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A general method is presented for obtaining the electrostatic contributions to the first-,
second-, and third-order Brugger-type elastic constants of metallic and ionic structures. The
electrostatic energy per unit initial volume of a homogeneously deformed lattice is determined
by the Ewald—Fuchs method. General equations for the Brugger elastic constants are found
by taking Lagrangian strain derivatives of this energy expression. Internal-strain contributions,
which occur for nonprimitive structures, have been included. Results are tabulated for six

metallic and five ionic structures.

I. INTRODUCTION

Electrostatic contributions can be an important
part of any model calculation of elastic constants.
Since these contributions are constant for a given
structure, it seems appropriate to calculate and
tabulate them for various ionic and metallic struc-
tures. General expressions, which are valid for
any crystalline structure, are presented for the
electrostatic contribution to the Brugger-type
elastic constants, Also given are general ex-
pressions for electrostatic internal-strain deriva-
tives, from which the internal-strain contribu-
tion to the Brugger-type elastic constants can be
obtained. Specific results are tabulated for six
metallic and five ionic structures. Whereas some

of these tabulated results have been reported
elsewhere, this paper serves to increase the ac-
curacy of earlier work, as well as unify all re-
sults,

For metallic structures, the first important
results were those of Fuchs. 2 He calculated the
two Fuchs-~type second-order elastic shear con-
stants for bcc and fcc metals. By extending
Fuchs’s method, Cousins® obtained the second-
and third-order shear constants for bcc and fcc
metals. More recently, Cousins®® calculated the
first-, second-, and third-order elastic con-
stants of hcp metals for various ¢/a ratios. In-
stead of calculating the Fuchs-type elastic con-
stants, which are linear combinations of the Brug-
ger elastic constants, Suzuki et al.® directly cal-
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culated the electrostatic contributions to the
second- and third-order Brugger elastic constants
of bcc metals, For ionic structures, Ghate’ has
calculated the electrostatic contributions to the
third-order Brugger elastic constants for NaCl-
and CsCl-type structures, and Blackman® has
calculated the second-order electrostatic contri-
butions, including internal strains, for the zinc-
blende structure. In addition to a recalculation
of the results cited above, the new results tabu-
lated in this paper are the first-, second-, and
third-order elastic constants of the wurtzite,
WC-type, diamond, simple cubic, and simple
hexagonal structures; the third-order elastic
constants of zinc blende; and the internal-strain
derivatives, through third order, for the zinc-
blende, diamond, hcp, WC-type, and wurtzite
structures.

The Ewald- Fuchs method for determining the
electrostatic energy will be discussed in Sec, II.
General expressions® for the Brugger-type elas-
tic constants and tabular results will be presented
in Sec, I, An explanation of internal strains and
their contributions to the elastic constants will
follow in Sec, IV.

II. EWALD-FUCHS METHOD

The electrostatic energy, per unit initial vol-
ume, of a homogeneously deformed lattice of ions

is
, zze2>1 v (3,8,
U“'(zszox s ,‘E (Tﬁ'(.ﬁﬁu)l) ' )

Q is the volume per ion of the undeformed state,
e the electronic charge, and s the number of ions
per unit cell. The summations over / and v, u
(v, u=0,1,,..,s-1)are sums over the Bravais
lattice and unit cell, respectively. The prime on
the summation means the /=0, v=p term is ex-
cluded from the sum. R(’%) is defined as

R(5)=[RO+F70)]- [Be)+ 7)), (@)

R(I=R()-R

where R(l) is a Bravais lattice vector and 7(v) is
the basis vector of the vth ion in the unit cell,
Throughout this paper, primed quantities, such
as R’ (1%), will refer to the deformed state. 3,
is the sign of the ionic charge, i.e., the charge
of the vthion is 3,Ze. The parameter A is in-
troduced in Eq. (1) to make the summand di-
mensionless, Different choices for the value of
A will be discussed later.

For a given crystal structure the summation in
Eq. (1) can be readily performed, but the con-
vergence is extremely slow. A useful technique
for more rapid convergence is the method orig-
inally devised by Ewald'® for ionic lattices and
extended to metals by Fuchs.!' The following is

T exp[-
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a brief description of the Ewald—Fuchs method.
Using the definition of the I' function, one has

1/x"=[1/T(n)] [" dtt™te™ 3)

By splitting the integral into two parts, one from
0 to 7o and the other from 7o to =, it follows
that

Z; Z I'R”'(:'O)Iz -1/2
p IR“' (16 )\2
Br(10y,2
=g'/? Z' Sz (OWIR"A’('ZV" ) - )
i

c Br(10y 2
. f a4 5 p(ZHEGRINY 6],
1
0

4)

where
®,,(x)= fl” dttm et (5)

The 6-function transformation for a (Bravais) de-
formed lattice is

m|R'(1)+X|2y? ]

-3 _ ’Gl(h)lz
sQO hZ exp[-iG'()-X] exp (_—-—4@2 ) ,

(6)
where the 5’(h) vectors form the reciprocal lat-
tice of the deformed real lattice and Q is the
volume per ion of the deformed state, Using this
transformation and defining a structure factor as

S)(G’I)= (1/S)Ev3've-ia"?' W) , (7)

it can be shown that

Z2 % om|R'(10))2
Ux'1=:290)\ [01/2 S Z 3,3,%., (—‘P&L“)

o™ N
s
Q0 n

)\zlf}"(h)lz)

' 5@ e, (L

- 201/2(3 %) 4 o7t %:— <a>21)] , (8)
0

where
)= (W/$)T,3%,  (9)=(1/s)Z,3,,
and ‘
D:{‘dtt‘a.

It should be noted that, owing to the integral D,
U;; diverges unless the average charge per unit
cell (3) is zero., For ionic structures this is the
case, and Uy, by itself represents the electro-
static energy density. For metallic structures.
(3)#0, and U}, is divergent. However, the elec-
trostatic energy density of metals consists not
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only of Uj,, but also of ion-electron and electron-
electron interactions, to be denoted by Uj, and
Ul,, respectively. For a metal, the jellium
model (a lattice of positive point ions embedded
in a uniform sea of electrons) will be used here.
This is the model used for the electrostatic en-
ergy in the pseudopotential theory of metals, 2
Denoting the uniform electron density by #,
=Z(#)/Q,, it follows that

zée* 1

AQy  SNeey

% 3 3 nyx
% "L.dx IX'—%'(.,:)I

e? 1 f I 22
—_— ARTM d3x’' —=79-——.;——
" 202y sNeon . J ot ly

’ ’
Uje+Uge=~

-xX|
(9)
where N, is the number of unit cells. Changing
variables of integration leads to U{,= - 2U.,,
and then using the I'-function definition, it fol-
lows that'®
ZZ eZ
YR

a (X
U;e*'U;e:_U;e: 01(57)<3>2(1+D).
0
(10)
Thus, the electrostatic energy density Ul for
both metallic and ionic structures may be written

Za ez 1 ’ o ﬁ’ 1012
290) S N

a XSy A2 16'(h)12.)
1 ’ 2
+0 5‘5— ? |S G (h))l ?, (————_471'0'

- 20172 (82) — gt SZ (a}z] ,  (11)

remembering that (3)=0 for ionic structures. The
parameter ¢ is a convergence parameter and is
usually chosen so that the real-lattice and recip-

rocal-lattice sums converge at about the same rate,

However, results are independent of the choice for
o.

There are two choices for the parameter A which
are of particular interest here. For x=(24)!/3,
all the strained-volume dependence of U, is con-
tained in the (1/9¢)!/? factor outside of the square
bracket in Eq. (11), and the square bracket con-
tains only volume-conserving shear dependence.
This choice is convenient for taking Fuchs-type
strain derivatives of U.,. The second choice, and '
the one to be used throughout this paper, is
A= (9)/3. This choice is convenient for differen-
tiating U,, with respect to the Lagrangian strain pa-
rameters,

nij=%(Jkika— ;) , (12)
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where repeated indices are to be summed and 5
is the Kronecker 6. The transformation coeffi-
cients are given by

=2 (13)

where X and X’ are the position vectors of a mate-
rial particle in the initial and deformed states, re-
spectively. Derivatives of Ul, with respect to

7n;; give directly the electrostatic contributions to
the Brugger-type elastic constants, which will be
discussed in Sec. III.

By performing the appropriate lattice and
reciprocal-lattice sums in Eq. (11), the electro-
static energy for any given metallic or ionic struc-
ture can be obtained. For metallic structures,
the electrostatic energy per ion is usually written
in the form

2 2" 2,2
E, (per ion)= QU= a, (%e_) =g (i:) ) , (14)
where a is the lattice constant and 7, is the radius
of the ionic sphere, given by +m3=Q,. Similarly
for ionic structures, the electrostatic energy per
molecule is written

zzez)

a

= aR<Z;ez> , (15)

where R is the nearest-neighbor distance. The «
coefficients entering in Eqs. (14) and (15) are
known as geometric coefficients when referring to
metals, and as Madelung constants when referring
to ionic structures. We have evaluated these co-
efficients for six metallic and five ionic structures
and have listed the results in Table I. For those
structures involving a ¢/a ratio, ‘the evaluations
were performed for the case of ideal close packing
of spheres, i.e., ¢/a=1 for the simple hexagonal
structure, and ¢/ a=V¥ for the hcp and WC-type
structures. For the wurtzite structure, c/a=v¥
and « =, which gives equal bond lengths and bond
angles,

E, (per molecule)=2Q, U, = aa(

III. GENERAL EXPRESSIONS FOR BRUGGER ELASTIC
CONSTANTS

Having determined the electrostatic energy den-
sity of a deformed lattice, one can now calculate
the electrostatic contributions to the elastic con-
stants by the method of homogeneous deformation.
Since internal-strain effects may be treated sep-
arately (see Appendix A), here we will only con-
sider the case of zero internal strain, i.e., w=0,
Internal-strain contributions to the elastic con-
stants will be treated in Sec. IV. The Lagrangian
strain derivatives of UL can be easily performed
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(see Appendix B), thus yielding the electrostatic
Brugger elastic constants

(UL (n, w=0
Cilrreee = (‘“JL_;-)—
n=0

16
OMyj OMpy + « » (16)
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Introducing the dimensionless parameters T = I—i(,',
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8

2/

521/3 and g 520/3G (r)/2m, the expressions for the
first-, second-, and third-order elastic constants

are

2,2
??:——2—4—7—3—{”2 a/s) 23, 3, (210) 7, 7; B,/ (o |F|?)
2‘QO v
+012 I | [X;; P (0™ Tflgl

es

vp

—(2'”0' )Y”k;@*‘l o ﬂlgi

and

@mo)g; 8,00 7|E]2)] - 0 (B2 x, )},

(2707 g, 8, 8581 B, (07 7 |E|2)]

Ciirimn= :T47§ {o¥2(1/s) % 8,5, 20, Ty VRV V¥ @5 2(0m| T |2)

ve

+o7t ?’ | S(g) lz[ X teimn ‘1’0(0-1 7T| g | 2) - (27TU-1>Yijktmn‘I’+1(0'1 ﬂ'g 1 2) +

- (210™)° g, 21881 8mEn B (07 1| € |?)

where
Xi3=0i4 (20)
Xija1=0i505,+ 0,405,400, , (21)

Yim1=8:850r1+8:81015+ 8180 11
+8i81010+ 858011818104, (22)
Xisnimn =045 Xptmn+ 016 Xytmn+ 041 Xjpmn
t8im Xetjn+ 0inXpyjm »  (23)
Yijkzmn=gingkzmn+gigk Xitmn+ &i &1 Xiemnt &1 &m Xt in
+ 81 8nXpiym + 818k Xitmn+ 83181 Xiwmn+ &5 &m Xntin

+818n Xntim*+ 8o &1 Xiymn + €2 &m Xisin+ & 8n Xisim

+818nXijint &18n Xisrm* 8m&nXigny» (24)

and
Zirimn=81 8y (Yetmn = 82 818mm) +&r &1 (Ymnij —Zm&dis)
+8m8n (Yilkt‘gigj5m) . (25)

It is easily seen that the coefficients X;...,
Yiip1e.., and Z; 4., and thus the elastic constants
Cij..., satisfy Cauchy relations, i.e., the order-
ing of the subscripts is immaterial. Therefore,
in general, all tl:e elastic constants (through third
order) can be obtained from only two types of first-
order constants C;; and C%; four types of second-
order constants C;i,, Ciissy CHm, and Cifsyx;
and seven types of third-order constants C3%};;,;,

’ -~
1jkt = W{ollz (1/s) 2 3v3u(2770)z7’i"’ﬂ’k7’1‘1’+3/2(Uﬂlrlz +012 |S(g' [ jrz ®o(0” n’g[

o8 X},

-1
o <3>2X£Jklmn}9

(17)

(18)

(2710'-1)2 Zijklmn ‘1’+z(0'1 m l é | 2)

(19)

C;?IIJJ’ C;:J’JKK’ C.’}SJJJJK’ C;sJJKKK! C;?IIJK:
and C%;,,x, where the subscripts run from 1 to 3
with 7#J#K. For these types, the elastic con-
stants with Cauchy relations have been listed in

Table II.

In that table, as well as the remainder

of this paper, Voigt (reduced) notation is used for
the subscripts whenever referring to specific

TABLE I.

Geometric coefficients for six metallic

structures and Madelung constants for five ionic struc-

tures.

For metals,

the electrostatic energy per ion is

0,(Z%%/a) = a¢(Z%*/27,), where a is the lattice constant
For the ionic
structures, the electrostatic energy per molecule is
0,(Z%?%/a) = agy(Z%*/R), where R is the nearest-neighbor

and 7, is the radius of the ionic sphere.

distance.

Metallic 04 oy
simple cubic —1.4186487397 —1.7601188842
fee —2.2924310371  —1.791 7472304
bece —1.8196167248 —1.7918585114
diamond —2.6933990221 -—1,6708514055
simple hexagonsl —1.4978559763 —1,.7713894740
hep —1.6209293075 —1.7916762409

Ionic a, op
NaCl type —3.4951291893 - 1,747 5645946
CsCl type —2.0353615095 —1.7626747731
zinc blende —3.7829261041 —1.6380550534
WC type —-1.2355856381 —1.2355856381
wurtzite —2.6802669939 —1.6413216274
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TABLE II. General Cauchy relations for first-, second-, and third-order elastic constants. Also listed are co-
efficients used in the general expressions for the elastic constants.

Types Elastic constants with Cauchy relations
ijklmn Cij... Xij... Yijpr... Z ijnimn

First order
/g Cy, Cy, Cg 1
JK Cy, Cs, Cq 0

Second order

biiig Cii» Ca, Cys 3 6g?
JJ C12=Cqg, C13=Cp5, Co3=Cyy 1 gt+g}
JJJK Ci5, C1g, Cays Cag, Caqy Css 0 3gs8x1
IJK C14=Cs6, Cy5=Cyg, C36=Cys 0 gr8x
Third order
i Ci11, Cagg, Cass 15 45g% 15g%
mgJ C112=C1gg, C113=C1s5, C1g2=Caee 3 6g%+3g} &1+6gfg}
C133=Cgs5, Ca23=Cayss Ca33=Cayy
IIJJKK C123=C144=C255 =C366 =Cys6 1 gitgl+ah gtel+glgh+ab et
JIJIIK Ci155 Ci16s C2245 Ca26s C334> C3ss 0 15g,8¢ 10g% gx
JIJKKK C126=Cegg6, C135=Css55 Ca34=Cuyyy Y 9gs8x 3gs8x(e} +gh)
HJK C114=C156, C225=Casg, C336=Css5 0 3gs8k 62} grgx
11JJJK C125=C146=Cs66) C124=Ca56=Cgs 0 3878k 2s8xBgi+g%)
C134=C356=Cys5; C136=C145 =Css¢
C235=C346 =Cus55 Ca36=Cas5=Cuyss
elastic constants. For convenience, the X,,.., are listed in Table III in units of Z%¢?/a*, where
Yisp1e.., and Zyg;p,, coefficients, which are used a is the lattice parameter.
in Egs. (17)-(19) to determine Cij..., have also Four hexagonal structures, namely simple hex-
been listed. agonal, hcp, WC type, and wurtzite, have also been
Calculations have been completed for seven cubic considered. For these structures, the elastic
structures, namely simple cubic, fcc, bcc, NaCl constants with Cauchy relations are

type, CsCl type, diamond, and zinc blende. The
first-, second-, and third-order elastic constants
with Cauchy relations for these structures are and

Ci; Ciuy C1p=Cy; Cin1, Caz, Ci2=Cree=% (~2C113+ 3Cass),
and

Ci, C3; Cyu, Cag, C13=Cee=3C1y, C13=Cus;

= Cage=L(3Cs11 — 2Cass) ,
Ci11, C112=Cis5, Cia3=Cus=Cysg - C122= Cass =5 (3C111 = 2Cane)

The electrostatic contributions to these constants Csszs, Ci113="Ciss,

TABLE IIl. Electrostatic Brugger elastic constants for cubic structures. Entries are in units of Z%¢%/a?, where a is
the lattice constant.

simple cubic fee bee NacCl type CsCl type diamond zinc blende

U —1.418648740 —9.169724148 —3.639233450 —13.980516757 —2.035361509 —21.547192177 —15.131704416
Cy 0.472882913 3.056574716  1.213077817 4.660172252 0.678453 836 7.182397 392 5.043 901 472
Cyy =—0.143189083 —6.849873626 —2.697885714 —25.108469175 2.125129382 —23.345777443 —4.053717061
Cyy —0.637729828 —1.159925261 —0.470673868 5.563 976209 —2.080 245446 0.899292633 ~—5.538993678
Cyyy —1.747954699 34.065579503 9.235126065 164.229593204 —16.226944863 119.055300863 17.207017149
Cyp 1.231950057 0.091894314  2.127151252 —19.343623 664 2.800648978 —1.163206824 1.530784 079
Cis 0.724749027 5.615837678 —1.900933165 10.867 366283 4,799929272 -2.170049518 24.633400 230
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TABLE IV. Electrostatic Brtigger elastic constants for hexagonal structures with ideal structure parameters. Entries
are in units of Zzez/a“, where a is the lattice constant.

simple hexagonal _hep 5 WC type_ wurtzite

(c/a=1) (C/a=\/;) (c/a =J§:) (c/a=]75, u=%

U -1,729575102 —2.292340210 -0.873690983 -3.790 469934
Cy 0.533 603 351 0,764 635593 -0.577163952 1.237 266 468
Cs 0.662 368 399 0.763069 024 2.028018 888 1.315 936 998
Ciy -0.605973 676 -1,288353922 2.966 252428 - 2.637 875499
Cs3 ~0.401414 892 -1,137003974 ~1.637033899 - 3.558 546 850
Cy -0.201991 225 —0.429451 308 0.988750 809 —0.879291-833
Cys3 -0.792 845153 ~0,.576101 549 —2.223511382 ~0.194632072
Cin 2.324128 642 5.026 701 204 —-15.767553741 12.580 565 280
Cygg -0.532222756 2.217541686 ~19,.362925160 2.779 206 544
Css3 -~0.708777 482 5.511 268055 2.608 789547 26.442 451 932
Cio ~1.248985111 -0.680155470 -5.310733599 ~3.364702185
Cio9 1.607 366 288 2.129004048 -1.715362181 6.436 656 550
. Cuis 1.954 724 848 2.095223 879 6.247025199 3.973514.399
Cias 0.651 574949 0.698407 960 2.082341733 1.324 504 800
Cys3 1.357 925970 0.086 875908 2.788189975 - 4,324 858 840

Ci23=Ci4s = C366= Cy56=5Cr13, Cua3=Caus -

Electrostatic contributions to these elastic con-
stants for ideal structure parameters are listed in
Table IV in units of Z 2¢%/4*. For all the hexagonal
structures, our choice of Cartesian axes (in Mil-
ler -Bravais indices) has been 1 axis=[1010]; 2
axis=[1210]; and 3 axis=[0001]. It should be
mentioned that, for the hcp structure, Cousins®
has chosen basal axes rotated 90° with respect
to ours. Thus, his C,y; corresponds to our Cy,,
etc. However, our choice of axes is consistent
with the only two sets of measured third-order
elastic constants for hcp metals.***3 Also the dif
ferent choice of axes eliminates the discrepancy,
noted by Naimon et al.,® in certain Fuchs’s con-
stants calculated by Cousins.*

The results presented in Tables III and IV rep-
resent a higher degree of accuracy than those of
earlier calculations. However, our results are
essentially in agreement with those reported ear-
lier (fcc, %° bee,-3+%° NaCl and CsCl,” zinc
blende,® and hcp®). Also, all results were checked
independently by doing a Fuchs-type calculation for
each structure [Eq. (11) with x=(24)**]. Other
useful checks are the relations

::z = Uses) C:?,u‘ 3U,,, C::Hkk= -15U,,,

where, as usual, repeated indices are to be sum-
med. These can be easily derived, for example,
by relating Fuchs and Brugger constants. All
calculations were performed on IBM 360 and
Xerox Sigma 5 computers. Convergence of all
sums was such that the maximum error in the
tabulated constants was +1x 102, The subroutine

for the complementary error function, necessary
to generate the ¢ _,,, functions, was from an IBM
routine with a relative error of less than 4x 106,

IV. GENERAL EXPRESSIONS FOR INTERNAL-STRAIN
DERIVATIVES

In order to obtain the internal-strain contribu-
tion to the elastic constants, it is sufficient to
know the energy density of the homogeneously de-
formed lattice as a function of both external and
internal strains (see Appendix A). However, since
the internal strains are determined from the total
energy density, the electrostatic internal-strain
contribution to the elastic constants cannot be ob-
tained directly. It is still possible, though, to de-
termine electrostatic internal-strain derivatives
of the form

(VD) (HQ)eee
U‘lh""

( " Ul ) ,
8w, (V)0w (1) * = * 8My;8Mpgen. [3e0, Fuo
(26)

where \%(u) is the internal strain associated with
the vth ion of the unit ccll (v=0, 1,--.,s-1).
These derivatives would be combined with those
arising from other terms of the energy density,
thus resulting in the total internal-strain contri-
bution to the elastic constants.

Using the method of homogeneous deformation,
«derivatives of Ul,(n, W(r)) can be easily performed
(see Appendix B). Introducing the dimensionless
parameter t=[T(v) - T(1)]/Q4/3, as well as
T=R(!%)/0l/3 and g= Q/3G(k)/2n, the expressions
for the electrostatic internal-strain derivatives
through third-order are
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Z%e? 2% - ’ - g g |-
Qé’aU“’”=—-2—Qé73————" [ot/2 25 3“(21ro)1’,<1>+1,2(o'7r|r|2)+2h Imk €,v) @m0™ ) g, &, (™ 7|g|2)], 27

S lLu#y

VA
o2 e 3y {2 2 3,(@2m0)? 7717 By (0| F(?)

91/3
ZQ Tu#v

+Zh; IMKE,v) [(2707) g, X iy B0 7|E [2) - (2707 g, 8,8, 8,07 7 |E|2)]} , (28)

Z%e? 23
L {ot2 20 3,[(270)2r, 7, ®,5,, (0| F|?) - (210) 8,,®,1,2 (07| T|2)]

93/3 U(VP)(vw: 73
28, S Lu#v

—02 [Rex(@,v)-3,/s] @m0 ) £,8,%, (0 7|g]%)},  (29)

~Z%¢% 23,3 - -
QU = @iyt 0= S SRk {02 L [@10) 1y @aa2 07 [F]?) - (270) 8,020y (0w [F[ )]
-0 2 (1/s)cos@ng -T) @m0 g8, Bol0™ 7|E]2)},  (30)
h
Z%e? 2
Qfui=-- A a" {02 22 3, (210) ViV V¥ B, (0| T]2)
0 Tu#y

’ - - - - - - -
+ ? Imk (@, v) [(2107) 8, Xopign Bol0™ 7|E[2) = § @70 V8o (Yepisns — lg|2x, Xepizm) 8107 7| [2).

+(2107)° 2, 818;8,8: 85(07 7| |H)]} (31)
Ry o - EZS-;:}; 23, {ot/? l:::v 3, (@10 v, 7 778,55 (07 |F|2) = 210)2 8,7, 7, @ +:,,z.(cm|r|
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Q213 UEp W) - QRIS e o) 2%%% 23,3, ALY t 2 [@n0Yr,r, 717;8,5,5 (0 |F|?)
(2770) Opq¥17; @ 4.3/2(07T|1‘| 2770)(5;,4 af +5p/5q1) +1/2 (0W|F|z)]

- ? (1/3)005(2”§'-{)[(2770.1)2 (Ypats - 5»«6’18})%(0'1”!5]2)— (2770-1)3gpgag1g1¢1(‘7-1 Wl§|a)]} ,
(33)

-Z%e% 2 -
QOU(upuvq)(um): s ady { 1/2 E 3 [(2110)31',7 Vo <I>,,5,2(o1r|r| 2770)2 Xppam Ba3/2 (0‘”11‘12)]
0

-o? ? Imk(@,v)(2107) g, g,8, B0 7[E]D)},  (34)

Z:e® 23,3 z
QUUP R Em __ o U(“”("q)(ym)=w _3;_{& {2 ? [@70)® 7p1'qrm<l>+5/z(o1r'r!2)

= 270)%7 y Xppam @ oz 2 (07| F[2)] = 02 ?' (1/s)sin(21r§-{)(Zﬂc'l)ag,gqgméo(o'lﬂléla)} ,  (35)

and
QU mIEm _g (36)
I
where v # u #¢ and for any pomt-group operation (e.g., U ‘}"’*
G.v)=8G) ST | 37 =R, 8,8, U%®, where ®is a point-group sym-
k(G,v)=5G)e 87) metry element). However, for those space-group
These internal-strain derivatives are similar to operations which contain a rigid translation, e.g.,

elastic constants in that they transform as tensors screw axes or glide planes, the unit-cell label v
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also may change. An important consequence of
this is that U, and thus the internal-strain
parameter

Am,-(u):(ﬁ_ﬁ_,__(l}))

My

need not have the same symmetry as the piezoelec-
tric tensor. An example of this is seen later when
considering the wurtzite structure. Also, it is
easily seen that these electrostatic derivatives
obey the following relations: UM%, U %,

U, and U@ %0 tm satisty Cauchy relations
in that the Cartesian indices can be arranged in
any order (e.g., U’ =UY?); and UM “? is
symmetric with respect to the interchances p~—gq
and 7+ j.

Because the energy density depends on relative
interlattice displacements, only s —1of the s in-
ternal strains W(v) are independent.'? Thus, one
may choose any independent set of internal strains
v (a =1,...,s—1), which are linear combinations
of the W(v),

- -1 e

W= 2sa,, W) .

v=0

2

= 0, w=0

Then, derivatives are related by
LR 8
dw() h%ewe -

Internal strains only occur in nonprimitive lat-
tices with ions not at centers of symmetry. Thus,
of the 11 structures considered earlier, only five
(diamond, zinc blende, hcp, WC, and wurtzite)
can have an internal-strain contribution to the
elastic constants. Because the diamond and zinc-
blende lattices differ only in the sign of the ionic
charges, they may be considered together. The
same applies for the hcp and WC lattices. How-
ever, since the wurtzite structure consists of two
interpenetrating hcp sublattices, the hep and WC
structures can be obtained from wurtzite by a
suitable choice of charges. Thus, it is convenient
to consider hcp and WC with wurtzite.

The zinc-blende and diamond structures have a
fce Bravais lattice with basis vectors 7(0)=(0, 0, 0)
and 7(1)=(a)1,1,1). To form the two structures,
the signs of the charges in the unit cell are chosen
as 3,=+1 and 3,=-1(+1) for the ionic zinc-blende
(metallic diamond) structure. For structures with
two ions per unit cell, there is only one indepen-
dent internal strain. Here it has been chosen as

W=[m1)-w0)]/Ga),

and thus

T S R G
w, ow,(1)  *%ow,(0)

[+
)

FULLER, JR.
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Then, the independent electrostatic internal-strain
derivatives for zinc blende with Cauchy relations
are

U}=-10.057668147,
Ul=-4,188790205, Ui'=10.062167052,
U =19, 202879707, UZ =14, 250957256,
Ul =Ul=Uls=16.762780245 ,

Ui=0.819616921,

in units of Z2¢%/ at. (The notation used here is that
of Appendix A, with Voigt notation used for all
subscripts.) Since the electrostatic internal-strain
derivatives are proportional to 3q3; for structures
with two ions per unit cell, the results for the «
diamond structure are negative those of zinc
blende.

The hep, WC, and wurtzite structures have a
simple hexagonal Bravais lattice with basis vec-
tors

7(0)= (0,0,0),
7(2)=(0, 0, uc),

7(1)=(a/V3,0,30¢) ,
7(3)=(a/V3,0,[u+3]c)

referred to the Cartesian axes. The three struc-
tures can be formed by choosing the signs of the
charges in the unit cell as follows: For metallic
hep (ionic WC) 3o=+1, 3,=+1(-1), and 3,=33=0;
and for ionic wurtzite 39=3,=+1 and 3,=35=-1.
The three independent internal strains will be
taken as

wl=[W@1)-w(0)]/L, W=[W@)-%@2)]/L,

and

W= [W@)-wOVL,
where L=%av3. The internal strains w' and w2
represent the interlattice displacement in the two
hep sublattices, while w° is an interlattice dis-
placement between the two hcp sublattices. Then,
internal-strain derivatives are taken according to

st -(me) w0
(M)

It is_gasily seen that derivatives with respect to %2
and w° are zero for hcp and WC, since internal-
strain derivatives with respect to w(v) are propor-
tional to &,. Therefore, for these two structures,
the internal-strain label will be omitted and under-
stood to be a=1, The electrostatic internal-strain
derivatives for ideal hcp with Cauchy relations are

and
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Ui=0.212757375

U't=0. 215120910 ,

U= 4. 282147161 |

U= -1.206443870,  US® = - 10. 800694409 ,
=0.014231968 , U= -5.520141607 ,
= 3(UT* - U3l)= - 0. 066962980 ,

.Uu =0, 010837123 ,

Ubp= Udg= — 2 UL = - 0. 006502274 ,

Uly= U%= — £ Ui, = - 0. 002167425 ,

Uis= - U= Uls= - 1. 072456573

U3'=0.148157929 ,
Us'=-1.237994447 ,
U= - 5,305020698 ,

in units of Z%?%/a*. As was the case for the dia-
mond and zinc-blende structures, the results for
the WC-type structure are negative those of hcp.
For the wurtzite structure, all three internal
strains must be considered. Instead of using the
internal-strain labels @, B,... on Uf*’"" when
writing specific derivatives, it is convement to
use commas to separate differentiations with re-
spect to the three different internal strains. Then

n
Uf}..,q...,,,....=< _ _ ) Ué"a
awp. 0w BwWp

The indices before the first comma represent de-
rivatives with respect to Cartesian components of
w*; those between commas represent derivatives
with respectto components of %2, and those after
the second comma represent derivatives with re-
spect to components of 0>, For example,

3
phe1s ( 8" U >
9w 9w W3 /=g, Fa=0

and
3
Us,x,x_( 8°Uqs )
=\s=ro=te=3). . -
dw3 w7 dwWi /50, Fa=0

Then, the electrostatic internal-strain derivatives
for ideal wurtzite with Cauchy relations are

Ud=- 2U% =20"%= - 0. 048542322 ,
Upl=—-2Ui=2u3"

=Ujd=- 20U = 203 = 3. 425042335
Uy®=- 203" =2U3%= - 6. 704457705
Uy =Uj' = - 2,335388332 ,
Urtt=—2ptt=200= — 6. 130547391

Ut = gt =~ 2, 850152786 , UMt
UrB-_2p%3=-2033%= _ 6, 588461139 ,
U = 320, 987916591 , U3 =6. 971628768 ,

KU ')%o, Fas0

'=-1.129619894 ,

U,,333= _2U333,, ZU,333,__2U33,,3 2U’33 »3

___2[[3:,33 ZU,S 188 _ 2U1,113=4U113,,

=4 Mo g pttedo g Uil _gqpptls8
-4 U,ls 1 =4 Ua,,n 4 Ul,.13= -4 U,s.n
-4U113=179, 550922034 ,
U3 o g3 o 33 _ g il _ g s,

=9 Ua,ll, =2 Ul,ls, =92 U1,1,3= 2 U3,1,1
=20"%=13, 883995989 ,

yitte - gt 2 27 750835335
gtz gethlo _ptello _ppebto 28, 957279205
Uit = U3t = 14, 882310616 , Ui'''=0.659437674 ,
Uptt=—2vU}t =205 = 29, 736157294
Uil = U3t = 3. 060668348 , Uj'''=-0.533267371 ,
Uyt=-2Uy't=2U;"" =5, 825020837 ,
Ut = Uttt = - 3.692215035 , ULl =5.521929167
Uptt=-20U5 =203 = — 4. 908441176 ,
UB» =U3® = - 7.530284412 , U= -2 579319495 ,
UpS=-2v0d3=20;>3= - 4, 450527428 ,
U = U5 =10.120985868 , U§'™ = — 29. 699504851 ,
Uy¥=- 203 %=2U3>%= 41, 843360553 ,

U2 = Uy =~ 4.680131626 ,
U%% = Uy® = — 1. 449699601 |
UyP=-2upi=-2up?

=2U#%=2U;>2=1. 680019963 ,

U = Uyt = 3(Ui" - U3')=5. 910821134 ,

Ug? =UbY = 3(U" - Uy™')=0. 596352523

Uptt=-2Ug%= - 20U = 2U3" 2= 2 U®!

=3(Uyt - Uy)= 11, 955568228 ,
U},l" - U%u, __ Ué,,1= -t st,, = -Ups
=-Up?= - U= - U= - U;*1 = 6. 812479538

Uij’ = Ui}’ = 13. 8998721705 ,

Usy' = Usy' = Uy’ = Use' = — $U}{" = — 8. 339923623 ,
Uly'=Uly = Uy = Uil = — $ Uj{’ = — 2.779974541 ,
Ul =Uiy == Uly=- Uy = Uly = Ujd = 0. 557043495
Ujst=-2Uly =203

=Uji*=-2U}'=2Uj} = - 12. 050251035 ,

Us'=-2Uz =2Us = Usy' = - 2Usg’ = 2 Uje’
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=Uj’=-2U8y =201} = U= - 2Ugy
=2U =5 Ujs' = - 4. 016750345
Upl=-2U%y = 2Usy = U= - 2UYy = 2033 = U3°
=-2Udy =2U;3 = - 1. 058210294 ,
U= - 2U3y = 2U33 = 35. 638709114

in units of Z%?%/a".

The space group of wurtzite contains a screw
axis (a twofold rotation about the three axis and a
translation by 3c). For this symmetry element,
the internal-strain tensors U"’” transform as

(vp) v prlug)eee
U —(P‘pq"'(Rik(Ru Upil.. ’

where ® is the twofold rotation matrix. As a re-
sult of the translation, the unit-cell labels (K- v)
change according to 0-1,1-0,2- 3, and 3- 2.
For example, this symmetry requires that

U= Ui and UEV= -

Thus, Ul =LU{* and U= LUBY are not required
to vanish. However, Uyl= L[U{#; U{*"]is required
to be zero. It should be noted that if the components
of a tensor are unaffected by the translation, then
any component with an odd number of 1’s or 2’s,
but not both, is required to vanish (e.g., the 111
component of the piezoelectric tensor).

(31)
Uy |
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APPENDIX A: INTERNAL-STRAIN CONTRIBUTION TO
BRUGGER-TYPE ELASTIC CONSTANTS

For nonprimitive lattices with ions not at cen-
ters of symmetry, macroscopic strains in general
give rise to internal strains, i.e., interlattice dis-
placements. With s ions per unit cell, only s -1
internal strains are independent.'” For convenience,
they will be labeled here as W*, where a=1,2,...,
s —1. These internal strains, which are functions
of the external strain 7;;, are determined by re-
quiring that the total energy den51ty of the homo-
geneously deformed state, U(7,W*), be a minimum
with respect to W% , l.e.,

U
(aw:‘

) =0 (p=1,2,9) . (A1)

Denoting derivatives of U(7,%%) by

()= ( 8" U
BT

« 959y, -

apBgeee
Ulijetees

- ?
">E=W(‘ﬁ)

(A2)
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the strain dependence of %‘" can be determined by
differentiating Eq. (Al) with respect to n;;. Thus,

9 U 9

0= — =
omy; owh T~ amy,

Bw;
817“

(UP)= UG U (A3)

and

b park
b
2 Uyi

317)“
Uk =
( 9Myy

0= ?
37]1] My ankl H

+

8w
My

—a
ow,

i 2 ——r_ pebbarr 9% we Untpﬂe ,
87]“

Ad)
97397k; (

where repeated indices (including superscripts) are
to be summed.

In general, wj canbe expanded in a Taylor series
Of 7711 ’

Wy'= Ay Ny +3Boigpa My Mag++ 0+ (A5)
where the coefficients
aw?

TE 2 (A6)

Y (9’711 ) 0
and

9% w?
T AT
piikt <8nuankx )‘ﬁ=o (

are determined from Eqgs. (A3) and (A4), respec-
tively. Higher-order coefficients are similarly ob-
tained by successive differentiation. However,
knowing U as a function of we and 7, only the in-
ternal-strain parameters A};; are needed to obtain
B3y and all higher-order coefficients, e.g., Eq.
(Ad) relates B;j;,; to the coefficients Aj;; and de-
rivatives of U.

Using the definition of the Brugger elastic con-
stants, 18

"U(n ,w*(M)) )
Cc (_..__.._____.__ (A8
tktee 87 :3509Mp; ** S0 )
and Egs. (A1), (A3), and (A4), it follows that
Ccy=Ciy , (A9)
Cipni=Cipmi—Agi Al U (T =0) (A10)

and

Ciirimn = Cljklmn +A,” lmn (T =0)+Ap U?jpmn T =0)
+ A Uihy (T =0) +Agy A ann USF™ (T = 0)

+A:i! qanaqu(n _0)+Ap{qukl U:I:Bq(.ﬁ‘=o)

+ Ay A Al U (T =0) ,  (A11)
where
- 0"U(m,W*=0)
Cioteen=Uijppn(M =0)= ( : .
ikl ijrl (m M1y 87Tay oon =
(A12)
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Thus, the internal-strain contributions to the elastic
constants can be considered separately, and the
C{9),... are the Brugger elastic constants in the ab-
sence of internal strains.

To illustrate the use of these equations, specific.
results for several structures are given below.
Voigt (reduced) notation is used for all subscripts.
Also, for those structures with two ions per unit cell
and thus only one independent internal strain, the
superscript a=1 is omitted.

For the zinc-blende (or diamond) structure, Egs.
(A10) and (A11) reduce to

C,=CY, Cu=CQ - UM 2
Ci11=CH), Ci1p=C8), Cips= Cl(g; )
Ciu=C8 - 2Ut, A U A%,

Ciss=Ci5s— 2U3 A+ U5 A? |
Cyise=CoA-3UL A+ 3UB A2 U3 A° |

_ 0
CIZ - ClZ ’

where the internal-strain parameter, as de-
termined from Eq. (A3) is

= —Ui - = dw, _  Ows

TUY 7T amy  8my 07y
The results for the hcp (or WC) structure are

C =C-UMA%, Cp=CP+U"A%,

Cis=Ci3, Cy3= csY, Cu=CY;

Cin= Cl(?i+ 3U§1A+3Ui1‘42+ pii 43 ’

Cin=C8) - QUL+ UL) A= QU - U A2 - UM A% |

Cazn=Cioy— 3Up A+3U3' A2 - UM A°

Ci13=C8+2U, A+ U A%,

Cros=Cigy— 2Up A- U3 A%
Ciyy= Cf31+ Uio‘A: Cis5= CI«S)S) - U;4A s

Cigs= Cfg;, Cygz= C;g% ’ C3yy= Cégi ’
where
A=—£1ir= oW,y __ W, - By
U M Mg M1z

For the wurtzite structure, which has three in-
dependent internal strains, complete results will
not be given. However, we will indicate how the
internal-strain parameters are obtained from Eq.
(A3) for this structure. Since U**™ is nonzero
only if p=¢, Eq. (A3) becomes

apBp Ao _ P
i U™ Agyy == Uy

a=1

where there are no implied sums over repeated in-
dices. Then

3
Al =— BZ:I (‘u-x)ﬂpap U,-ﬂf ,

3619

where
Uiste pis2e  priese

apbp _ Ulpzp U21>2p Uaﬁxp

u
U1P3P U2ﬁ3P U3}3P

APPENDIX B. METHOD OF HOMOGENEOUS
DEFORMATION

For a homogeneous deformation of a lattice,
i.e., a deformation where the resulting structure
remains a perfect lattice, the lattice vectors and
basis vectors deform according to

Ri(1)=d,; R,(1) (B1)
and

TiW)=d; 7,0)+w; ), (B2)
respectively. Or equivalently,

RGO =d,R,()+w, ) (B3)

where w(v) is the internal strain or interlattice
displacement of the vth sublattice. Asiscommonly
done, the internal-strain vector is redefined as!

E)i(V)zJ” WJ(V), (B4)

so that the strain energy is in a form invariant
with respect torigidrotations. Then the lattice vec-
tors R(?) deform according to

RiGE)=di R+ (T D)5 w0 m) (B5)
where
wywp)=w, ) —wy(u) . (B6)

Since the deformed reciprocal lattice is the recip-
rocal lattice of the deformed real lattice, the re-
ciprocal-lattice vectors deform according to

Gi(m)=(T);; G5(n) . (B7)
Volumes deform according to
Qb /Qp=det|J| . (B8)

In the expression for U, [Eq. (11)] the only
variables which depend on deformation are |R’ (l’,ﬂ NE,
IG'(R)1%, ©Qp, and S'(G'), the last of which is a
function of G'(%#)-7'(v). Using the definition of the
Langrangian strain parameter 7;;, it is easily
shown that

‘ﬁ'(f,ﬂ)‘ 2:MHRi(llig)RI(53)+ZE){(V“)Ri(L3)

(MY, weww; ),  (BY)
& )| 2= Y, 6,0 G, () (B10)
and
G (h)-T'0)=GMh) - TW)+ M), m,0)G,(0) ,
(B11)
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where
M3 =2n;+0=dp s . (B12)

Equations (B8)-(B11) can readily be differentiated
with respect to 7,;, by making use of the relations

9
—— (det|J|)=det|J| @17), , (B13)
Mgy
°]
(M;;)=8;0;,+ 64 05 , (B14)
My,

and

AND E. R. NAIMON 6

-2 (M) = (M) (M) + (M) (M)

Mg
(B15)
(Note that functions of 7;; have been symmetrized
before differentiation.!?) Using Eqs. (B8)-(B15)
and the relations

By(x)=e/x, (%)= (1/x)? erfcix'/?),

and

:'d;zéTm(x‘) =8, (x)=8o(x)+ (_m_+lj)c_<1>_m_(x_)

’

it is straightforward to differentiate UL, with re-
spect to 77 and w(v).
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The absorptivity of polycrystalline samples of ReO3 has been measured in the range 0.11 to

2.8 eV using a calorimetric technique.

New structures have been found in the absorptivity,

appearing at about 0.4 and 1.0 eV. The data have been Kramers-Kronig analyzed to obtain the

optical constants.

Band-calculation results of Mattheiss are presented and a tentative identifi-
cation of the origin of the new structures is made.

A comparison of the present data with

those of Feinleib, Scouler, and Ferretti is made.

INTRODUCTION

A variety of studies have recently contributed to
an understanding of the transition-metal oxide
ReQ;. It has been shown that ReQ; is a good elec-

trical conductor, is nonmagnetic, and possesses a
cubic crystal structure, Information concerning
the band structure of ReO; at the Fermi level has
been provided by the de Haas-van Alphen (dHvA)
measurements of Marcus,! the magnetothermal



