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Some of the calculations presented in a previous paper fW. B. Mims, Phys. Rev. 8 5, 2409
(1972)] have been extended in order to make it easier to find the amplitudes of the superhyper-
fine-frequency components in two- and three-pulse envelopes when I &q. A simple recipe is
given for deriving the stimulated-echo result from the two-pulse-echo result. The suppression
of frequency components in the stimulated-echo envelope is also considered.

I. INTRODUCTION

Some of the calculations presented in a previous
paper' (henceforth denoted as I) have been extended
in order to make it easier to derive the amplitudes
of the superhyperfine-structure (shfs) components
in two- and three-pulse-echo envelopes for cases
not covered by the explicit formulas given in I.
The suppression of shfs frequencies in the three-
pulse-echo envelope which occurs for certain
values of 7 is also considered.

II. EXPANSION OF TRACE EXPRESSIONS

Writing Eti. (38) of I with the appropriate
Hermitian conjugate and normalizing to unity at
zero time ~ between the pulses, we have the two-
pulse envelope modulating function

z, (v)=(
~

)vr(qtM'rtMq, M's, M+s. c.),
(1)

where I is the spin. of the nucleus giving rise to the
shfs and H. c. stands for Hermitian conjugate. P,
and Q, are diagonal (2I+ 1)&& (2I+ 1) matrices de-
scribing the evolution of the upper (u) and lower
(p) manifold of shfs states during the free preces-
sion intervals. They consist of elements (P,)«
=Pj; ——e™&' and (Q, )kk —=Qkk ——e™k'. M is a (2I+1)
&& (2I+1) unitary matrix which describes the cou-
pling between u and P manifolds caused by the
microwave resonance pulses and is defined in I,
Etl. (34).'

By expanding Eq. (1) and rearranging terms we
obtain

1
Emod(~) ~g(2I 1) ~

~ ((+jj+jjQkk lee)+ j $, g, k, n

(M' MkMjkMje)j+k' c' j & (2)

where c. c. stands for complex conjugate. This
expression can be broken down into a "dc term, "
terms involving shfs frequencies &',

&
'=&,' ' -+& '

belonging to the upper manifold, terms involving
frequencies w„'„) = ~,' ' —u„' ' belonging to the lower
manifold, and terms involving sums and differences
of frequencies belonging to both manifolds. Thus,
if we group together products for which j=i and
n=k, we obtain the dc term

(3)

Products for which n=k yield terms

where

(a) ~ 2 ~ 2

By setting j =i we obtain terms

k4n
(0) (8)
n cos(dgn

k, n
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&~n = Ma (6)

remainder of (7) follows from the normalization of
the echo envelope to unity at 7.=0, i.e. , from the

equation Xo+S' '+ S' '+ S' ' ' = 1.

Finally, the products remaining in (2) after the
removal of (3)-(5) correspond to the sum and. dif-
ference frequency terms

i, $ O, tf

where

(a, 8) Re M,*qM;„M~„M)q (6)

The notation g
' is used to indicate that any given

pair of indices i, j or k, n is to be assigned in
one order only, and any given frequency is to be
considered once only in the sum. The appearance
of pairs of identical terms in the sum (for example,
g„")cos&u~g~

)v and g&
) cos&uj', )v) has been taken into

account in arriving at the normalizing factors
2/(2f+ 1).

Some general properties of E,„(v) could be in-
ferred more or less directly from (1). The func-
tion is even in 7, as may be verified by setting
P,-P„Q,- Qt and by applying the theorem
Tr(ABC) = Tr(BCA). Also it is real and will there-
fore contain cosine terms only. Likewise, it can
be shown by setting P,-Pt (or Q,- Q, ) that the
coefficient of a sum frequency is the same as the
coefficient of the corresponding difference fre-
quency.

A relationship which is useful for checking re-
sults in the more complicated cases exists between
the summed amplitudes S' ', S'~' of the electron-
nuclear -double-resonance frequencies belonging
to the upper and lower manifolds, the sum S' ' '

of the amplitudes of all the combination frequencies
and the dc term X(). We find that

S(c)f ) S(6) S(af, &)

The equation S' '=1 —Xo follows readily from the
fact that M is a unitary matrix. Substituting from
E(l. (4), we obtain

III. DERIVATION OF STIMULATED-ECHO ENVELOPE

Writing E(l. (39) of I complete with Hermitian
conjugate and appropriate normalizing factor, we

have the envelope function

E (r, P) =( ))Tr[Q, M(P„P, )MQ, M (P„P,)M

+ (QrQ )M P M(Qr Q )M P, M+H. c.].
(8)

The quantities in parentheses P~P„etc. , are
diagonal matrices containing elements of the form
exp i(d'; '(T +~).

It may be noted that (8) can be obtained from (1)
by writing (1) twice, once with PrP, substituted
for P, and once with Qr Q, substituted for Q, and

halving the result. This suggests the following
recipe by means of which the expansion of (8) can
be derived from the expansion of (1) without the
need for a new ab initio calculation.

(i) Expand (1) in such a way that cos&u,'," '7 (from
P,) and cos(()„'„'Q (from Q, ) appear as separate
factors. [This merely involves replacing cos((d,'& '

+ (,ds)r)+co(s(u,', ' —(o)(~))Q. in (6) with
2 cost();& T cos(d), „7'.]

(ii) Write the expression with cos(d,', )~ changed
to cos(d)y (T+ 7)

(iii) Write the expression again with cos~~@)y
changed to cos~,'~'(T+ r).

(iv) Add the results of steps (ii) and (iii) and re-
normalize by dividing by 2.

Applying this recipe, we have

@mQg(7r T) = $0+ L) g;y [COS(dry T+ COS(d;g (T+ 7)]

+
2

~ X)()) [cos(())))) 'r + cos(d~„(T ~ 7)]
(8)P (g) (8)

k, n

0&n

+ Z Z g]y p„[cos(d(g (T+ 7) cos(d),„7
k, j 0, n

+ COS(d;) 1 COS(d),„(T+T)] r (9)

where the coefficients are as given in (3)-(6).

IV. PARTIAL SUPPRESSION OF FREQUENCIES IN
STIMULATED-ECHO ENVELOPE

In this expression the sum

= Z ~M,,~'=2f+1.

The sum [I/(2I+1)]g; ~!M,~I is the term go in (3).
Similarly, it can be shown that S'~'=1 —go. The

It is usually convenient to perform experiments
by setting ~ to a fixed value and allowing T to vary
in order to trace out a stimulated-echo envelope.
The amplitudes of the observed frequency compo-
nents will, however, depend partly on the choice
of T and may vanish entirely for certain values of

Factoring out cos&o(; '(T+ Q) and cos(d)(„)(T+ v)
in ECI. (9), and dropping terms not governed by
these factors, we have
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E ~,(T) = d '
cos(u;~g '(T+ T)(y (t,'g

'
k, j

klff

+Q 'X,', „'cos&u„"„'~)

k&f3

+ Z' coerce,'(T+ r)(g'g,'„''

A
+ j~ gIg 'y cos(dIy 7') ' (10)

f, j
The amplitudes of any frequency in the a manifold
will thus be a periodic function involving 7 and the
frequencies in the P manifold and vice versa. The
partial suppression of frequencies in the stimu-
lated-echo envelope is obviously closely related to
the appearance of sum and difference frequencies
in the two-pulse-echo envelope. Both yroyerties
can be useful experimentally in deciding whether
two shfs frequencies belong to the same or to op-
posite electron-spin manifolds.

The suppression effect may be illustrated by
taking the case of I = ~ as an example. In this
.case the coefficients are g yp

= xg2'= 2l v I l u l

and xgg fp Ivl lul, where v, u are elements of
the 2&& 2 matrix M as in I, Eq. (44). Equation (10)
becomes

E ~,(T)= hei iud [(1 —cos&uqr)costs (T+r)

+ (1 —costs~7) cos+~(T+ y)], (11)

where w, ~z are the single shfs frequencies in
the o. and P manifolds, respectively. When v cor-
responds to a whole number of cycles of co, the
companion frequency wz in the opposite manifold is
entirely suppressed and vice versa.

Suppression of frequency components will be
harder to detect and to interpret in the more gen-
eral case when I &~. Obvious suppression effects

may, however, be commoner in practice than Eq.
(10) would suggest. Let us for example consider
the situation when the transitions between the n
and P manifolds are clearly denotable as either
allowed or forbidden. The numbering of the levels
in the two manifolds, is, of course, arbitrary, and
one can write the matrix M so that the diagonal
elements correspond to the allowed transitions and
the off-diagonal elements to the forbidden ones.
M can then be approximated by 1+i&H, where & is
a small number and H is a Hermitian matrix de-
rived from the state mixing terms which give rise
to the forbidden transitions. Referring to Eq. (4)
we see that the only terms = & in the sum are
lM)gl lMg;l ~ and lM]gl lMggj . But, since M —3.

+i&H, M)) = Mf) -and (tI) '—- (4/2I+ 1)IM(~(
From Eq. (6) we likewise find only one term
y&, ', &'= (2/2I+1) Re[M,~M„]= (2/2I+1)(M„(2
which is - E . Substituting these approximate
values in (10), we have

x [(1 —cos(u,', '7) cos&u,', "(T+v)

+ (1 —cos&d jg 'T) cos~,&'(T+ v)],

an expression which is similar to (11). A situation
of this kind exists when the shfs states are more
or less good eigenstates of I, slightly admixed by
S„I„,S,I, terms in the electron nuclear Hamil-
tonian or, conversely, when the S ~ I term is the
main quantizing term and the nuclear Zeeman
term causes the mixing. Some caution must of
course be exercised when approximating (10) by
(12) to ensure that higher-order terms derived
from other matrix elements do not exceed any of
the terms in IM&&I 3.

W. B. Mims, Phys. Rev. B 5, 2409 (1972).
A procedure for computing the elements of M is out-

lined in Ref. 1, Sec. VI.


