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The microscopic formulation of lattice dynamics is examined in the long-wavelength limit
for a general conducting crystal. Formulas for the elastic constants are derived for a com-
plex metallic crystal.

I. INTRODUCTION

There have been an enormous number of inves-
tigations of the lattice dynamics of simple metals
by the method of pseudopotentials. In this method,
the crystal-structure effect is retained only in the
direct ion-ion interaction; the electron screening
is calculated in the homogeneous-electron-gas

approximation. This approximation is not ap-
propriate for more or less tightly bound electrons
such as the d electrons in the noble metals, tran-
sition metals, and their intermetallic compounds.
The general formulation of the ionic and electronic
contribution to lattice vibrations in crystals has
been given and the long-wavelength behavior for
the insulating crystals has been examined. '
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Here, we wish to investigate the long-wavelength
behavior of phonons in a conducting crystal and
derive the formulas for the elastic constants. In
the following paper, we shall present an applica-
tion of the formulation made here to a conducting
crystal of some complexity, namely, intermetallic
compounds of the Nb3Sn type.

II. DYNAMICAL MATRIX AND ITS LONG-
WAVELENGTH BEHAVIOR

In Refs. 1 and 2, the dynamical matrix has been
given in terms of the microscopic interactions and
response functions. We shall write it here in a
form convenient for taking the small-wave-vector
limit in metals.

Denote the equilibrium lattice vector by x, and
the equilibrium ion position in the unit cell by x„.
Thus, the equilibrium position of the (l«) ion is
x,„=x,+x„, Let the charge and mass of the (l«) ion
be Z„eand M„. —e is the charge of the electron.

The interaction potentials are (i) electron-elec-
tron: v(x) = e /x; (ii) ion-ion: Z„Z„v(x);and (iii)
electron-ion: v(r; K). For large r, v(r; K)- —Z„v(x), but in the core region, we allow devia-
tion of the ionic potential from the Coulomb po-
tential. In actual computations, it is often con-
venient to account for the effects of core electrons
by a pseudopotential. We may then regard v(r; «)
as including the pseudopotential component in the
core region.

The effective interaction between two ions of K,
z' kind, respectively, at positions x and x' is

V(x«; x'K') = Z„Z„v(x—x') + f dr f dr ' v(x —r; K)

x X(r, r')v(r' —x'; K'), (2. 1)
where x(r, r') is the electron-density response
function. The force constant for the two ions in
the harmonic approximation is given by

4 ~~~ (l«& l K ) = V~~& (X~&K& Xg ~ &a K )

V, (q+GK;q+O'K') =e' ~' ' *"(q+G)

x V(q+ G«; q+ G'K ') (q+ G'), .e " '
(2. 5)

G and G' are reciprocal-lattice vectors and Ao is
the unit-cell volume. V(q+ GK; q+ O'K') is the
double Fourier transform of the effective interac-
tion V(x«;x'K'). Thus, from Eq. (2. 1),

V(q+ GK; q+ O'K') = Z„Z„v(q+G) 5p g. + v(q+ 6; K)

xx(q+G, q+6')v( —q —6'; «') . (2. 6)

The Fourier transform v(q+ G) of the Coulomb
interaction is defined by

v(q+ 6) = 4ve'/
~

q+ 6 ~' if q+ 6 & 0

=0 if q+G=O. (2.7)

This takes care of the charge neutrality of the
system.

We wish to investigate the phonon frequencies
as q -0. Now, the dynamical matrix in Eq. (2.4)
contains factors v(q) which diverges as q -0. lt
is convenient to separate out such terms and ex-
hibit them. Thus, we separate the Coulomb inter-
action into a long-range part v(q) and a short-
range part:

v(q+6) =v(q+6)

=0

if G&0

if G=O (2.8)

A similar separation is made of the electron-ion
potential.

Denote by X(q+ G, q+ 6') the sum of all polariza-
tion diagrams not containing the Coulomb term
v(q). Then, x(q+6, q+G') is well behaved as
q -0. The limit does not necessarily vanish when
G = 0 or G' = 0 in the case of conducting crystals.
This is quite different from the insulating crystals. '

We define a dielectric function e(q) by

II—5))i 5„„oQ V~~~(x)„K;Xt ~ ~ „~~ K ), ~(q) =1 —v(q)X(q, q) (2.9)

where

)P P KP P

(2. 2)
Then, the effective ion-ion interaction can also
be separated as follows:

(2. 3)

Hence, the dynamical matrix for phonons of
wave vector q (restricted to the first Brillouin
zone) is

C .. (q; KK') = (m„~„.)-'" &, '

x Z [V ~ (q+ 6«; q+ O'K')
5,5P

V(q«; q«') = v(q) + v(q; K)[X(q, q)/e(q)]v(q; K )

V(qK' q+ G'K') = v(q, K)X(q, q+ 6)v(q+ G', K')/e(q)

V(q+ «; q«') = v(q+ 6, K)X(q+ 6, q) v(q, K')/~(q),

V(q+ GK; q+ G'«') = V(q+ 6«; q+ G'K')

+ v(q+ Gi K)X(q+ G, q) [v(q)/&(q)]

x X(q, q+ 6')v(q+ 6'; K')

where

Z V ~ (GK; O'K")], (2.4)
K

The short-range part of the effective interaction
V is obtained from the total interaction V by putting
v(Q to zero but keeping v(q+ G).

By using Eqs. (2. 10), we write the dynamical
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matrix as

e, .(q; KK') = (M„M„.)
' '0()'(e* +'q, [Z„Z„.v(q)

C„.(q;KK')=4, (q;KK')e" ~ ~' (3.1)

Consider first the "short-range" part in Eq. (2. 11):
—v(q; K)v(q; K')/v(q)]q .e (~'~"

+e' ' "Z (q; K)[v(q)/e(q)]z~. (q, K')e ' ' ~'

+ Z [V„.(q+ GK; q+ GK ')
6,5e

Then,

fl-1 Q (4-' (%„-%i )

G, G~

&«(q+ GK; q+ O'K') . (3.2)

Z V .(G, K, G'K")]) . (2. 11)

In this way, we have separated out terms with
short-range interaction which are well behaved as
q -0 and terms which may possibly be of long
range. Z (q, K) is given by

T, (q; KK')=L(,e '~' ( ''V (x,„K;x„.K')

(3.3)
The q expansion can be made directly from the
Fourier transforms in Eq. (3.2) or from Eq. (3.3).
In the latter case, we have

Z (q, K) = —i [q v(q; K)/v(q) + &-X(q, q+ G)

x v(q+G, K)(q+G) e ' '*~] . (2. 12)

T .(q; KK') = T"' (KK')+iq((T"' (((KK')

(2)+ ~ q'13qg T0 ~gp~ (KK ) + ' ' ' (3.4)

It may be regarded as the effective charge of the
K sublattice per unit displacement in e direction
in a lattice vibration of wave vector q.

Now, it is easy to examine the q -0 limit. For
metallic crystals, because i('(0, 0) is finite, E(q)- ~ as q - 0. The long-range interaction v(q)is
screened to short range. The effective charge
tends to

Z~(0; K) = N dr dr' X(r, r')

x P " " "'"'
) (2 13)

8&a

This is the change of the mean number of elec-
trons per unit displacement of the sublattice K.
Therefore, it vanishes because of charge neutrality.

It follows that for conducting crystals, unlike
insulators,

llm O(g~~ (q; KK ) = 4(g(g~ (oi KK )
q 0

(2. i4)

Because all the long-range interactions are
screened out in conductors, we have shown that
the long-wavelength phonon frequencies tend to
their zero-wave-vector value. In particular, the
three acoustic branches tend to zero because of
infinitesimal translational invariance which ensures
that

Separate the electron-ion potential into two

parts:

v(q; K) = —Z„v(q)+ v(((q; K) (3.6)

v(((q; K) is well behaved as q -0. Then, from Eqs.
(3.1) and (2. 11), a q expansion for the modified
dynamical matrix gives the coefficients, defined
in a similar way to Eq. (3.4), as follows:

C~~. (KK') = (M„M„~) [T~~ (((K')

—s„„.&„,.T.".'. (KK")], (3.7)

, y(KK') = (M„M„) T' (((KK )

C,' ', ((((~(KK') = (M„Mg) ' (,'„'
((8 (K ')

(3.8)

+ (S ((S„((i+ 6 (( S,.(()[z„v(((0;K')

+ Z„,v„(0,K)]f1,'- [Z„",'(K)Z((&,, (K )

+ Z„"(('(K)Z„"((((K')]/Qoi((0, 0)] . (3.9)

with summation over repeated Greek indices un-

derstood:

T~~. (KK') =2( V~~i(x, „K;x„.K')
A,

TII&~(((KK ) = -+( (xr~(( xe(()Vn-n'(x(~KixeK )
(3 ~ s)

T,.((;(KK ) = -Z( (x(„(( x„(()(x(-„(( x„,)-(2& I

x V«s (x(„K;x„eK )

Z„.C' ~ (0; K K') = 0 (2. iS) The coefficients Z,"(('(K) are from the q expansion
of the effective charge

III. ELASTIC CONSTANTS z, (q, K)=iq((z" ( (()K+0(q') (3. io)

We now derive formulas for the elastic constants
of metallic crystals by the method of long waves. '
That is, the elastic constants are determined
from the sound velocities of acoustic phonons in
the long-wavelength limit.

We follow Born and Huang by expanding in
powers of q the modified dynamical matrix

The coefficient C' ', which contributes to the
elastic constants, contains not only the contribu-
tion from the short-range force constants but also
from the screened long-ranged interaction and

from the q -0 limit of the deviation of the electron-
ion potential from the Coulomb potential.

The eigenvalues of dynamical matrix determine
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[ey, a.X]= [o.X, py],
where

[ne, yx] = (2n, )-' Z (M„~„.)'"c.",'„„(~~')
gk

and

(ny, px) = —n, ' Z [(u(o,)] '

(s. 12)

(s. is)

the squares of the phonon frequencies. As q -0,
the eigenvalues for the acoustic branches are of
the order q . We need to apply first-order per-
turbation theory to C' ' and second-order pertur-
bation theory to C' '. By comparing the phonon
equations to order q with the equation of elastic
waves, ' we obtain the elastic constants

c.„„=[op, y~]+ [py, o.~] —[p&, oy]+(oy, e.),
(s. 11)

with the equilibrium condition

x [ g gg Isa (/&
~

og)c+2 g~(K K )M+iii]
gIIgllt oiJI

(s. i4)
&u(O~) and ~,(a IO~) denote the frequency and polar-
ization vector of 2th optical mode at q= 0.

When a complex crystal is subjected to a homo-
geneous strain, the sublattices may move rela-
tive to one another. (oy, RA) represents the contri-
bution of such effects to the elastic constant. In

Eq. (S. 14), we have put it in a more explicit
form than Born and Huang.

In simple metals with one atom per unit cell and

conduction electrons nearly free, some of the
terms considered here are not important. For
example, (o'y, RA.) vanishes. We shall see, how-

ever, in the following paper that for an intermetal-
lic compound such as Nb, Sn, careful inclusion of
such terms from a general theory is essential to
an understanding of its lattice dynamics and
crystal instabilities.

*Work supported in part by National Science Founda-
tion, Grant No. GP-28997.
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We present a method of calculating electron screening in the tight-binding approximation
and constructing the dynamical matrix for the P-W compounds. We show that, in the cubic
phase, no long-wavelength optical mode is temperature dependent except I'&2 which has a weak
temperature variation. By the method of long waves, we calculate the elastic constants, par-
ticularly c&&

—cf2 as a function of temperature, obtaining a fair agreement with experiment.
We infer that the cubic to tetragonal phase transition is due to the instability of the cfog cf2
shear mode, associated with which is a tetragonal distortion of I'&2 symmetry, in agreement
with the neutron-scattering experiment of Shirane and Axe.

I. INTRODUCTION

A number of intermetallic compounds A3B of
P-tungsten (A-15) structure have very high super-
conducting transition temperatures and undergo
a structural phase transition (from cubic to tetrag-
onal) at low temperatures. These have been the
subject of intensive experimental and theoretical
investigations. '

The feature of interest to us here is the unusual
temperature dependence of the phonon proper-
ties. The temperature dependence of the elastic

constants has been measured for V3 Si, V3 Ge,
and NbsSn. 4' Neutron measurements have re-
cently been carried out for V3 Si and Nb, Sn. '
There also have been several calculations of the
elastic constants ~' and the phonon frequen-
cies '3 '4

In this paper, we show how, given a tight-bind-
ing model for the d electrons, we can calculate
from first principles the phonon spectrum (Sec.
11). In particular, we give a careful treatment
of the screening of the effective ion interaction by
d as well as s electrons, in contrast to previous


