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[ey, a.X]= [o.X, py],
where

[ne, yx] = (2n, )-' Z (M„~„.)'"c.",'„„(~~')
gk

and

(ny, px) = —n, ' Z [(u(o,)] '

(s. 12)

(s. is)

the squares of the phonon frequencies. As q -0,
the eigenvalues for the acoustic branches are of
the order q . We need to apply first-order per-
turbation theory to C' ' and second-order pertur-
bation theory to C' '. By comparing the phonon
equations to order q with the equation of elastic
waves, ' we obtain the elastic constants

c.„„=[op, y~]+ [py, o.~] —[p&, oy]+(oy, e.),
(s. 11)

with the equilibrium condition

x [ g gg Isa (/&
~

og)c+2 g~(K K )M+iii]
gIIgllt oiJI

(s. i4)
&u(O~) and ~,(a IO~) denote the frequency and polar-
ization vector of 2th optical mode at q= 0.

When a complex crystal is subjected to a homo-
geneous strain, the sublattices may move rela-
tive to one another. (oy, RA) represents the contri-
bution of such effects to the elastic constant. In

Eq. (S. 14), we have put it in a more explicit
form than Born and Huang.

In simple metals with one atom per unit cell and

conduction electrons nearly free, some of the
terms considered here are not important. For
example, (o'y, RA.) vanishes. We shall see, how-

ever, in the following paper that for an intermetal-
lic compound such as Nb, Sn, careful inclusion of
such terms from a general theory is essential to
an understanding of its lattice dynamics and
crystal instabilities.
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We present a method of calculating electron screening in the tight-binding approximation
and constructing the dynamical matrix for the P-W compounds. We show that, in the cubic
phase, no long-wavelength optical mode is temperature dependent except I'&2 which has a weak
temperature variation. By the method of long waves, we calculate the elastic constants, par-
ticularly c&&

—cf2 as a function of temperature, obtaining a fair agreement with experiment.
We infer that the cubic to tetragonal phase transition is due to the instability of the cfog cf2
shear mode, associated with which is a tetragonal distortion of I'&2 symmetry, in agreement
with the neutron-scattering experiment of Shirane and Axe.

I. INTRODUCTION

A number of intermetallic compounds A3B of
P-tungsten (A-15) structure have very high super-
conducting transition temperatures and undergo
a structural phase transition (from cubic to tetrag-
onal) at low temperatures. These have been the
subject of intensive experimental and theoretical
investigations. '

The feature of interest to us here is the unusual
temperature dependence of the phonon proper-
ties. The temperature dependence of the elastic

constants has been measured for V3 Si, V3 Ge,
and NbsSn. 4' Neutron measurements have re-
cently been carried out for V3 Si and Nb, Sn. '
There also have been several calculations of the
elastic constants ~' and the phonon frequen-
cies '3 '4

In this paper, we show how, given a tight-bind-
ing model for the d electrons, we can calculate
from first principles the phonon spectrum (Sec.
11). In particular, we give a careful treatment
of the screening of the effective ion interaction by
d as well as s electrons, in contrast to previous
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works where this is neglectede "'3'4 or treated
in an inappropriate approximation. '~ We examine
the temperature dependence of the long-wave-
length optical modes in the cubic phase and cal-
culate the temperature dependence of the elastic
constants (Sec. III). In the latter, we include the
effects of sublattice motion which have been
neglected in Refs. 9-11. We conclude that no
long-wavelength optical modes become unstable
on cooling (Sec. IV). The cubic-to-tetragonal phase
transition is due to the c» —c,a shear instability,
which, nevertheless, because of coupling to the
F,z optical mode, can cause a tetragonal distortion
of F» symmetry, as shown to be the case in
Nb38n by neutron scattering. A summary of the
conclusions of this work has been given, '

II. ELECTRON SCREENING

A. Model for Sand Structure

-v/a

Xek

m=0

e=O

I LEVEL

For a calculation of the electron screening, we
need the energy and wave function of the electron.
In the A~ '13 compounds of P-W structure, A atoms
are invariably transition elements. We treat the
d electrons from A atoms in the tight-binding ap-
proximation. '6 The s and P conduction electrons
are treated in the nearly-free-electron approxi-
mation.

The distribution of atoms in a unit cell is de-
picted in Fig. 1. The index ~ is used to label the
atoms in the cell. For the band structure, it is
also convenient to label the atoms by (Xv), where
X is the Cartesian direction and v =+. Thus,
(Xv)= (2+) means atoms m= 3,4, respectively

In the tight-binding approximation used here, '
the bandwidth of the d band is due entirely to the
overlap of nearest neighbors of A atoms, i.e. ,
atoms in the same chain. The d bands are shown
schematically in Fig. 2. The bands are indepen-
dent of components of the wave vector not in the
direction shown. m denotes the magnetic quan-
tum number. The bandwidths are of the order of

FIG. 2. Schematic diagram for the d bands.

S„g=2 Jcos ~ah)„,

where a is the lattice constant.
The associate wave function is given by

g„g(r)= (2') 2 e»"y„(r x,~„), —
lV

(2. 1)

(2. 2)

several eV. The Fermi level lies near (of the or-
der of 10 eV) one of the band edges where the

density of states has a very high peak. This fea-
ture is confirmed by the result of the calculation

by Goldberg and %'cger 6 It was first proposed by
Clogston and Jaccarino'~ to explain the tempera-
ture dependence of the electronic properties.

For simplicity, in this paper, we fake the
Fermi level to be near the bottom of the lower m

=0 band and neglect the other bands. The for-
malism we develop below can be straightforwardly
extended to the other cases. Thus, the d bands

now consist of three sets of m =0 bands given by

t ~

2 ~

~ A

0 Q

I

l
70

I

4)

8 ~ 5

~ 6
y, (r ) = (s'/18m)'~' (3~&—r') e '"

B. Proper Polarization Part

(2. 3)

Consider the proper polarization part in the
random-phase approximation (RPA). It is given
by"

where x»„ is the position of (Xv) atom in the I unit

cell, N is the number of unit cells, and y„(r) is
the m =0 component of the atomic d wave function

in Slater form:

FIG. 1. Arrangement of atoms of an A.38 compound in
the unit cell.
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x (n,„.P,~- n„"„)/(8„."„g- h„2- uP), (2 4) 1 1 ~ 1
~ (2. 12)

and

(G ) g e -( '771„

+„(q+G)= f drIp, (r)I'e-"'"'.

(2. 6)

(2. 7)

The d-electron contribution to the polarization
(2. 4) is thus

}(&(q+G, q+ G') =~.81(q) &1(q, G) &.*(q,G'),
(2. 8)

where

e(q) = n ' Z 2 (n, 2.g- n, 2 )/(8, 2,g- 8,2- (d) .
(2. 8)

Spin degeneracy is understood.
We go a little beyond RPA by excluding from

Eq. (2. 8) the term which corresponds to the in-
teraction term of two d electrons of same spin on
the same atomic site. In this way, we have in-
cluded the most important exchange effect in a
narrow band.

C. Dynamical Matrix

The effective ion-ion interaction depends on the
electronic-density response function'9
}((q+G, q+ G'), given by the matrix equation

X=X+X~X, (2. io)
where ()(q+ G) is the Coulomb interaction.

It is convenient to introduce the inverse di-
electric function & defined by

X=X&- (2. 11)
It also satisfies a matrix equation of the same
form as Eq. (2. 1,0},

where q is the wave vector confined to the first
Brillouin zone, G and G' are the recriprocal-lat-
tice vectors, ~ is the frequency of the distur-
bance (i. e. , phonon wave), and n„2 is the occupa-
tion number. The part in Eq. (2. 4), }(,(q+G,
q+G'), which involves transitions between s, p
bands only is given in the free-electron approx-
imation'8 and are diagonal, i.e. , nonvanishing
only for G= G'. We neglect the transitions be-
tween the s, p bands and the d bands since the ma-
trix elements for these transitions are smaller
than those for the d-d transitions. For the same
reason, the most important d-d transitions are
those between the same d band. The transitions
between different d bands are neglected.

By using the tight-binding wave function (2.2)
and neglecting the smaller overlap terms, we ob-
tain the matrix element

(xkI e "~' ' I)('k+q) = 6» s (G)@„(q+G)

= 6„,.F,(q, C), (2. 6)

where

Since the kernel X has a part X, which is diagonal
and a part X„which is separable, the inversion can
be easily carried out. I The effect of the s, p
electrons is to screen the Coulomb interaction to
become

v, (q+ G) = () (q+ G)/ s, (q+ G),
where

&,(q+ G) = 1 —v (q + 6) X, (q + G, q+ G) .

(2. iS)

(2. 14)

The screening by d electrons is given by &~' de-
fined by

-1 -1 -1 (2. iS)

Z=(1-X)-' . (2. IO)

Substituting the solution for the sum in the square
brackets in Eq. (2. 18) into Eq. (2. 16), we obtain

s, (q+G, q+6 )=6o,o. + Z v, (q+G) 8,(q)E,(q, G)
u, ~

x Z„,(q) F,*.(q, G') . (2. 2O)

Armed with the knowledge of electron screening,
we are now in a position to construct the dynamical
matrix for phonons by using the microscopic the-
ory' (to be referred to as I). From Eq. (12.4),
we have the dynamical matrix as a sum of two

parts. Qne is due to the ion-ion interaction
screened by the s, p electrons~~:

@,s ( . )()(t) (M M )
1/2 g-1+ [&((it+G)'(fz-xzi)

Oa!

x(q +G )(q, +G,, ) V, (q+G; )()(')

—6„„,+„„e'o'"~ *~"' G G ~ V, (G; )()(")],
(2. 21)

where V, (q+ G; )()( ) is the effective ion-ion inter-
action screened by s, p electrons only,

V, (q + G; )()(') = Z„Z„.v (q+ G) + ()(q + G, )() X, (q+ G)

x e,' (q+ G) v(q+ G, )('), (2. 22)

Because of the separable form of Eq. (2. 8),
Eq. (2. 12) for s,' becomes

„2(q +G, q + G ) =6o, o +v, (q+ G)5,e&(q ) &, (q, G)

x Zp" Ff (q, G")e„'(q+ G", q+ G')]. (2. 16)

Let X be the 3 0&3 matrix with elements

X». (q) Q=nEf(q, G)v, (q+G)E;(q, G) 8„.(q) .
(2. 17)

If we multiply Eq. (2. 16) by E~~(q, 6) and sum over
G, we obtain

Z, .(6» -X»)IZ&F.*(q,G).,'(q+G, q+G )]

= Ei (q, G) . (2. 18)
Thus, the inversion of &„ is reduced to the in-

version of the 3&&3 matrix 1-X, giving
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X(r, r"';q)=N ' C, y(r, r' —x, ) e '~'~~ . (2. 2s)

The d-band contribution is of the separable form
in RPA,

~(r, r'; )q=AZ„8( )qF„( qr) Ff(q, r'), (2. 26)

where F„(q, r) is the Fourier transform of F„(q,G)
of Eq. (2. 5)„

F„(q, r)=(2N) ' Z e' '*~~ ~q)&(r-x, N, )~ . (2. 27)
lv

Thus, F„(q,r) is a density wave of d electrons of
wave vector q along the A-atom chains in the X

direction excited by the disturbance. The prob-
ability of such an excitation is measured by 8„(q).

The d-electron screening is measured by
X».(q) in Eq. (2. 17), which can be written

X„„.(q ) = 0 fdr fdr' F„*(q,r) v, (r r')—
xF„,(q, r') e„(q) . (2.aS)

This is read as the interaction of two d-electron
density waves via the Coulomb interaction
screened by the s, P electrons.

Equation (2. 22) can be rewritten

4,(i, ~)=)) dF( ' " ' ))i (q, r)e'~'~,
ex~~

(2. 29)
which is the force on the a ion due to the density
wave along the A-atom chain in the A direction.

Thus, we have given a theory for the d-electron
screening in the tight-binding approximation. Its
application is not limited to the P-W intermetallic
compounds. The philosophy of our method is that
for d electrons, it is not feasible to invert the di-
electric function by a plane-wave expansion and
that it is possible to construct a systematic scheme

v(q+ G; «) being the electron-ion potential. The
other part is the d-electron contribution:

4)d (q' K«t ) (M M )
1/3 Q 1 [efl'()t)) x)) ~ )

"~ &..(q, «) 8,(q)~». (q) c'....(q, «')
)t)te

& ) (o «) 8) (o) &»~ (o) an ~«~ (o, «)1 y
fit e

(2. 23)
where

f ))(q, «) =i ZS e' '
~ (q, + G ) v, (q+ G, «) F«(q, G),

(2. 24)
v, (q+ G, «) being the electron-ion potential screened
by the s,P electrons as in Eq. (2. 13).

We have carried out the above procedure in the
momentum space. We could equally well have done
it in the configuration space, which has the virtue
of being easier to interpret physically. The proper
polarization part due to an electrical disturbance
of wave vector q is

of inversion in terms of the atomic (Wannier)
functions. It is possible to extend the method to
include overlap terms,

III. PHONON FREQUENCIES AT LONG WAVELENGTHS

A. Separation of Long-Range and Short-Range Interaction

We shall now examine the phonon behavior at
long wavelength. To facilitate this, we separate
the long-range and short-range parts of the inter-
actions in the dynamical matrix given by (2. 21)
and (2. 23) as shown in I.

The short-range part of the Coulomb interaction
(and similarly the electron-ion potential) is de-
fined by

8(q+G)=v(q+G) if GWO

=0 if G=O. (s. I)
We also denote the corresponding dielectric func-
tion, electron-density response, etc. , which do
not contain the long-range part v(q) by carets over
the appropriate symbols.

Thus, the d-electron polarization is composed of

X)„.(q ) =x„„.(q )+X'». (q),
where

(3. 2)

x„,, (q) = F„*(q,O) v, (q) F„,(q, O) 8„,(q),
and X„„,(q ) is given by Eq. (2. 17) with v, in place
of v„ i.e. , excluding the G = 0 term. The d-elec-
tron screening matrix is separated as

E= E+ExE,

(3.3)

(s. 4)
where

E= (1-X)
Similarly,

&,))(q, «) =iq, v, (q, K)F))(q O)+ f «(q, «) .

(s. s)

(s.s)
The modified dynamical matrix Eq. (13.I) may

be written in the form of Eq. (I2. I, I,),

C, ~ (q; ««') = (M„M„) '/
Ao (q„q ~ [Z„Z„.v(q)

—v(q, «) v(q, «')/ v(q)1

+ Z (q, «) Z .(q, «') v(q)/ s(q)1

+ C ' .(q; ««') + C ~ (q; ««'), (S. 7)

where C' and C" are short-range counterparts
of Eqs. (2. 21) and (2. 23), respectively, mul-
tjpl, jed by e ~~' «if «ic' .

From Eq. (I2. 12), the effective charge of the
sublattice is given by

Z (q, «) = - iq v (q, «)/v(q) + Z 8&(q) F))(q, 0)
Nle

xz„;(q) jt„(q, «) . (s. s)

The dielectric function e(q) defined in Eq. (I2. 9)
is now

s(q) =1-v(q) X.(q, q)- v(q) X,(q, q), (S.9)
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where, by Eqs. (2. 11) and (2. 20),

x&(q, q)= ~ e~(q)zi(q, o)z~v(q)Fi (q, o) . (3. 10)

Each term in the expression (3. 7) for the mod-
ified dynamical matrix can be expanded in powers
of q.

B. Phonon Frequencies at Zero Wave Vector

At q = 0, we verify from Eq. (3. 8) the general
property that

Z.(0, ~) = 0 . (3. 11)

Therefore, the dynamical matrix is given by the
short-range parts in Eq. (3. 7) and is covariant
under the full symmetry group of the P-W struc-
ture, 22 which is 0'„(Pmsn). The phonon polariza-
tion vectors can be classified by symmetry by the
usual group-theoretic method. They are listed
in Table I. 24 The dynamical matrix is also con-
siderably simplified by symmetry. With the help
of Table I, the eigenvalues are easily obtained.

Consider the d-band contribution to the dy-
namical matrix. From Eq. (2. 9),

e,(o)= e(o) . (3. 12)

=XfP if XIX (s. is)
Hence, the same is true of the d-electron screen-
ing tensor E». and

zll z12 /( X11 + 12) (3. 14)

Strictly speaking, at q= 0, e(0) vanishes for any
finite co. Thus, there is no d-electron contribu-
tion to the zero-wave-vector optical modes,
which, therefore, have no temperature variation
in the harmonic approximation. In the following,
we shall calculate the electronic contribution to
the phonon frequency in the adiabatic approxima-
tion, that is, we put ~ =0 in Eq. (2.9), hence it
follows that e(0) is nonvanishing. There are two
reasons for calculating the zero-wave-vector
phonon frequencies in the adiabatic limit. First,
it may apply to the optical modes with small but
finite q which makes the excitation energy of the
d-electron-hole pair S~l„-- S~; in Eq. (2. 9) much
larger than the phonon frequency &. The wave
vector q has to be sufficiently small so that the
phonon frequency in the adiabatic limit does not
vary greatly from zero wave vector to q. This
will not be true if, for example, q becomes com-
parable with the diameter of the d-electron Fermi
surface in the same direction. Second, the zero-
wave-vector phonons in the adiabatic limit occur
in the elastic-wave coupling to the optical modes
which we shall study in Sec. III C.

By cubic symmetry, the d-electron polariza-
tion X~~.(0) has only two independent components;

Xggi (0 ) = Xgg 1f X = A.

Z„+2Z,~=1/(1 —X~~ —2X,~) .

By putting together the simplified forms of the
quantities given by Eqs. (3.14) and (3. 15) in Eq.
(2. 23), we find that in the d-band contribution to
the dynamical matrix, the only nonzero elements
are

c'„, (o; is) =- e(o) 2(z„-z„)/~„n, ,

C„„(0;12)= —C~„(0;11)= 2C„, (0; 13),
(s. 16)

and the others which can be obtained from these by
symmetry operations of the O„group. The force
constants between two A atoms are nonzero only
for components in the directions of the chains to
which these atoms belong, respectively. There is
no d-band contribution that affects the oscillation
of a B atom.

From Eq. (3. 16) and Table I, we deduce that the
three I'»modes are the acoustic branches with
zero frequency and that no optical modes except
the two I'» modes have d-band contribution. The
square of the frequency of the I"» modes is the sum
of two contributions

&' (f" ) = &, (f' ) + & (1" )

where the d-band contribution

~'„(r„)= 6e(0)9 (z„-z„)/m„n, .

(s. i7)

(3. 18)

TABLE I. Polarization vectors at I". The three
columns under each value of f(: are for the three Cartesian
directions. The vectors are not normalized. For I'f5,
T'25, I'f5, and I'25 which have threefold degeneracies, only
one of the three polarization vectors is given. 8I'f5 I'f 5,

I'25, I"» are not, in general, eigenvectors. A = (Mz/
Mg), B = —3(Mg/Mg)

1 2 3 4 5 6

~r
f 5 100 100 100 100 100' rf5 100 100 100 100 100

"r„200 200 100 100 100

'r»
I'2

I'f5
I'25

100 100 100
100 100 010 010 001
200 200 010 010 001

010 010 001
001 001 010
001 001 OTO

100 AOO

100 BOO

100 000
100

100
001
001
001
OT.O

010

A00
BOO

000
100

The force of q=0 density wave in A atoms along
X direction g„(0, &) as given by Eq. (2. 24) or
(2. 29), acting on the z atom, is nonvanishing only
if the & atom is an A atom in a chain running in a
direction other than X. The forces on the con-
secutive atoms in A.

'
(o X) chain are equal in mag-

nitude and in opposite directions along the A. chain.
Let us put, say,

(s. 15)
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It is easy to see physically the above conclusion
of no d-band contribution to the optical modes ex-
cept I'». From Table I, we see that all modes of
I",5 or I'~5 symmetry involve rigid displacements
of A-atom chains. Such motion cannot excite d
electrons since in the tight-binding approximation
adopted here, the d bands depend only on overlaps
from neighboring sites in the same chain of A
atoms. Modes of I"',

5 and 1'~5 symmetry involve ro-
tation of pairs of A atoms about an axis perpendicu-
lar to the direction of the chain. To first order,
this motion does not change the atomic spacing of
the chain and, therefore, does not excite the d
electrons. Only modes of 12 and I"» symmetry in-
volve oscillations of A atoms against each other in
the same chain, which excite the d electrons. How-

ever, 1"3, being a nondegenerate mode, has cubic
symmetry which makes the d-band contributions
from the chains running in dif fer ent directions can-
cel one another.

Of all the previous theoretical works on the lat-
tice dynamics of A3I3 compounds mentioned in the
Introduction, only that of Klein and Birman» con-
sidered the optical modes. They concluded that
at 0 'K, the I"» and 1"2z modes may become un-
stable for appropriate values of the density of states
because of the overscreening by the d electrons.
These authors started from the microscopic theory
and the tight-binding approximation for the d bands
in much the same way as ours. However, they
used the diagonal approximation (G= G' only) for
the inverse dielectric function. We have shown in
Sec. II that a careful inversion of the dielectric
function gives nondiagonal terms for the d-band
transitions. We believe that the diagonal approx-
imation is inappropriate and that it leads Klein and
Birman to the erroneous conclusion.

In the harmonic approximation, the only tem-
yerature dependence of the phonon frequency is via
the temperature dependence of the electron occupa-
tion in the density response. For the s, P bands,
the temperature dependence of the highly degen-
erate Fermi gas is negligible. For the d bands, be-
cause of the proximity of the Fermi level to the
band edge, the temperature dependence of the elec-
tron polarization, as given by Eq. {2.9), is quite
pronounced. Thus, the d-band contribution to the
phonon frequency is the only source of temperature
variatiop in the harmonic approximation. There-
fore, we conclude that of all the long-wavelength
optical modes, only I'» is temperature dependent.

C. Elastic Constants

We obtain the elastic constants from the sound
velocities determined by the frequencies of the
acoustic modes in the long-wavelength limit, fol-
lowing the procedure in I. We limit the wave vec-
tor q to be sufficiently small compared with the

diameter of the d-electron Fermi surface, such
that a power-series expansion in q is valid. Be-
cause the sound velocity is small compared with
the d-electron Fermi velocity, the adiabatic ap-
proximation is appropriate.

Because of the cubic symmetry, there are only
three independent elastic constants:

Cg] XX) XX + XX)XX

c,2
= 2 [xy, xy] —[yy, xx]+ (xx,yy),

c44 —[XX)yy] + (xy q xy )

(3. 19a)

(3. 19b)

(3.19c)

~ai{V~ x) = fbi (~)+ f4'ii ~aai(x)+ ' ' ' (3. 21)

where summation over repeated Greek indices is
understood. From the considerations in See.
IIIB, we have

&„V:,'(~)=0 . (3. 22)

A similar expansion for the effective charge
Z„(q, x) gives zero values for Z~o~(x), 'which is just
Eq. (3.11), and

Zas (x) = ZK & us —~{0){Eii+ 2Eia) ~ i &ne& (x) ~ (3.23)

where Z„ is the bare ionic charge and E»+2E» is
the d-electron screening of a bulk wave, given by

Eq. (3. 14). Also, from Eq. (3. 10),

g(0, 0) = y, (0)+ 38(0) (Ei i+ 2Eiq) . (3.24)

The short-range parts C' and C" of the dynamical
matrix, by Eq. (I3. 2), can be expressed in terms
of the respective T' and T" matrices as follows:

from Eqs. (I3. 11)-(I3. 14).
The round brackets (o.y, P5) are contributions

from the sublattice movement when the crystal is
subjected to a homogeneous deformation. From
Eq. (I3. 14), they contain terms of the form

go (K (O~) C,"',„(x'a')M„', where C ' is the
coefficient of the linear q term in the expansion of
the modified dynamical matrix and m, (x I O~) is
the polarization vector of q = 0,J phonon mode.
By symmetry arguments, we find that the optical
mode Jmust be in I'»XI'„= I",+ I"»+ I",, + I"2,. In-
deed, we have deduced that

(xx, xx)= —4 [Z C„",,'{lii)M„'"]'/n, (u'(r„),
(3. 20a)

(xx, yy ) = —2 (xx, xx),
( y y)= 4[+ C,",„'(Ix)M„'~3] /0 &u (I",) .

(3.20c)
Actually, (xy, xy) contains coupling to the I",, and
I"~, modes, involving the squares of the difference
and the sum, respectively, of the two terms
g„C„'~ (lz)M„' and g„C,",„'(lx)M„~2, which are
equal as a consequence of the infinitesimal rota-
tional invariance and the equilibrium condition. ~'

For a power-series expansion of the dynamical
matrix C .(q;xii') given by Eq. (3.7), westartwith
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v(q; ~) = —Z„v(4')+ vs(f, x) (3. 28)

Using the formulas in Sec. III of I, after some
tedious manipulations, we obtain the expressions
for the elastic constants,

c» —c»= -,'[{xx,xxj+{yy,xx j- 2{xy,xy j]
+ 8(0)(E„-E ){Q,'Z„[i!!l( )- i,'„",( ) ]9
—8 [Q, M„~'(I'„)]-'{LT;,',"(1x)

, 8(O)(E„-E„)o'Q Z„[i V, (~) —P„,",(x)]j',
(3. 2'7)

l( + 2 ) =4 [{", )+4{"y,"yj- 2{yy, jl

+2Qo Z vs(0) K) Zg Zgt
KK

+(3Q ) '8(0)(E„+2E )[Z 0„„,( x)]'

—[Qo y, (0, 0)]-'[ Q Z„

—8(0)(E +2E )Z j„„„(x)]', (3.28)

c44
———'{xx,yy j- 4 [Qo M& e (I'oo)] [ g T „„'(lx)]

where

{uP,y8'j=Q, ' Z T.&'& (xx') .
KK

(3. 29)

(3. 29')

In contrast with the previous works' "on the
elastic constants of the p-W compounds, these
formulas include (1) the contribution due to sub-
lattice motion, the significance of which for the
structural phase transition we shall discuss later,
and (2) the d-electron interaction which provides
quite different screening for different elastic modes.

There is evidence that the density of states at the
Fermi level is much greater for the d band than for
the s band. 'O'" Then, the bulk modulus is approx-
imately given by

& (c»+ 2 c») = —', [{xx,xxj+ 4{xy, xy j- 2{yy, xxH

+ 2Qo ZjZ„Z„.vo(0, x)
KK

+ (2/3QO)(& Z.) [~&.'i(x)] (3 3o)

, (q;xx')=(M„M„. )
~ [T ~.(q;xx')

—8„„.F„„T..~ (0; xx")] . (3. 28)

The expansion of T' is straightforward using Eq.
(2. 21). In the expansion of To using Eq. (2. 23),
the terms which finally contribute to the elastic
constants involve 8(4') and E». (q ) only to zeroth or-
der and f „(q, x) to first order, because the elastic
constants involve sums of the coefficients of T~

over z and because of Eq. (3.22).
The electron-ion potential is separated out as

Thus, we have shown that the bulk modulus is very
weakly temperature dependent because of the high

density of states at the Fermi level of the d band.
Because we have included the electron screening
carefully, we obtain the electronic contribution to
the bulk modulus which is, roughly speaking, in-
versely proportional to the density of states. Our
reason for the weak temperature dependence is
different from that of Bar isic and Labbe who

ascribed it to the small number of electrons in the
d band .

The shear modulus c44 is completely independent
of the d electrons and is, therefore, temperature in-

dependent within the harmonic approximation. The

c44 shear mode involves the change of relative angle
between the A-atom chains without changing their
spacings, which cannot excite the d electrons in the
tight- b ind ing approximation.

The shear modulus c» —c&3 has three terms in

Eq. (3. 2V). The first term is due to the direct
ion-ion interaction screened by the s, p electrons.
The second term is the d-band contribution and is
temperature dependent. The third term is the con-
tribution of sublattice motion of I"» symmetry. It
is temperature dependent via the coupling term as
well as the optical-mode frequency.

8(0) = —(8/3Qo) No Eo(T),

where

Fo(T)= 1-e

(3. 31)

(3. 32)

T~ being the Fermi temperature measured from
the d-band edge. We use two values of No, 3. 0 and

5. 6 states/eVatom, obtained in Ref. 10 from
resistivity and magnetic susceptibility measure-
ments. The smaller value is more reasonable,
being the bare density of states. The values of

T~ from Refs. 10 and 5 are 100 and 85 'K, respec-
tively.

Vfe assume all unscreened interactions to be
Coulombic. This amounts to neglecting the devia-
tion of the electron- ion pseudopotential from the
Coulomb potential vR . The screening by s elec-

D. Numerical Estimates

We give an approximate evaluation for the two

most interesting quantities, namely, ~(I',o) and

c» —c» . We shall concentrate on, Nb3Sn. In re-
duced units, the properties of V3Si are, on the
whole, similar.

The polarization 8(0) can be evaluated from Eq.
(2. 9) with &u= 0 and q- 0 using the energy in Eq.
(2. 1). However, we follow a simpler procedure
given in Ref. 10 of using a constant density of states
(1 —n)No for the d band and another constant density
of states uNo for the s band with a small u (= 0. 04).
This shows more clearly the temperature depen-
dence of 8(0):
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trons is treated in the Thomas-Fermi approxima-
tion for simplicity:

& (q)=1+qTF/q

with

q»-- 4' nNo (8/Ao) .

(3. 33)

(3. 34)

Despite the small value of n, the screening is quite
drastic.

Such a crude approximation for the electron-ion
interaction is satisfactory for the c« —c» shear
modulus but not for the other two elastic constants.
For example, the neglect of the repulsive part
2Qo Q„„,Z„Z„vs(0, tc) in Eq. (3. 28) renders the
value of the bulk modulus negative. To raise the
number to the experimental value by the repulsive
part, we need an empty core pseudopotential with
a core radius of about 0. 7 A, a rather reasonable
value. The importance of the repulsive part of
the pseudopotential in the bulk modulus is similar
to the case of alkali metals.

From the tight-binding approximation, it follows
that the bulk modulus and the c44 shear modulus are
weakly temperature dependent. Experimentally,
this is true for V3Si, but not for Nb3Sn, for which

e44 has a fairly large temperature dependence. '
One needs a better approximation for the d bands
to explain this.

The d-electron wave function is taken to be the
Slater form, Eq. (2. 3), with s= 0. 74 A ', approxi-
mately the atomic value. We have checked that
the d-band contribution to the bulk modulus, third
and fourth terms in Eq. (3. 28), is indeed well
approximated by the last term in Eq. (3. 30).

We have calculated ~(I',o) and c» —c,o as a func-
tion of temperature and compared the latter with
experiment. The curves are shown in Ref. 15.
The values of c» —c» calculated roughly reproduced
the measured behavior. ' The d-electron-d-elec-
tron screening in the shear wave is weak. For
No= 3, —X»+X»= 0. 21. The coupling to the I'»
optical mode is negligible at roomtemperaturesbut
becomes quite important at low temperatures,
sufficient to make a difference of over 10'K in the
temperature at which the elastic constant becomes
zero.

The frequency of the I'» mode is the highest of
all branches, being the normal mode in which the
nearest-neighbor niobium atoms oscillate against
each other. It is, for example, 2. 5 &u(I'o, ). The
decrease in e(1"~o) in the adiabatic limit from room
temperature to the lowest temperature is no more
than 10/o. We can say with some confidence that it
does not become unstable at any temperature.

As was pointed out in Sec. IIIB, strictly at q=0,
&u(I;o) is temperature independent. The adiabatic
limit only applies if

~Xk+q ~)tk t

i. e. , q» 0. 17m/a, in our present estimates. The
Fermi diameter in the [110jdirection is about
0. 2v/a, where the Kohn effect may become impor-
tant. Thus, for q less than ~~ m/a, the optiCal mode
close to I'» is more weakly temperature dependent
than the adiabatic limit.

Barisic and Labbe have calculated the tempera-
ture dependence of c&& —c» for V3Si and obtained
good agreement with experiment, using the Slater
coefficient s = 0. 27 A '. We have found that such a
small value used in our theory gives negligible d-
band contribution. Barisic and Labbe ' have used
the rigid-ion model in which the d electrons move
rigidly with the atom. The electron-phonon inter-
action is due entirely to the change in the nearest-
neighbor overlap. By contrast, we have included
the d-electron polarization on each atom but ne-
glected the overlap. Thus, Barisic and Labbe re-
quire a very spread-out d-electron wave function
and we need a well-localized one. It is of interest
to extend our calculations to include the overlap
and estimate the relative magnitude of the two con-
tributions.

IV. NATURE OF THE STRUCTURAL PHASE TRANSITION

In Sec. III, we have investigated the tempera-
ture dependence of the long-wavelength optical
phonons and elastic constants in the cubic phase of
the crystal. We now want to infer from these re-
sults the nature of the structural instability which
causes a phase transition.

If the phase transition is second order, it will
be due to the softening of an optical mode of sym-
metry ' F», I», or I"&5. We have shown that
these optical modes do not have a strong d-band
contribution and, therefore, do not go soft on
cooling. There have been some experimental con-
firmations of this, ' although they ar e not conclusive.

We have shown that the I'» mode is temperature
dependent but that in a rough evaluation, this high-
frequency mode does not go soft. Iz fact, indepen-
dent of any numerical calculation, from Eq. (3. 27)
for the shear modulus cia -ei2 we see that if
&u(I', o) should become sufficiently small, the shear
modulus would become negative first. The coupling
of the acoustic mode to the long-wavelength opti-
cal mode would enable the optical mode to drive
the acoustic mode unstable first. We conclude that
no long-wavelength optical mode becomes unstable.

Our calculation shows that at a sufficiently low

temperature, c&q —c» vanishes. This indicates

that the phase transition is due to an acoustic in-
stability, in agreement with previous authors.
However, we can go further and deduce from Sec.
III C that associated with the acoustic mode is a
tetragonal distortion of symmetry I'&~. This is,
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indeed, what Shirane and Axe found by elastic-
neutron scattering of Nb3Sn in the tetragonal phase.
They have independently postulated that the I'»
distortion is not due to the optical-mode softening
but rather due to coupling with the c» —e» shear
mode which becomes unstable.

Therefore, the structural phase transition in
Nb3Sn must be first order. Although it is difficult

to infer this from specific-heat measurements
directly, the combination of the lattice dynamical
information above and the x-ray data ' should be
convincing enough.
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