

where 8 is the twofold rotation matrix. As a re-
sult of the translation, the unit-cell labels (y.- r )
change according to 0-1, 1-0, 2- 3, and 3-2.
For example, this symmetry requires that

U (01 ) U(11) and U(32) U(3$ )an

Thus Uii" ———LU,'"' and U', ~' = LUi"' are not requi. red
to vanish. However, Ui'i=—L[ Ui"a+Uiai'] is required
to be zero. It should be noted that if the component~
of a tensor are unaffected by the translation, then
any component with an odd number of 1's or 2's,
but not both, is required to vanish (e. g. , the 111
component of the piezoelectric tensor).
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the strain dependence of w can be determined by
differentiating Eq. (Al) with respect to rir&. Thus,0=, = (Us) Uso ' Uas

ef/~g egg 8$ ~y
8g gy

a3 Q Q8 (~) ~ BOIH ~ps Burly ~pa

0 2 c
+ V +

~~a)
(A4)

where repeated indices (including superscripts) are
to be summed.

In general, so~ can be expanded in a Taylor series
of q)~,

0f O 1 Or

%p = Ap)g 'g)g + 2 Bpgll gfj goal+

where the coefficients

(A5)

(A6)

SP~
PQI i—

~~v 8~I s x=0
(AV)

are determined from Eqs. (AS) and (A4), respec-
tively. Higher-order coefficients are similarly ob-
tained by successive differentiation. However,
knowing U as a function of w and q, only the in-
ternal-strain parameters A~&& are needed to obtain
B~,», and all higher-order coefficients, e.g. , Eq.
(A4) relates B~r»r to the coefficients Par& and de-
rivatives of U.

Using the definition of the Brugger elastic con-
stants,

APPENDIX A: INTERNAL-STRAIN CONTRIBUTION TO
BRUGGER-TYPE ELASTIC CONSTANTS

8"U(r), w~ (rl )) &

fjQf ~ ~ o

Sr7ve&ar '' ) ".=o
(As)

=0 P=1, 2, 3 (Al)

Denoting derivatives of U(ri, w~ ) by

QPgq e ~ ~
Qtl U

Uriirl" ~ ( 7 ) a sp q ''e~ty~ 4~ ' '' w%R)

(A2)

For nonprimitive lattices with ions not at cen-
ters of symmetry, macroscopic strains in general
give rise to internal strains, i. e. , interlattice dis-
placements. With s ions per unit cell, only s —1
internal strains are independent. '7 For convenience,
they will be labeled here as W, where &=1, 2, . . . ,
s —1. These internal strains, which are functions
of the external strain g&&, are determined by re-
quiring that the total energy density of the homo-
geneously deformed state, U(ri, w'), be a minimum
with respect to w, i.e. ,

and Eqs. (Al), (AS), and (A4), it follows that

(0)C]) = C]

Coar=Cr'rar AroA, ar
U' (q =0)

and

(A10)

&o& — S"U(n, w =0)
C„a, ——Uir„i...(q...=0) =

~ ~ 'f) «0

(A12)

C riarmn C ryirrmn+&r 0 Uarmn (& 0)++birr Uirmir (&

+& Ur'ar(n =o) + rar mn g' (n =o)

+Aarr A,„„U„'(q=0)+AarrA, „iU'„(g =0)

+Aa;rA, sr A„"„„U~+""(ri =0), (A11)

where
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ll Cll(0)
C12 —C12 ~

{0)

(0) {0)C„,= C„„C„,= C„,',
C44 = C44 —U A(0) 11 2

(0)
C123 = C12s

Thus, the internal-strain contributions to the elastic
constants can be considered separately, and the

C&&~, ... are the Brugger elastic constants in the ab-
sence of internal strains.

To illustrate the use of these equations, specific.
results for several structures are given below.
Voigt (reduced) notation is used for all subscripts.
Also, for those structures with two ions per unit cell
and thus only one independent internal strain, the

superscript & = 1 is omitted.
For the zinc-blende (or diamond) structure, Egs.

(A10) and (A11) reduce to

where

Ul p lp Ul p2p Ul p3p

Ul p2p U2p2p U2p3p

U1p3p U2psp 03p3p

APPENDIX B. METHOD OF HOMOGENEOUS
DEFORMATION

For a homogeneous deformation of a lattice,
i.e. , a deformation where the resulting structure
remains a perfect lattice, the lattice vectors and
basis vectors deform according to

&,'(I) =Z„ ft,.{&)

144 144 14 + 1
(0) 1 11 2

Clss = Clss - 2U24A+ U2 A(0) 1 11 2

C4ss = C4ss 3Us6A+ 3U4 A U A

Tf (v ) = cT(y
T

g (v ) + gl) (v ) )

respectively. Or equivalently,

ft', („')=Z„a, („')+~,(v),

(B2)

where the internal- strain parameter, as de-
termined from Eq. (AS) is

1

A= U4 Rgl
~&23

RD2

8~13

The results for the hcp (or WC) structure are

Cll= Cll —U A, C 2—- C12 + U A(0) 11 2 (0) 11 2

(0)Cls= Cls ~

(0)Css= Css C44
——C44

(0)

C111 C111+3U11A+3U1 A + U

C„~= C,',2
—(2U'„+ U22) A —(2U,"—Ua') A —U'"A

C222
——C222 —3U22A+3U2 A —U' A

C113 C113+2U, sA+ Us A,{0) 1 11 2

(0) 11 2
C123= C123 —2U13A —Us A

(0) 1 (0) 1
C144

——C144+ U44 A, Clss = Clss —U44A,

Clss = Clss
(0)

where

Csss = Csss
(0) (0)

C344= Cs44 ~

Ul
A. = — - -11

U

Bggl 8P)2

~ 22 ~~12

For the wurtzite structure, which has three in-
dependent internal strains, complete results will
not be given. However, we will indicate how the
internal- strain parameters are obtained -from Eq.
(AS) for this structure. Since U'~~' is nonzero
only if p = q, Eq. (AS) becomes

3

Z U ~ ~
AP)) = —U)~)

where w(v) is the internal strain or interlattice
displacement of the vth sublattice. As is commonly

done, the internal-strain vector is redefined as'~

ao, (v) = J„gu, (v), (B4)

so that the strain energy is in a form invariant
with respect to rigid rotations. Then the lattice vec-
tors R(„'„")deform according to

&', ('„'„)=&(,R, (',„")+(J ')„u, (v p), (B5)

where

u, (vp) = u, (v) -zu, (p) . (B6)

Since the deformed reciprocal lattice is the recip-
rocal lattice of the deformed real lattice, the re-
ciprocal-lattice vectors deform according to

G,'(h) =(~ ')„G,(h) .
Volumes deform according to

flo/f1 0
= det

I
~

I
(B8)

In the expression for U,', [Eq. (11)f the only
variables which depend on deformation are I R'(„'0)I ~,

)G'(h) )~, Ao, and S'(G'), the last of which is a
function of G'(h) i'(v). Using ~ the definition of the
Iangrangian strain parameter g,, , it is easily
shown that

~
R'(t,')~'=M„R, (t,')ft, („",)+2w, (v p)B,. („",)

+ (~ ')„~((vu) ~; (v V), (BQ)

where there are no implied sums over repeated in-
dices. Then

~

G'(h)
~

'= {m-')„.G, (h) C,(h), (B10)

3
A a = —p (cu -1)Spa,p U Bp

8=1

G'(h) 7'(v)=G(h) v(v)+(M ')„gp, (v)G, (h),

(B11)
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where

M, = 2g, ,-+P, = J„,J„,.: (B12)

Equations (B8)—(B11)can readily be differentiated
with respect to p» by making use of the relations

M )&J = (M )ka (M )Jt+ (M )tr(M )ga ~

~4t
(815)

(Note that functions of g&& have been symmetrized
before differentiation. ") Using Eqs. (B8)-(B15)
and the relations

(«tl~l)=detldl(M '). ,

8
(M~y) = «a 5, i+ ~~i ~~a

(Bas)

(B14)

and

C, (x) = e "/x, C,(,(x) = (v/x)'~' erfc(x'~'),

—dC (x) (m+1)4 (x)
dx m+1x = Ox + x.

it is straightforward to differentiate U„with re-
spect to g and w(v).
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The absorptivity of polycrystalline samples of Re03 has been measured in the range 0.11 to
2.8 eV using a calorimetric technique. New structures have been found in the absorptivity,
appearing at about 0.4 and 1.0 eV. The data have been Krarners-Kronig analyzed to obtain the
optical constants. Band-calculation results of Mattheiss are presented and a tentative identifi-
cation of the origin of the new structures is made. A comparison of the present data with
those of Feinleib, Scouler, and Ferretti is made.

INTRODUCTION

A variety of studies have recently contributed to
an understanding of the transition-metal oxide
Re03. It has been shown that He03 is a good elec-

trical conductor, is nonmagnetic, and possesses a
cubic crystal structure. Information concerning
the band structure of Re03 at the Fermi level has
been provided by the de Haas-van Alphen (dHvA)

measurements of Marcus, ' the magnetothermal


