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Phase transitions in Ising models with free surfaces are studied from various points of
view, including a phenomenological Landau theory, high-temperature series expansions, and

a scaling theory for thermodynamic quantities and correlation functions. In the presence of
a surface a number of new critical exponents must be defined. These arise because of the
existence of "surface" terms in the thermodynamic functions, and because of the anisotropy
of space and lack of translational symmetry introduced by the surface. The need for these
new critical exponents already appears in the phenomenological theory, which is discussed
in detail and related to the microscopic mean-field approximation. The essential new param-
eter appearing in this theory is', an extrapolation length X which enters the boundary con-
dition on the magnetization at the surface. For magnetic systems this length is of the order
of the interaction range, in contrast to superconductors, where it is usually much larger. In

order to go beyond the mean-field theory, high-temperature series expansions are carried
out for the Ising half-space, to tenth order in two dimensions and to eighth order in three
dimensions. A scaling theory is developed both for thermodynamic functions and for spin
correlations near the surface, and relations are found among the exponents of the half-space.
Both the scaling theory and the numerical calculations are compared with the exact solution
of the Ising half-plane (two dimensions) by McCoy and Wu, and agreement is found wher-
ever the theory is applicable. In analogy to the bulk situation, the scaling theory is found to
agree with mean-field theory in four dimensions. The prediction of the present work which

is most easily accessible to experiment is the temperature dependence of the magnetization
at the surface, with critical exponent estimated to be Pt -—2/3. The mean-field result, Pt =1,
seems to agree more closely with presently available experiment, and more work is needed

to clarify the situation.

I. INTRODUCTION

Phase transitions in magnetic systems have been
studied extensively both theoretically and experi-
mentally in recent years. Although experiments
are carried out on finite systems with real sur-

faces, the theoretical models used for calculations
have nearly always been infinite in extent. The
usual justification for neglecting surface effects
is that these only involve a fraction of order
Z &'-'»" of the total number of atoms X, and this
fraction is vanishingly small for large N (d is the
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dimensionality of the system). In addition, most
real crystal surfaces are quite imperfect, and thus
difficult to characterize in terms of simple mod-
els. Nevertheless, if high accuracy is desired, it
seems important to study the influence of surfaces
on magnetic properties in more detail, particularly
near the phase-transition point, where spin cor-
relations have very large range. Moreover, as
techniques of sample preparation and measure-
ments become more refined, it seems likely that
the specific properties of magnetic surfaces them-
selves will receive greater experimental attention.
The aim of the present paper is to study the effects
of surfaces on magnetic phase transitions by a
careful analysis of a simple model: the Ising half-
space.

Apart from early work on the transition temper-
ature of magnetic films, there seems to have been
little theoretical work on magnetic surface phe-
nomena near T, until quite recently. ' The most
complete picture is provided by the phenomenologi-
cal "Ginzburg-Landau" theory, which is a direct
generalization of the Landau theory of second-
order phase transitions to systems with surfaces.
This theory was discussed very recently from a
purely phenomenological point of view by Kaganov
and Omelyanchouk, and microscopically by Mills
and by Wolfram et al. ' Of course, the quantitative
predictions of the phenomenological theory are not
expected to be accurate for surfaces any more than
they are for the bulk, and more reliable theories
are desirable. For two dimensions the exact solu-
tion by McCoy and Wu of the Ising half-plane with
nearest-neighbor interactions~~ provides an essen-
tially complete generalization of Qnsager's work
in the bulk, and it demonstrates concretely that the
phenomenological theory has only qualitative valid-
ity. For three-dimensional systems a great deal
of information has been obtained in the bulk from
high-temperature series expansions' and from
phenomenological scaling theories which provide
relations between critical exponents. In this paper
we generalize this work to systems with surfaces,
and attempt to elucidate the relationship between
the various phenomenological theories and micro-
scopic calculations, both exact ' ' 4 and approxi-
mate. ' ' Previous applications of scaling theories
and high-temperature-expansion methods to mag-
netic systems with surfaces have been carried out

by Watson, '~ Fisher and his co-workers, 4'~6'~ and
Wolfram et cl. '; our work is a continuation of
those efforts.

In the presence of a surface it is necessary to
define a number of new critical exponents, and we
have determined some of these for the semi-in-
finite Ising model from high-temperature series
expansions. The remaining exponents were ob-
tained from "scaling relations" analogous to the

ones which have been discussed extensively in bulk
systems. ' The new scaling laws were also shown

to hold exactly in two dimensions. For three di-
mensions, we estimate that our determination of
the new exponents is accurate to better than +0. 1
so that the deviations from the mean-field values
can be considered to be significant.

The main physical effect of the surface is two-
fold: first, a "thermodynamic" effect, whereby
the free energy of the system has a term propor-
tional to the number of surface atoms, in addition
to the bulk contribution proportional to the total
number of atoms. The "surface free energy" leads
to the introduction of "surface" exponents, such as
n„describing the divergence of the surface spe-
cific heat. The second effect of the surface is ge-
ometrical, and has to do with the breaking of trans-
lational invariance and isotropy (which holds
asymptotically in the bulk as T- T,). The thermo-
dynamic average of a local operator will be differ-
ent near the surface from its value deep in the bulk,
and correlation functions involving spins at the sur-
face are also expected to be strongly modified.
These changes are described by the values of "lo-
cal" exponents, e. g., the exponent P& for the mag-
netization at the surface. The above distinction
between surface exponents and local exponents is
not the whole story, however, since there are, for
instance, at least two different "local" suscepti-
bilities at the surface: The first is the response
X& of a surface spin to a uniform field acting
throughout the system, and the second is the re-
sponse X» to a field acting only on the surface.
The need for making these distinctions (which al-
ready exist in the molecular-field theory) will be-
come apparent in what follows.

An even more important distinction must be
made between a surface quantity, e. g., the sur-
face free energy discussed above and the "inter-
face free energy" for a bulk system. "'" This lat-
ter quantity only exists in the ordered state; it is
defined analogously to the surface free energy, but
in a situation in which the magnetization is lined
up in one direction at one end of the sample and
in the opposite direction at the other end. The in-
terface free energy per unit area is the "interface
tension, " which is unfortunately traditionally
called "surface tensiont"

From an experimental point of view the most
interesting quantities are the surface magnetiza-
tion mq and the correlation function for spins on
the surface, since these can be probed by low-
energy electron diffraction (I EED), ' ' ' or pos-
sibly by Mossbauer measurements. In the molec-
ular-field theory the surface magnetization is given
by the equation ' ' '

m&= ma &l&
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where m~ is the bulk magnetization, ~
$ is the cor-

relation length, and X is an "extrapolation length"
which completely characterizes the effect of the
surface. If X is constant near T„ then Eq. (1.1)
implies that mz ~ (T, —T), or in terms of the criti-
cal exponent Pq for mq, that P~= P+ v. ' As we
discuss below, however, this result of molecular-
field theory is not expected to hold generally. In
two dimensions the exact answer is Pq=, —,

' and in
three dimensions our scaling analysis yields P,

Thus the concept of an extrapolation length
X seems to have no validity outside of mean-field
theory. The result of the phenomenological theory
concerning spin correlations in the surface is more
nearly correct: The mean-field calculation yields
a finite cusp for Xz & and we find a weak singularity
(0-y~ ~ —,') in three dimensions (for d= 2, y~ ~ has
a logarithmic divergence). The weakness of the
singularity is not due to a finite correlation range,
however, but to a large exponent g in the surface,
even in molecular -field theory. This point was
misinterpreted somewhat by Mills, although his
calculation is correct.

From the above discussion it is clear that ac-
curate measurements of the surface magnetization
and local response X» would be of great interest,
since one can make concrete predictions concern-

FIG. 1. d-dimensional Ising film of N& layers shown
schematically in cross section. Each vertical line repre-
sents a (d -1)-dimensional layer, with coordinate p.
The layers are indexed by n, which goes from 1 to N&,

or by z, going from 0 to (N~-1)a. An arbitrary point is
denoted by the vector r', or the pair (p', z '). For many
purposes it is sufficient to give the two numbers g'
=—I r' ) and 8', the angle with the normal to the surface.
For N& the system is a half-space with a free surface
at z =0.

ing their critical behavior.
In Sec. II the phenomenological theory of mag-

netic systems with surfaces is reviewed, first
from the general Ginzburg-Landau point of view,
and then using the molecular -field approximation.
With the additional length parameter ~ mentioned
above, all the thermodynamic quantities and spin-
correlation functions can be calculated, for films
and semi-infinite systems. The parameter g can
in general be either positive or negative and its
calculation in terms of microscopic quantities is
possible only in simple cases. Generally speak-
ing, for spin systems ~ is shown to be of the order
of the interaction range, in contrast to supercon-
ductors, where A is much larger than any other
length in the system (see Sec. IIB4). In Sec. III
precise definitions are presented of the new expo-
nents which arise near a surface. Section IV dis-
cusses the various exact theories for magnetic sys-
tems with free surfaces. In particular, a review
is given of the results of McCoy and Wu'0 on the
Ising half -plane with nearest-neighbor interactions.
In addition, an exact reformulation is described,
in which the d-dimensional half-space is separated
into the bulk system, plus a (d —1)-dimensional sur-
face system, with a complicated temperature-de-
pendent interaction. In Sec. V a scaling theory is
postulated for this surface system which yields
relations between the exponents of the half-space.
This scaling is shown to hold exactly in two di-
mensions, and to be completely consistent with
molecular-field theory in four dimensions. Sec-
tion V also contains a discussion of the scaling of
correlations near the surface and of Fisher's the-
ory of scaling in finite systems. ~~ In Sec. VI the
high-temperature series for the Ising half-space
in two and three dimensions are presented (to
tenth order for d= 2 and to eighth order for d= 2).
The resulting exponents are calculated and shown
to be consistent with exact results and scaling the-
ories, where applicable. All of the remaining ex-
ponents are then determined by using the previ-
ously derived scaling relations. The exponent val-
ues are given in Tables II and VII. Section VII
summarizes the main results of the present work.

Let us note, finally, that although we consider
only Ising models explicitly in this paper many of
our results also apply more generally, e. g., to
superfluid helium.

II. MEAN-FIELD THEORY

A. Generalized Landau Theory

Let us consider a d-dimensional spin system
consisting of N& "layers, " each one of which is an
infinite (d —1)-dimensional system (see Fig. 1).
We shall assume for concreteness a simple-cubic
lattice with spacing a. The layers are indexed by
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n, which goes from 1 to N&. When Nl goes to in-
finity the first layer is a free surface in a semi-
infinite system. Let the coordinates of a lattice
site be denoted by (p, z), where z = (n —1)a and p is
a (d —1)-dimensional vector within each layer; we
shall often denote the pair g, z) by the vector r,
and the spin at r by 0;,= 0», „=0;.

For an infinite system the Landau theory' is
characterized by a free energy

F=f dr(Am (r)+Bm (r)+C[V-„m(r)] }, (2. 1)

where

correlation length for t & 0:
1/2 (C/ )1/2 t 1/2 t & 0

and the constant

b=2B/C .

(2. 10)

(2. 11)

The spin-spin correlation function

C(r, r') =—(g- o-, ) (2. 12)

is the solution of the linear differential equation

—V; C(r, r')+ g C(r, r') = a5(r —r'), (2. 13)

m(r) = (a;),
A = n(T —T,2)/T, 2

= nt, -
(2. 2)

(2. 3)

with the boundary condition

—C(r, r')=z 'C(r, r'), z=o
Bz

(2. 14)

and cy, B, C, and T+ are constants.
For a finite slab of length

Lg= aNj,

the generalization of Eq. (2. 1) is'
(2.4)

F= J dp f 1dz{Am (r)+Bm (r) C+[V;m(r)]}+F ,1

(2. 5)
where the surface contribution I'& is expanded in
even powers of the local magnetization, and only
the first term is retained, i. e.,
F1=CA J dp[m (p, z=o)+m (p, z=L1)] . (2. 6)

Equation (2. 6) introduces a new phenomenoiogicai
parameter X, with dimensions of length. We show
in Eqs. (2. 8) and (2. 9) below that Eq. (2. 6) is
equivalent to a boundary condition on m(z). For
many purposes it is possible to neglect variations
within the layers and to replace m(r) by its average
over p, which we shall denote simply by m(z).
Then Eq. (2. 5) becomes

and a similar boundary condition at z = 0. The
above equation is valid for T ~ T, in the semi-in-
finite system. The boundary conditions on the

other variables are the usual ones-that the cor-
relations should go to zero at infinity (for T & T,).

The phenomenological theory with the one new

parameter ~ leads to many interesting conse-:
quences, "of which we shall list the most signifi-
cant.

1. Magnetization at the Surface

In the semi-infinite system the value m1-=m(z = 0)
of the magnetization in the first layer may be ob-
tained quite simply from Eq. (2. 8), by multiplying

by m = Bm/sz, integrating with respect to z from
0 to ~, and using the boundary condition at z = 0
[Eq. (2. 9a)]. This yields

(m„—m1) + —,
' b(m„—m, ) + —,

'
X m1 = 0 .

(2. 15)
For positive surface energy (X & 0) we have

1
4 BmE~ dzAm z+Bm z+C

Bz
0

+ C~ '[m'(z =O)+m'(z = L,)] . (2.7)

m„= m2= (- t) ($2 b)

and we obtain, for t&0,

m1=~(2b) "'(,'(-t)=(~/g)m, , t-O- (2. 16)

The parameter g is not specified for the moment,
and in fact even its sign is not determined a priori.
The spatial distribution of magnetization may be
obtained by solving the Ginzburg-Landau equation

B2
4 tm(z)+bm'(z) —,=O,

BZ

with the associated boundary conditions

Bm
BZ

m=0 z=0

(2. 8)

(2. 9a)

Bm
+Z m=o,

Bz
(2. 9b)

Equations (2. 8) and (2. 9) are obtained by functional
differentiation of Eq. (2.7); we may introduce the

where for t&0

&
'=- (~/2. ) (- t) = —.

' (.'(- t), t&O. (2. 17)

For negative surface energy (X & 0), we have m„=0
for T & T, 2 (t & 0), and a magnetization at the sur-
face first appears at a reduced temperature

t.= ($2/&)' . (2. 18)

The behavior of m& in the temperature interval
0&t& t„ i.e., T, &T&T,(1+t,), may also be sim-
ply obtained from Eq. (2. 15), putting m„=o. We

find

m1—- (2/b)2) (t, —t) /, t t, . (2. 19)

As t-0' (T- T,'), m, tends to (2t, /b $t)'/ and the
bulk of the material becomes ordered. It is inter-
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t (Ll) (2~0/Li ~),

t,(Lg)= —(w Eo/Li) Lg» X .

(2. 2o)

(2. 21)

For x & 0, the transition temperature is raised:

esting to note the difference in critical exponent
for the surface and bulk magnetizations for ~ )0,
namely, m(, ()(:(-t) and mq~(-t). For X&0, on
the other hand, we have m~()(: (t, —t) ~ z.

2. T, Shift for a Film

For a film of finite thickness L~, Eqs. (2. 8) and
(2. 9) may be linearized and solved to find the shift
in transition temperature, t, = (T, —7', 0)/T, o,
where T,o is the bulk transition temperature [Eq.
(2. 3)]. e quote here the results of Refs. 8 and 9a
(in our notation, e. g., L~= 2d): For X & 0, the tran-
sition temperature is lowered:

where the surface free energy is

F,= —[c(-t)"'/34 b) . (2. 28):

(2. 29)

which diverges as t-0 with an exponent

(2. so)

4. Correlation Function

For positive X, Eqs. (2. 13) and (2. 14) for the
correlation function in the semi-infinite system
were solved by Mills. The result is, in our nota-
tion,

C(q, z, z') = [a/2y(q)] (1 —I'e """) e "'~"' ' ',

Note that F, is not equal to F, in Eq. (2. 5).
Differentiating I', twice with respect to T we find

the surface specific heat

C, = (C/4 (' bT, ) (- t) '

(2. 22) z+z (2. 31)

t (L )~L -L (2. 24)

where v= —,
' is the exponent of the correlation

length. This scaling result, which follows from a
correct molecular-field theory, was first obtained
for the analogous case of superfluids by Ginzburg
and Pitaevskii, ' and for magnetic systems by
Brodkorb and co-workers. We shall discuss Eq.
(2. 24) further in Secs. II8 3 and V below.

3. Surface Specific Heat

Let us calculate the specific heat of our system
for X) 0. The free energy per unit area in the lay-
er for t& 0 is given by

E=C ~ t 0 m z+~bm z dz'

+Cg [m (0)+m (L )] . (2. 25)

Since from the solution of Eq. (2. 28) m(z) only dif-
fers from its bulk value m(, = (- t/$0 b) ~ over a re-
gion of length ( from the surface, we can easily
show that

F=Lq(~ tc)0 m~) —2cmqg/SX = L~Fe —(2C/3$ b),
(2. 26)

where Fz= —,'Ct Eo m)) is the bulk free energy per
unit volume (more precisely, the free-energy dif-
ference between the disordered and the ordered
states}. For the total system with volume 'U, the
free energy is

Fc.c = &(Fe+2Li'F.) (2. 27)

(2. 23)

The result in Eq. (2. 23), which is independent of
L), was already obtained for L~- ~ in Eq. (2. 18).
It is interesting to note that for ~ & 0 and large L&

we have r(q) = $0'(t+ q' $0)"',

r = r(q) = [I -xr (q)]/[ I+ ~y(q)],
(2. 33)

and C(q, z, z') is the Fourier transform of C(r, r )
with respect to the (d —1)-dimensional coordinate
difference p —p' in the layers:

Z(z, z') Jl(Z, e., Z(q, z, z')e' ''
277)

(2. 34)

For z and z deep in the bulk, i.e., for z, z» $,
it was shown by Mills' that C(q, z, z ) depends on

z -z and may be Fourier transformed with re-
spect to this variable. If q, is the corresponding
wave vector we obtain the usual Ornstein-Zernike
form+:

(2. s5)

where

2=2 2
Q =Q).+0 ~

For z =0 we have, from Eq. (2. 31),

Cq(q, z}—= C(q, z, z =0) = [a/2y(q)]e "(+'(1—I') .
(2. s6)

Let us calculate its Fourier transform:

C,(p, z)=J|
(2 ), , e"""'C,(q, z), (2. 37)

with p =
I p —p I. Since Eq. (2. 36) for C,(q, z) is

only valid for small q, we must integrate Eq.
(2. 37) to some upper cutoff q, = $0'.

C(q z z ) [a/2y(q)] (e) (0 (4 I e ) I '~ )

0 & z & z' (2. 32)
where



K. BINDER AND P. C. HOHENBERG

We shall calculate C(p, z) for correlations paral-
lel and perpendicular to the surface, respectively,

C„(p)—= C~(p, z =0) = ij, ~, e""
(2')

x(aA) [1+Ay(q)] ~ . (2. 38)

For simplicity, we shall evaluate the integral for
a one-dimensional surface, i.e., d=2, since in
the phenomenological theory the dimensionality
should not affect the critical exponents (we must,
however, drop the normalization factor g in front
of the correlation function):

C„(p)= (A/v) f ' dq cosqp [1+ (A/$0) (t+ qz gz~)
~t 2] ~ .

(2. s9)
We are interested in the contributions to this in-
tegral coming from q «(o =q„so we may expand
the denominator. The first term only has contri-
butions near q = q, and is not of interest, and the
next term may be integrated by parts to yield

C„(p)-(X't/4 m) f dx cosa[(t p'/&o)+z'] "',
0

(2. 4o)
where the upper limit of the integral g, =q, p has
been set to infinity for p» $0- q, . The integral in
Eq. (2.40) is a Bessel function 3 and we find

C,(z) = (~/zz), z«$

C,(z) = [X/(2wzg)"'] e ", z» & .

In terms of the exponent g„defined by

C.(z)=z '"'f(z/5),
we find here

gJ 1

(2.46a)

(2.46b)

(2. 4V)

(2. 48)

for both d = 2 and d = 3.
As stated above, the susceptibility in the sur-

face, namely the response of a surface spin to a
field acting only in the surface, remains finite at
T, . In fact, it has a cusp, as can be seen from
Eq. (2. 36):

I aA,
C„(q= 0) = Cg(q=0, z =z =0)-—

(2. 49)
On the other hand, the response of a surface spin
to a uniform field is divergent. Indeed, let us de-
note this response by X &, we have

since y(q)-0. The integral is then straightforward
and we find, for d=3,

C.(z) = (&a/»z') (1+z/() e *" (2.45)

and, for d=2,

c„(p)= (z'/v) ((p) -'Ic,(p/g),

which has the limiting behavior

c„(p)-x'/vp', p« $

(2. 41)

(2. 42a)

X,-f dpf dz C(p, z)=f Cz C(q=o, z)
- (aX)$ « t (2. 5o)

Cll(P) ~r '~y '/II= 2
y

t=0 ~ (2. 43)

Because of the rapid falloff of the correlations at
T„ the parallel susceptibility X», which is pro-
portional to C~(q=o, z =0), remains finite at T,
(see below) even though the range of correlations
is infinite. As mentioned in the Introduction, this
point was missed by Mills [see discussion after
Eq. (28) of Ref. 9], who attributed the finiteness of
the susceptibility to a finite correlation range.

Let us calculate the perpendicular correlation
function, namely,

dq
C&(z) =Cg(p=0, z) =

( )q ~ Cq(q, z) .
~I

(2.44)

Using Eq. (2. 36) we see that for large z and smail
t the integral is entirely dominated by small q and
we may replace the term [1+Xy(q)]

'
by unity,

C„(p)- [&'/(2z)p')"'] e r", p» $ . (2. 42b)

From Eq. (2.42) it is clear that the range of cor-
relations is the bulk correlation length $. At T„
however, the parallel correlations die out as p ~,
rather than being logarithmic, as they would be in
a bulk two-dimensional system. In terms of the
usual exponent g we have for parallel correlations

where we have used Eq. (2.45) for d= 3. If in anal-
ogy with the bulk exponent y we introduce exponents

yy, g and yg

Xi, ~=X&,it a & t-00 (2. 51)

X&=X&t t-0 (2. 52)

then we see that according to Eqs. (2.49) and (2. 50)
we have

y, ,= ——,
' (finite cusp),

1
yi 2r

(2. 5s)

(2. 54)

whereas, of course, in the phenomenological the-
ory y= 1. As discussed in Sec. IIIA below we may
also define a surface susceptibility in analogy with
the surface specific heat, Eq. (2. 29). In the pres-
ent case its exponent turns out to be

yg 2

8. Molecular-Field Approximation

(2. 54a)

The preceding discussion was entirely phenome-
nological, and was based on the usual parameters
of the bulk Landau theory ($o, T,o, and b, say),
plus the additional parameter X. Since this param-
eter determines the surface behavior completely,
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The function J0 is the interaction in the bulk, which
we suppose has a range R defined by

J dr r'Jo(t)
(2. 5V)

J dr Jo(r)

Note that the length 6 must be at least as large as
R. In terms of J0, the bulk transition temperature
is given by

(k Tz,) '=a'f dr Jo(r)=Z J~(r} . (2. 58)

We may define the length X by requiring the function
m(z) to be of the form~s

m(z)=mq(I+X/z) for 5&z& ( . (2. 59a)

Far from the surface, i.e., for z» $, we have

m(z) = m, , (2. 59b)

jt is natural to attempt to estimate its magnitude.
In particular, we may try to use the molecular-
field approximation to calculate ) from the start-
ing Hamiltonian, just as one can calculate the pa-
rameters of the bulk Landau theory in simple
cases. +

A general formula for g has been given by
de Gennes, in the context of the Ginzburg-Landau
theory of superconductivity. Let J(r', r") be the
exchange interaction acting between spins at r' and
r . Then in the molecular-field theory the transi-
tion temperature is given by the largest eigenvalue
T, of the linear equation

}t T
m(r)= J dr'd(r, r')m(r'), (d 55)

where a ' f dr' denotes a sum over all the spine in
the half-space. (Only for long-range potentials
can the sum be replaced by an integral, but we
shall use the integral notation in the general case. )
Let us suppose in general that the interaction is
modified by the surface over a finite distance 5,
i.e., that

J(r r')= Ja(lr r'I) for z, z'&5 . (2. 56)

1. Interaction Unmodified by Surface

The simplest case to consider is

J (r, r') = J() (r —r'), z, z' & 0

J(r, r')=0, zorz&0

(2. 61a)

(2. 6 lb)

i.e., when the only effect of the surface is to create
"missing bonds. " Then let

F(z') -=(kz Tc) ')~ —,J(r, r')

-=(d r )'J(r-r rdr(~lr-r'I),a" z&0.

(2. 62)
If Jo has a range R [Eq. (2. 5'7)], then F(z ) is a
function of the form

because of Eq. (2. 56). This expression for Z
' is

analogous to the formula for the phase shift and
scattering length in a scattering problem, using
effective-range theory. If the exchange interac-
tion is modified by the surface over infinite dis-
tances, as it probably is in an itinerant-electron
system, then the extrapolation length X is prob-
ably not a useful concept. It is clear from Eq.
(2. 60) that if the interaction is sufficiently large at
the surface compared to its bulk value, then g will
be negative, and the surface region will order be-
fore the bulk, as is to be expected intuitively.
However, even in the present molecular-field ap-
proximation one cannot, in general, derive the
condition for the appearance of ordering in the sur-
face (i.e., for X

' & 0}, since Eq. (2. 60) for X de-
pends on the unknown function m(r'). For the sim-
ple case of nearest-neighbor interactions this con-
dition was found by Mills, as we discuss in Sec.
IIB2 below. %e have also analyzed this problem
using high-temperature series expansions, and
shall report our results elsewhere.

In order to elucidate the microscopic significance
of the length A, we shall discuss a number of simple
cases.

Clearly at T, this latter region is absent, since
A formal expression for A. has been derived

by de Gennes (Ref. 25, p. 230); in our notation it is

F(z') =1, z &eR

F(z') = —,'(1+z'/cR), 0 z' - cR

(2. 62a)

(2.68b)

=(mqkz T,AR az/2d) ~

x f dr dr [Jo(r —r ) —J(r, r')] m(r'),
(2. 60)

where A is the area (volume) of the (d —1)-dimen-
sional surface and the r integral is over all space,
including z & 0 [note that J'(r, r ) = 0 for z &0]. This
general expression is of course only a rewriting of
the integral equation (2. 55), since it involves the
unknown solution m(r ). It is a convenient expres
sion, however, since the integral only contributes
within a finite layer (of thickness 5) of the surface

where c is a constant of order unity. Now Eq.
(2. 60) may be integrated with respect to r and with

respect to the component p' of r, parallel to the
surface, yielding

y '= (2d/Rzmq) f dz' [1 —F(z')] m(z'), (2. 64a)
0

y ~ = (d/R mq) f dz' (1 -z /cR) m(z') . (2. 64b)
0

Equation (2. 61) implies that the length 6 [Eq. (2.56)]
is of order R. Choosing 5 = cR, we may rearrange
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Eq. (2. 64) to read

R/(X+ cR) = cd J dx (1 —x) f (x),
0

where

(2. 65)

range (R» a), so that Eq. (2. 55) can indeed be con-
sidered an integral equation. We shall treat two
cases.

(1) g(Z ZI) g e I@8 Iv 2/Z

f (z'/R) = m(z-')/m(R) . (2. 66)

The function f is positive and goes from a value

f (0) lying between 0 and 1 to f (1)= 1. Therefore,
the right-hand side of Eq. (2. 65) is a positive num-
ber of order unity, and it follows that g is of order
R, i. e.„ u, r, = WZZR/a (2. 78)

We assume that J(z, z ) = 0 for z or z' & 0. The in-
tegral equation for m(z) [Eq. (2. 55)) may be solved
exactly by Wiener-Hopf techniques. The smallest
eigenvalue, (kz T,) ' (corresponding to the largest
temperature), is

A. = cR, (2. 67) and the corresponding solution is
with c& 0 of order unity. Thus an interaction with
range R leads to an extrapolation length g which is
also of order R.

2. Nearest-Neighbor Interactions

For nearest-neighbor interactions Eq. (2. 64) may
be calculated completely by carrying out the sums
over r and r' in Eq. (2. 60), remembering that
a jdz=g, . The function E(z ) of Eq. (2. 62) has
the values

(2. 68a)

(2. 68b)

where g is the number of neighbors. Then Eq.
(2. 64a) only has a contribution at z = 0, and the un-
known constant m& = m(z = 0) drops out. The result
is

=(2da/R f) =a

since R= a and g = 2d in a simple-cubic lattice.
This result was derived directly from Eq. (2. 55)
by Mills. Moreover, it is easy to see that if the
coupling in the surface layer is Z(1+ 6) Eq. (2.64a)
implies

(2. vo)

which is also Mills's result [Eq. (6b)]. Thus for
nearest-neighbor interactions in a simple-cubic
lattice the extrapolation length & is just equal to the
lattice spacing a (for 4 = 0), and the condition for
the appearance of surface ordering is g '= 0, 1.e.,

b 1
c (2. Vl)

A more exact calculation, using high-temperature
series, yields 8

~,=0.6

for this case.

(2. 72)

3. One-Dimensional Case

For certain simple potentials in one-dimensional
systems the integral equation (2. 55) can be solved
completely, and the length A. obtained from the so-
lution. These potentials must of course be of long

m(z) = m, (1+z V 2/R), (2. V4)

which retains the linear form up to the surface.
By comparing Eq. (2. 58) with Eq. (2. V4) we find

x=R/W2. (2. 75)

t.(Z, ,) = —(v'R'/21. ', ) = —v'~,'/I, ', , (2. 77)

which agrees with Eq. (2. 21). Thus the effect of
the finite boundaries is not only to change the in-
teractions (i. e., the number of neighbors seen by
the spins near the surface), but also to distort the
eigenfunctions. If only the first effect is taken into
account, the shift in transition temperature is pro-
portional to the fraction of missing neighbors,
which is of order R/I. ~. This is the answer re-
ferred to by Fisher as the "naive mean-field pic-
ture. " In fact, however, the eigenfunction is also
modified by the surface, and there is a much
smaller shift, of order (R/L~) This scalin. g re-
sult [cf. Eq. (2. 24)] is a direct consequence of the
existence of an extrapolation length A., and it fol-
lows directly from the molecular-field Ornstein-
Zernjke theory.

(ii) J(z, z') = J'(cosh[v(z -z')/R]] ' . (2. VS)

This interaction also leads to an exactly soluble in-
tegral equation in one dimension. The solution
at Tc ean be shown to be '

m(z) = m, e"~ '"P,q, (e"~"),
which has the asymptotic behavior

(2.79)

m(z)=m, [l+(v/82)' '(z/R)' '+ ~ ~ ], z«R
(2. 8Oa)

and

For a film of thickness I.&» R, we may find the
smallest eigenvalue of Eq. (2. 55), whose eigen-
function has zero slope at z =

& L&. From the com-
plete set of eigenfunctions it is readily seen that

( ) (~
~

&&2 ~2/ )
sin(l t, l z&2/R)

c
(2. 76)

where
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temperature' for a film of finite thickness L1,
since )t& $, even though L, ~ $o. Of course, very
near T, the length $ becomes infinite, and we will
have a very small shift in T, given by Eg. (2. 20),
namely,

(2. 83)

Such an effect has been discussed for supercom. -
ductors by Naugle, Glover, and Moormann, ~ both
theoretically and experimentally.

III. PRECISE DEFINITIONS OF EXPONENTS

z/R

FIG. 2. Magnetization of T~ as a function of position,
according to the molecular-field theory in a one-dimen-
sional system with interaction given by Eq. (2.78). The
behavior is linear at large z, with an extrapolation length
g= (4 ln2/v)R, bnt there is a deviation from linear be-
havior at small z.

m(z)=m, [(32) ~ 1n2/oj (1+hz/4Rln2), z» R .
(2. 80b)

Thus for this potential the extrapolation length is
given by

) =(4in2/o)R . (2. 81)

&o/a» &o (2. 82)

For a spin system, on the other hand, both the
range R of $ and the range of influence 5 of the
surface are typically of the same order, so that x
is also of order R or fo. It is the electronic na-
ture of the superconductor which leads to the very
large extrapolation length in Eq. (2. 82). In that
case there is essentially no shift in transition

The eigenfunction is not a straight line in this case,
as can be seen from the plot in Fig. 2.

4. Case of Superconductors

The BCS theory of superconductivity is, of
course, a molecular-field theory, but the kernel
of Etl. (2. 55) is not a simple function of the form
considered above. The range of Jo(lr —r l), de-
fined in Etl. (2. 5V), is the BCS coherence length go,
which is much larger than the interelectron dis-
tance a-)'z~'. On the other hand, the function F(z )
of Etl. (2. 62) (which describes the range over which
the surface influences the kernel) differs from unity
only over a short distance, of order a. The length
~ is basically the ratio of the second moment of
clp (i.e., 4) to the distance over which the surface
modifies the zeroth moment, namely,

In Sec. II we have seen that critical behavior is
severely modified in the presence of a surface,
even in the molecular-field approximation. In or-
der to study the effect of a surface more exactly it
is necessary to define a certain number of new
critical exponents, some of which have already
been considered.

H

has the exponent n, :

C, -C, t

(3.2)

(3. 3)

Similarly, there is a surface susceptibility y, with
exponent y, .

These exponents were denoted n" and y" by Fish-
16

In addition to these surface quantities, which are
defined in terms of the asymptotic behavior of the
total free energy or total susceptibility for large N,
one can define "local" quantities by considering
averages of local operators. For example, the
magnetization in the nth layer is

m„=(cr», „) . (3.5)

Clearly, this expression is independent of the co-
ordinate p, and it defines an exponent P„:

m„-m'„ t", t- 0' . (3.6)

Vfe may now define local susceptibilities as the re-
sponses of m„ to different magnetic fields. If we

A. Thermodynamic Quantities

Consider the system discussed in Sec. IIA, con-
sisting of Nt layers, each of which is a (d —1)-
dimensional system of N* = N/N, particles. For
large N the total free energy of the system F„has
the form

lim FN(T, H) =NFL(T, H)+2N+ F,(T, H)+ ~ ~ ~

(3. 1)
Etluation (3. 1) defines the surface free energy F„
for which the usual critical exponents may be con-
sidered. For example, the surface specific heat
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first consider a field H which acts uniformly
throughout the whole system then we have

tern„x.=
I,

with exponent y„:
t", t 0' .

(S. '?)

(3. 6)

For fixed T & T, we define the tme correlation
range g, by the relation

Cg(r, 8) - f(r, 8)e '&"' t&0 (S. 16)

where f (r, 8) decays more slowly than an exponen-
tial. Interesting special cases of Eg. (S. 16) are
the cases of parallel correlations (8 =-,'v),

(em„"" =I( ee„ (S.Sa)

(s. 9b)

In terms of the correlation function [Eq. (2. 12)],
we have

If, however, we apply a field H„only to the spins
on the nth layer, then we have a different local sus-
ceptibility,

h, ~
(t)-=k„(t)- h'„t ", t-0'

and perpendicular correlations (8=0),

4(t) =- g,(t) - ~', t ", t- o' .

(S. IV)

(S. 16)

In addition to the true correlation range we may
define effective correlation ranges in terms of
moments of the correlation function. These are the
quantities which can be easily evaluated from se-
ries expansions; they are

X„=(kzT) ' Z C(p, n; p, n ) (3~ 10) ]!-=-' x
' ~"c (p, )- (&')'I t

I

'"' (s. i9)

X„„=(kz T) Z C( p, n; p', n) .
pl

(3. 11)
X-, Z p'Cg(p z)-(5'.)'Itl '""

(s. 2o)
It is also easy to show that (2 d -l [(z + (d I) ]2] (]0)2I tl

-zv (3.21)
Ng

x.= »m —~ (x, -x.)
1

Interface Free Energy

(s. i2)

As mentioned in the Introduction, it is important
to distinguish the surface free energy from the in-
terface free energy, which is defined for a bulk
system and calculated '" by taking a ladder of N&

horizontal bonds, say, which have a reversed sign
of the interaction —J. Then the total free energy
for N- oo can be written

»m It g = ~~+g + &g +(.. .
g» gy

~' iat ~ Oint ~

(s. is)

(3~ 14)

C, (p, z) = C (r, 8) =- C(p = 0, z = 0;p, z) . (3. 15)

where E„,is the interface free energy and o„, is
the interface tension (misleadingly called surface
tension). In general F„,and F, are different (see
Sec. IVA).

B. Correlation Exponents

Let us consider the correlation function C(r =0;
p, z) between a spin at the surface ( p = 0, z = 0)
and an arbitrary spin at a distance p„g. In contrast
to the case of an infinite medium, this correlation
function will depend sensitively on the orientation
of the vector (p, z) even near T, . Let us denote
the magnitude of this vector by r and its angle with
the normal to the surface by 8 (8 = ,'n for z = 0—,

8 = 0 for p = 0) and write

For the bulk correlation function on a cubic lattice
it can be shown (see Ref. 46 below) that the true
and effective correlation ranges are asymptotically
equal as T - T, .

For T = T, the correlations decay according to a
power

C,(r, e) -,.„„, , t=Ox(e)
/let OO V

(3.22)

which again leads to the special cases q, and q„.
We note that throUghout this discussion of the cor-
relation function we have held one spin fixed at the
surface (n = 1) and have suppressed the index 1 on

all exponents, which should be there for complete-
ness in analogy to Eq. (3.6) or Eg. (S. 10). The
necessity for introducing this large number of new

critical exponents should be apparent already from
the phenomenological theory considered in Sec. II.

IV. EXACT RESULTS

A. Ising Half-Plane

The most interesting exact results concerning
surface effects are contained in the remarkable
paper of McCoy and Wu'0 (hereafter referred to as
MW) on the Ising half-plane with nearest-neighbor
interactions. These authors succeeded in solving
the problem exactly in the presence of a field H&

acting on the surface spins alone. They thus calcu-
lated many of the critical exponents def ined in

Sec. III and, moreover, found the correlation func-
tion C„ for arbitrary separations between the spins
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m, = —2~ 'ch, in(ct+h', ),

where~a

c —e4z/Ihpr~ 1 ~p

c = 8J/he T, = 2 ln(1+ v 2) .

(4. 2)

(4. s)

(4.4)

[Note that there is a misprint in MW (5. 29); the
second term on the right-hand side should contain

za~
' and not ~zl~, as can be seen from MW

(5. 26). ] It follows from Eqs. (4. 1) and (4. 2) that
the zero-field susceptibility is

= —271 c Initi.
Bh,

(4. 5)

The surface free energy has also been calculated,
and the surface specific heat is given by'0 " [MW
(4. 45)]

C, =(4v) 'c(- t) '. (4. 6)

As pointed out by MW, this specific heat comes
from an entropy which diverges at T„unlike the
bulk entropy. Moreover, the specific heat C, is
negative above T„and there exists a "latent heat"
[MW (4.46}]whose physical significance is obscure.
It is interesting to contrast the surface free energy
leading to E)I. (4. 6) with the interface free energy
[Eq. (S.18)], which for the two-dimensional case
has the values"

Q] —0 t&0

E] ~ —t, t&0.

(4. 7)

(4. 8)

From E)Is. (4. 7) and (4. 8) it is clear that the in-
terface specific heat does not diverge at T,. Let
us write down the critical exponents which follow
from the above results:

on the surface and arbitrary values of the tempera-
ture and magnetic field 8,. Since their paper in-
volves extremely complicated calculations, it is
sometimes difficult to recognize the important
physical results. We shall therefore summarize
these and transcribe them into our notation. We
specialize their results to equal interactions
among all spins and to the vicinity of the critical
point (which is the same as in the bulk system).

Thermodynamic Quantities

The boundary magnetization m, has been evaluat-
ed as a function of t= (T —-T,}/T, and h, = H, /k~-T, .
The results are [cf. IVlW, (5. 29) and (5. SO)] for
t&0

mq = c / c / ( —t)'/ sgnh& —2v ~ch~ln(- ct+ h~~)

(4. 1)
and for t&0

(4 ~ 11)

(4. 12)

In addition, MW have calculated the magnetization
in interior rows. In particular they find for the
second row (MW, Sec. IX)

1
2 (4. is)

and they conjecture that P„= —,
' for all finite n. Since

for the bulk we have P =~~, )~ it is clear that the

range of temperature over which m„ follows the
exponent P„must go to zero as n grows large.

It is interesting to compare the exact result
P~ =~ with that derived in Sec. II using the con-
cept Iof a temperature- independent extrapolation
length X. From Eq. (2. 16) we have

m, = (~/g)m, ,

which impbes

(4. 14)

(4. 15)

2. Parallel Correlations

The parallel correlation function C„(p, t, h~) has
been calculated exactly. Let us write down the
explicit answer for interesting limiting cases,
taking the lattice spacing a to be unity.

a. h, =0, p-~, tfixed. Inthis case we have

[MW (8. 41) and (8. 52)]

( t 0) 8 (2~)-1/ ]li -s/8 -))/0)) (4. 16)

for both t & 0 and t & 0, where, of course, m& = 0
for t & 0 and where

g„-=(c) 'l t I
'= g„l t l

"" (4. i7}

is the parallel correlation length. Note that both

g„and the coefficient which occurs in front of the
exponential are entirely symmetric for t & 0 and

t & 0. This is in contrast to the situation in the
bulk two-dimensional case, ' ' but entirely con-
sistent with the results of Fisher and Camp" (see
Sec. IVC).

b k~=0, p-~, . t-O, p/$„ fixed. In this case
we have [MW (8.87) and (8. 88)]

C„(p, t, )0= mq+ vc p F (p/)„)

P&=P+v .
Since for two dimensions P =~ and v= 1, we would
have P~ =~~, which is even larger than the molecular-
field answer P~ = 1 [Eq. (2. 16)], and completely dif-
ferent from the exact result. We conclude that the
surface magnetization is not in general determined
by a temperature-independent boundary condition.

1
2 7

yq, q= 0 (logarithm),

(4. 9)

(4. iO) again for t&0 and t&0, where
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F(x) = x-j dy y 'Ã, (y), (4. 19)

K,(y) being a modified Bessel function. The func-
tion F(x) has the limiting values

F(x)- (./2)"'x-""-", x»1
F(x)- 1 ——,'x lnx,

(4. 20a)

(4. 20b)

C„(p, O, hg)=my+(4m c hqp) (4. 21)

where we have used MW (8.92). It is interesting
to note that for t = 0 the correlations decay ac-
cording to a power law for fixed h& at large p, in
contrast to the situation for A,1=0 and fixed t.

d. i=0, hq-O, p-~, hq p fixed. In this case,
according to MW (8.90)-(8.9V), we have

C(p, 0, hq)=mq+4v ' c' p
' G(phd),

where

(4. 22)

Therefore Eq. (4. 18) goes precisely into Eq. (4. 16)
when p» g„. This suggests that the correlation
function satisfies strong scaling ' in this case, as
it supposedly does in the bulk.

c. t=O, p- ~, hq fixed Fr.om MW (8.81) we
have

Moreover, it can be verified that the values of
$, , are the same as those of $ for the bulk above

S4, SSc'
This completes our presentation of the results

of MW'. We shall discuss some implications of
these results in Sec. V. The perpendicular cor-
relations were not calculated by MW, and they are
clearly more difficult to obtain. It seems feasible,
however, to find C,(e) at T, , which would be an
interesting result, since it would yield g, . In Sec.
VI B we shall derive a scaling estimate for this
exponent.

B. Reduction to a Pure Surface Problem

In this section we shall derive an exact trans-
formation of the d-dimensional half-space into a
problem involving only the (d —1)-dimensional sur-
face, plus the bulk problem. It will turn out that
the interaction between the spins in the surface
will be very much more complicated than the sim-
ple Ising interaction of our starting system, but
certain exact statements can be made about this
Hamiltonian. Let the starting interaction be writ-
ten in the form

d
G(x) =g(x) -4c'x g'(x) -x

dxP
(4. 23)

R —= —JZ &( o'„it —Hg Z o, g

gal ~=1
(4. 30)

g(x) = f, dy e '" (y'+4c') ' . (4. 24)

[Note that g(x) is incorrectly given in 1VIW (8.9V),
where the factor of 4 is missing from the denomi-
nator. The correct form follows from MW (8.96).]
The function G(x) has the following limiting forms:

G(x)- v/4c,

G(x)- (16x'c') ', x»1.
(4. 25a)

(4. 25b)

t'(&i) = &i' . (4. 26)

Since the correction terms are not given explicit-
ly, we can also not assert that strong scaling has
been proved rigorously in this case.

It follows from Eqs. (4. 17) and (4. 18) that the
critical exponents are

V()=1=Vg y

1~I ~~15 &

and the exponent p„of f(/g, ) [Eq. (4. 26)] is

pn = 2= &o/8&5&, z

(4. 2V)

(4. 28)

(4. 29)

From Eq. (4. 25b) we see that for plP, » 1 Eq. (4. 22)
just reduces to Eq. (4. 21), which holds for fixed
h, as p-~.

This result suggests once again that strong
scaling holds at T, as a function of h„where the
correlation length is

where i= (o, , n) is a general lattice site in the sys-
tem, in the nth layer (n= 1, . . . , N~ ), and z labels
the position within each (d —1)-dimensional layer
containing M =N/N, sites The .vector 6 is a
nearest-neighbor distance, and the field H1 acts
only on the first layer (n = 1). The partition func-
tion

Z 2-E Q -x/ke T

{fy]=+1 )
(4. 31)

may be separated into a sum over the o, in the
first layer, o 1, and a sum over all the other o,
= o~, „with n ~ 2. In Appendix A we show that the
total free energy

F„=(keT)lnZ„ (4. 32)

may be written in the following form:

F~ = NF~(T) + N~F*(T, Hg),

where

F~(T, Hi)= (k T)2" Z e"
{ty+=+1)

(4. 33)

(4. 34)

N N

K* = —JZ oga*.;~ —H& Z o*+N*V*(T, {o*}),
(4. 35)

and o~ = o, is confined to the surface (n = 1), with
5* a nearest-neighbor distance in the surface. The
Hamiltonian K* contains a very complicated inter-
action energy V*(T, {o*}), which is defined in Eqs.
(A5) and (A6) and can be shown to remain finite
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TABLE I. Correspondence between surface system
and half-space.

Surface system Half-space

0/

pg

~f,i

Q!!+1
d-1

Mean field
d=4

when N*- , N&- , and T 4 T, . It is clear from
Eq. (4. 33) that in this limit we have

F*(T, Hg) = F,(T, Hg), (4. 36)

where F,(T, H, ) is the surface free energy [Eq.
(S. 1)] in the presence of a field Hj acting only on
the surface. Thus we have separated the partition
function of the half-space into the bulk partition
function, plus that of a system of spins on the sur-
face only, interacting via the temperature-depen-
dent Hamiltonian 3C~, whose free energy is I'* = I', .
Since the field 8&=-II" only couples to the surface
spins it is clear that the magnetization

~g SH*) r
(4. 37)

is just the local magnetization m&, and the sus-
ceptibility

(4. 36)

is the quantity y~ ~ defined in Eq. (3. 9). The cor-
relation function C*(r*, f, H*) is of course
C„(p, t, H, ). Thus we have a correspondence be-
tween the surface system (denoted by starred
quantities) whose interaction is complicated and
even singular at T, and the half-space studied in
Secs. I-III. %e may make a correspondence be-
tween critical exponents, as indicated in Table I.

The singular interaction in the surface system
can lead to a different type of transition. than in
bulk systems; e. g. , the entropy or internal energy
may diverge at T, . Nevertheless, we shall see
in Sec. V 8 that the scaling properties are pre-
served, so that some of the exponents of the
starred system may be inferred if others are
known. In any event, the relations derived in Sec.
IV are exact, since they only involve a formal
rewriting of the partition function.

C. High- and Low-Temperature Expansions

r' = (p', z') and r"= (p", z") be two points in the
system with p =- !p' —p" I, and let us specialize to
z'=z". This means that we consider only parallel
correlations, but for an arbitrary layer z'. Then
Fisher and Camp have shown that the correlation
function can be written in the form

C(p, z')=D p F(p, z')e '/ (4. 39)

where D and 4 are constants and where for high
temperatures and z' «p we have

F(p zl) p (] e (8 40) /BP) (4. 40)

@' = —,
'

(d —1)+d„ t&0

C& = —2(d —1)——,'d, , f &0

(4. 41a)

(4. 41b)

where d, = 0 for the bulk and d, = 1 for the half-
space. For t &0 and d=2, Eq. (4. 41a) yields @&

= z in accordance with Eq. (4. 16), but for f & 0 the
term with 4 &=0 obtained from Eq. (4.41b) has
zero coefficient D and the next term has 4~= 2, in
accordance with Eq. (4. 16). A similar "accident"
occurs in the bulk.

V. SCALING THEORIES IN SYSTEMS VGTH SURFACES

Scaling theories seem to be extremely accurate"
(perhaps even exact!) for bulk Ising models in
two and three dimensions. It is therefore interest-
ing to attempt to generalize these theories to
systems containing surfaces. Such generalizations
are particularly desirable since they yield re-
lations between critical exponents and permit es-
timates of otherwise unknown exponents in terms
of calculated ones. We shall show examples of
such scaling estimates in the following analysis.

A. Scaling in Finite Systems

Fisher has presented a scaling theory appli-
cable to our layered system. He considers, for
example, the susceptibility y(T, Nq) for finite
thickness Nq» 1 and writes it in the form

y(T, Ng)=Ng "X(tNi/"), (5. 1)

with $"and e having dimensions of length. z~ For
low temperatures Fisher and Camp find that the
length $" in Eq. (4. 39) in larger than t', , so the
decay is slower. On the other hand, their result
refers to the first terms in a power-series ex-
pansion, and it is not clear to us how these results
apply near T, . For the special case of the nearest-
neighbor Ising half-plane, however, they confirm
the results of MW discussed in Sec. IVA2, namely,
$„=g~ for f &0, and g'„= 2$, = g, for f &0. More-
over, Fisher and Camp show that the exponent 4
in Eq. (4. 39) has the general form

For completeness, we mention here the exact
expansions of the correlation function near a sur-
face at high and low temperatures, which were
reported recently by Fisher and Camp. 36 Let

where

c(+1)
T,(Ng)

(5. 2)
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(5. 3)

r. =r+v (5. 4)

Equation (5. 2) defines a critical exponent X (de-
noted X by Fisher) representing the shift in transi-
tion temperature for finite thickness. [Of course,
strictly speaking, the exponent X is only defined by
Eq. (5. 2) for d ~ 3, since there is no transition in
two-dimensional strips of finite thickness. ] The
scaling ansatz (5. 1) implicitly assumes that the
bulk correlation length is applicable to the finite
system, i. e. , roughly speaking, that v, = v, .
From Eq. (5. 1) Fisher concludes that the surface
susceptibility exponent r, is either given by

In Sec. IVB we showed that the half-space can
be exactly reduced to a surface problem with a
complicated (singular) interaction between spins.
It is natural to assume that this 'Starred" (d —1)-
dimensional system satisfies scaling, i. e., that
we may write

) = I&'I' *f«*/ II *I'"*'*) (5.11)

C2(r2, t*, h*) = (r*)"' "'r[r*/g*(f), ~*/t.*(I*)],
(5.12)

where we have written

nomenological approach (Sec. II A) and the micro-
scopic molecular-field approximation (Sec. II B3).

8. Scaling for Surface Problem

or by

rs= r+1 . (5. 5) and

f*=t=(T—T )/T, (5.13)

The first case [Eq. (5. 4)] holds if

X&1,

and the second case [Eq. (5. 5)] if

(5. 6)

Il* = H*/I22 T, = H 1/k2 T, = hl . (5. 14)

It follows from Eqs. (5. 11) and (5. 12) that the scal-
ing laws hold:

(5. 7)

In the spherical model an exact calculation'4'6
yields

7=1, v& —-1 for d=3, (5. 8)

(5. 10)

in accordance with Eq. (5. 6), whereas' y, = 1.95
+0. 08, which is consistent with Eq. (5. 6), y, =y
+ v = 1.89. Qn the other hand, Monte Carlo studies '
of finite three-dimensionaL cubes seem to be more
consistent with ~= 1. Both the thickness of the
films' and the linear dimensions of the hyper-
cubes4' studied are probably too small to draw
firm conclusions, so the situation is not entirely
clear at present for the three-dimensional Ising
model.

The phenomenological theory of Sec. II yields
results which agree with both Eq. (5. 9) and Eq.
(5. 10) [cf. Eqs. (2. 24) and (2. 30)]. As remarked
earlier, the statement of Fisher'ethat A, = 1 in
mean-field theory only refers to the crudest esti-
mates, and completely neglects the important ef-
fects of correlations which exist both in the phe-

(5. 9)

with logarithmic corrections in the case d = 4. In
the two-dimensional Ising model and the three-
dimensional spherical model Eqs. (5. 4) and (5. 5)
are indistinguishable, since v&= 1, but the spheri-
cal model in higher dimensionality provides a con-
crete example for Eq. (5. 5). The numerical re-
sults for the d = 3 Ising case indicate that

2- o.*= p" (5*+I) = y*+ 2p" = d*v~= 2p~+1*(2-ll"),
(5.15)

It might be objected that scaling need not apply
to systems with long-range interactions (since
th'ese satisfy mean-field theory), and we do not
know the precise form of the interaction function
V*({a},T) [Eq. (4. 35)]. It turns out, however,
that such a scaling of exponents for the surface
system holds exactly in two dimensions, as can
be seen from the transcription given in Table I
(n2=1, p2'=-, y*=0, 5*=1, v*=1, ii*=2, d*=1).
Moreover, the scaling of correlations, Eq. (5. 12),
has been verified in detail, as explained in Sec.
IVA. Thus it is natural to assume that the scaling
ansatz [(5.11) and (5. 12)] will hold more general-
ly, at least ior d = 3 and d = 4, where it holds to a
good approximation in the bulk. For d = 4, the
bulk exponents reduce to those of molecular-field
theory, and it is natural to assume that the sur-
face exponents do also, and to calculate the starred
exponents for this case. From the exponents cal-
culated in Sec. IIA we have n* = e, = —,', P* = Pq = 1,
y*=yl, l 2~ 6 51,1 2 1' tll. 2~ ll )11+I
and for d=4, d*=3. From these values we verify
all the scaling relations (5. 15) using the mean-
field starred exponents for d=4t The observation
that scaling for starred exponents works exactly
for d=2, and also for d=4 assuming mean-field
behavior, indicates strongly that it will also be no
worse than ordinary (bulk) scaling for d=3. [Of
course, the starred exponents in d dimensions bear
no simple relationship to the bulk exponents in
(d —1) dimensions. ] We shall use starred scaling
to estimate exponents for d= 3 in Sec. VIB3. I et
us remark immediately, however, that if v*=- v„
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= v„= v, we have (d~ = d -1) C,(r', r", f)=~""1,[~/((t)], (5. 24)

Xg=ZC, (r)=Z Z Cg(p, z),
2 p a=0

where

C&(r)=-C(r'=0, r),
whereas

(5.17)

(5. iS)

XM=Z E C,'"(p, z)
goeAO

(5.19)

Xzu=E C, (p). (5. 20)

Since the correlation function is (at least predomi-
nantly) apositive quantity, and C,"'~C, ~C,'z', we
have

xM(T) -' xg(T) ~ xzg(T) (5. 21)

Let us now consider the quantity X '/&0' as a func-
tion of T '. (Xo is the value of y for T-~.) We
see (Fig. 3) that Z, '(T)/Xo' must always lie above
the 3d curve by Eq. (5. 21). Since it crosses this
curve both at T=~ and T=(T,)s„we conclude that
the critical exponent yq (describing the rate at
which yj /go vanishes) must be less than the 3d
exponent y, i.e. ,

2 —n~ =2 —n, =-d* v~ =(d —1)v=dv —v= 2-n —v.
(5. i6)

Note that in the formulation of scaling given in
Eq. (5. 1) the exponent u seems to be more closely
related to v„about which nothing is known exactly,
even in two dimensions. Since Eq. (5.10) holds
exactly in this case, the implication is that, at
least for 4=2, we have p, =v„= v.

C. Inequality for y,

In this section we derive an inequality for the
exponent y& by remarking that

where ~= l
r' —r "I . The simplest generalization

of Eq. (5. 24) for the correlation function C,(r, f)
=C&(r, 8, t)=C&(p, z, f) between a point p'=0,
z '= 0 on the surface and a point r in the interior
is the assumption

Case (I): C,(r, 8, t)=, '~„„I'"'[r/g, (t), 8]

+ e-~..„.s. T [~/4(&) 8j+fz(8) (z)

(5. 25)
where 6 is the angle between r and the normal to
the surface. Equation (5. 25) implies that in each
direction there exists a scaling of lengths, but
with the possibility that the critical exponents may
be different in different directions. For instance,
if f&(z v)=-0 and fz(ym)&0, then q, =q,„, but q„
=q „+5g. Note that under the assumption of Eq.
(5. 25), for smooth functions f, and fz, the expo-
nent q varies discontinuously with angle, having
its minimum value almost everywhere and a high-
er value at those angles where f,(8) = 0 (for 5q & 0).
Similarly, 4 may have an exponent v& which varies
discontinuously with 8. In Appendix 8 we show that
the correlation function C, has the form (5. 25) in
mean-field theory, and it seems likely to us that
this behavior will hold in general. Another possi-
bility, however, is that the critical exponent itself
varies continuously with angle rather than the
functions f, and fz, i.e. ,

C,(~, 8, t) = ~' ' "»"-'[-~/4(f), 81, (5. 25a)

with q&, for instance, a smooth function of angle.
This case, which seems somewhat unlikely to us,
is also discussed briefly in Appendix B.

Another possibility is that there exists no scaling
in arbitrary directions, i.e. , that a change of

Yg —Y ~

It is straightforward to generalize the above result
to arbitrary X„, i.e. ,

(5. 23)

Qf course, the exponents to be derived in Sec. VI
satisfy Eq. (5. 22), as do the mean-field exponents
(see Tables II and III).

O
X
X

SCEPT IBILITY X1
E SURFACE

BULK 2d

D. Scaling of Correlation Function

In addition to the above scaling theories, which
involve the surface exponents ahd the local expo-
nents parallel to the boundary, it is interesting to
ask how the correlation function between a surface
spin and an interior spin behaves. For the bulk
correlation function the scaling assumptions' can
be written

tT")„ [Tc']„

FIG. 3. Schematic drawing of the temperature depen-
dence of the local susceptibility X&, normalized to its
value yo at infinite temperature. Also shorn are the
bulk susceptibilities X for bvo and three dimensions. It
is seen from this figure that y&~ y&Qd).
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TA BLE II. Summary of thermodynamic exponents in Ising half-space.

Symbol
Exponent
Ising d =2
Ising d =3
Mean field

Bulk
magne tiz ation

m

p
18.
8
5b
1
2

0'l f

P&
1

0.64c
1

Cg

0 (log)~
gb
8

0 (finite)

Layer Bulk
magnetization specific heat

Surface
specific heat

Cs
, Ag
1R

0.76c

2

Bulk
susceptibility

Surface
suscept;ibility

1.96 -2.0b

Layer
susceptibilityQuantity

Symbol Xf
Exponent 7$
Ising d =2
Ising d =3
Mean field

~Exact calculation.
Numerical (series extrapolation).

'Scaling es timate.

Local
susceptibility

Xt, &

~i, i
0 (log)'

0 —Yi, i —8
1

Tc shift

ATc

1%4
Bb

2

Local
critical isotherm

~,(I,)

la
1c
1

For 4 =2, 7„ is the exponent of the shift in the specific-
heat maximum.

length caimot be compensated by a change in tem-
perature, except in symmetry directions. In that
case one might have an expression of the form

Case (11): C,(r, 8, t)=C, (t, ~, «)

(I) vo vl vmax I (s. 2a)

where v is the exponent for the effective correlation
length defined in Eels. (3. 19)-(3.21).

Under the assumption (5. 25a) we find

f4(e) F&4&«
&min -l~~, (t) ' ~„(t) )

y, = max [v, (2-i1,)], (s. 29)

fs(fj) F(5) ~ 9 &I . . .P 8+flmg~+W6
~ (t) &

g (t),[ 9

(5. 25)
with (,~ t "', )„o-t "", sv= v, —v„& O.

This latter possibility is less restrictive than
case (I), and we mention it for completeness, al-
though we have no reason to doubt the validity of
the scaling form (I), Eq. (5. 25). In Appendix B
we show, under rather general assumptions con-
cerning the 8 dependences in Eq. (5. 25), that this
equation implies

(I): y, = v,„(2-ii „), (s. 27)

where the subscripts refer to maxima and minima
over directions 8. In addition, we show that Eq.
(5. 25) implies

which is similar to Eq, (5. 2V) (see Appendix B).
For the scaling ansatz (D) [Eg. (5. 26)], there

is no simple scaling law analogous to Eq. (5. 2V),
but for the effective exponents we have

(II): vii = vn (s. 3o)

(II): vi = vol (s.21)

independent of whether v„ is greater or less than

vg ~

In Sec. VI we shall describe numerical calcula-
tions of p1, v, v~, and v„ for both d=2 and d=3.
%e shall see that there is no evidence that v de-
pends on angle [so that case (II) above need not be
considered], but that iI~ does depend on angle.

TABLE III. Summary of correl. ation exponents in Ising half-space.

Bulk
correlation

Symbol
Exponent P

Ising d=2 1a

Ising 4=3 0.64'
Mean field

~Exact calculation.

Layer
correlation

1', lb
0.64b

Layer effective
correlation

range

(Il~ 4~

1c
0.64'

bScaling estimate.

Bulk
correlations

at Tc

C6)
7l

1/4R

0.05'
0

Parallel
correlations

at T

c„(p}
RII1'
1b

2

Perpendicular
correlations

at Tc

Ci (c)

5/Sb
D. 64"
1

cNumerical, {series extrapolation).
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VI. EVALUATION OF CRITICAL EXPONENTS

A. Series Expansions

1. Theoretical Method

The general method for deriving Ising-model
series expansions is well known, 'and requires only
simple formal modifications to include systems
with free surfaces. The correlation function
C(r ', r '+ r, t) is expanded in a series in the high-
temperature parameter v = tanh(2J/k&T), with
coefficients depending on r ' and r,

O
O

SERIES EXTRAPOLATION FOR
AND Xs

d=2

Xs = 11/4

(MEAN FIELD)

C(r', r'+r, t) =v™n[c,(r', r)+c,(r', r)v'

+c,(r', r)v'+ ~ ~ ~ ], 0
I

0.1

I I I

0.4 0.5

where l „depends on the vector r. In the bulk
case the c& of course depend only on r, and for the
half-space one can specialize the calculation to
particular values of r', such as r ' at the surface
(z

' = 0), or r ' on the first layer (z
' = a), etc. In

Appendix C we describe in detail the method used
for obtaining the correlation coefficients c, (r ', r),
and in Tables IV and V we list all the coefficients
calculated, which are different from those in the
bulk. Once the correlation coefficients are known,
it is straightforward to calculate the coefficients
for the susceptibilities g» X, . . . , g&, » and g,
using Eqs. (3.10)-(3.12), as well as those for the
effective correlation range g, gg and ( [cf. Eqs.
(3.19)-(3.21)). These coefficients are listed in
Tables VI and VII, to tenth order for d=2 and to
eighth order for d = 3. For the extrapolation of the

FIG. 5. Series extrapolation for d = 2 of the local sus-
ceptibility y& &

and the surface susceptibility X, . The
exact result of McCoy and Wu for Xf j is pf f 0.

series the ratio method was used. Since in loose-
packed lattices the ratios a,/a, , of a series
g",.0 a,v' which is proportional to t for t- 0 show
some "even-odd" oscillatory behavior, it is pref-
erable to consider instead the quantities

(6. 2)

eu
I

t3
O

2.6— rr ~ Xb

2.4 yb-1 (MEAN FIELD)

SERIES EXTRAPOLAT ION FOR
SUSCEPTIBILITY AND CORRELATION RANGE

-2
3.2— - 7/4

(2
3.0—

o g2
II

h (2
b

x X)

[v, =- tanh(2 J/k~ T,)], which behave smoothly as a
function of l. From the exact solution in 2d, or
from the longer series for the bulk susceptibility
in Sd, the critical point n, is known to high ac-
curacy, so our task consists of determining the
critical exponent t If the v. alues of (a, /a, ,)' as
a function of l (or [l(l +1)] 't2] fit a straight line
going through v, ' at l ' = 0 for [l (l + 1)] ' += 0), then
the exponent g can be estimated as the slope of
this line. In some cases (such as $ and )(,) there
is considerable curvature present, and we have
extrapolated the series v g",.0 a, v', which yields a
straight line through v, ' for a suitably chosen &

(in most cases &= —1 was successful).

2. Numericu/Results for Exponents

2.2
0

I

0.1

I I

0.2 0.3
1/2

(„(, , ))

I

0.4 0.5

FIG. 4. Series extrapolation for the Ising half-space
in two dimensions of the local susceptibility X&, the bulk
susceptibility, and the effective correlation ranges ]~~,

and $&. We conc lude from the se re sul ts that all the
correlation exponents are the same for d =-2.

The results of the extrapolation procedures are
illustrated in Figs. 4-7. We first show (Fig. 4),
for d=2, the graphs for )(~, $„$„,and we also
show for comparison the series extrapolation of
the bulk susceptibility and effective correlation
length )(, and 4, for which the exact exponents y
and v are known. We conclude from Fig. 4 that

zq = 8 + 0.05, which is distinctly different from
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y= +4. On the other hand, there is no evidence
that v„or v, is any different from v=1. The quan-
tities X& & and X, for d= 2 are shown in Fig. 5, and
we find yi i=o md y

111

For d =3, the corresponding results are shown
in Figs. 6 and V. Once again, although we find
v=0. 1, there is no serious evidence that vg v„
and vt, = 0.64 are different, since the accuracy of
the determination of v„and v, is not very high. The

other exponents are yt = f, y, , = 0- i'i-, and y, = 2. 0
+ 0.08. The above results are summarized in

Tables II and III.

8. Scaling Estimates of Exponents

In this section we shall supplement the series-
extrapolation results, which refer only to zi, yi q,

y„v„, v„and v, with scaling estimates for most
of the other exponents.

TAflLE IV. Correlation coefficients for d=2. (az„o&„~»„~)'=g& c&v . Only correlation coefficients c& different
from the bulk ones are shown.

—

k, n
1,0

1, 4
0, 1
12

21
1j 1 1g 2

12
1,1 1,2

1
1
2
5

15

1
2
3
5

13

1
2
4

11
26

1
2

10
18

1
2
4

12
40

3 3
7 ll

13 25
31 45

3
11
31
89

3
10
18
26

3
ll
30
72

Sk, hn
k, n

3, 0
1 2 13

0, 3ll 12 1,2 1,1 1 2
4, 1

1y 1 1f 2

3
11
31
96

hk, 4n
k, n 1,1 1,2

1
12
33
42

1
12
48

124

5, 0
1,2

1
12
42
86

0, 5
1,1

1
12
48

146

4, 3
1,1

10
40

101

3, 4
l, l

10 10
55 49

173 131

5, 2 2, 5
11 ll

10
55

193

6, 1
l, l

5 5
32 52

108 188

1,6 7, 0
1,1 1, 3.

51
208

5
52

243

1
15
90

1
30

180

1
30

240
35

203
35

231
21 21

161 223
7

93 148

Ak, 4n 1,1
kn 11 12 13 1,4 1, 1 1,2

2, 0
13

0, 2
1 2

2 2
193 lt 1

2
3

8
26

2

10
31
92

2
4

10
32

117

1
3
7

19
59

1
6

11
17
76

1
6

16
39
77

1 1
6 6

16 12
46

149 18

1
6

16
42
92

1
6

16
46

152

6
19
39
72

6
8
10

Ak, M
kn 12 13

6 6
24 24
69 76

159 239

16
40

103

31
1, 2

26
71

135

1,3 1,1

4
25
69

128

1f 3
1,2

26
91

265

13 11
4 1

26 10
92 44

297 153

4, 0
1,2

1
20
83

215

0, 4
13 ll

1 1
20 20

118 110
368 328

Ak, An 0, 4 3 3
12 11 12 1,2 1,1

2, 4 5, 1
11 12

1,5 6, 0
1,2 1,1

10

1
20 20
83 99

444 289

Dk An 6 0 0 6
k, n 1,2 1, 1

1 1
42 42

348 462

20
120

4, 4
l, l

70
476

15
83

264

5, 3
l, l

56
406

15
118
437

3, 5
11

56
496

15
111
400

6, 2
19 1

28
290

15
118
512

2, 6
11

28
407

6 6
57 92

257 448

7 1 1.7
1,1 1,1

8 8
142 225

6
91

522

8, 0
1.1

1
36

6 1
92 21

537 167
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1. Phenomenological Theory

We have already seen in Sec. VB that the mean-
field exponents satisfy starred scaling for d=4 and
the other scaling relations,

Q =Q+p=

are also sat&sf&ed.

2. Two-Dimensional Case

'Y ='V+ &= 2 (6.4)

Here we first note that the series result y& z
= 0

agrees with the exact result [Eq. (4. 10)], which

gives us confidence in the conclusions we draw
from extrapolations of our relatively short series.

TABLE V. Correlation coefficients for d = 3. Only correlation coefficients different from the bulk ones are shown.

(v'),a, &y a),a gy,„,a„) =Z, ) c(v .

Aj, Ak, bn
j, k, n

1,0, 0
1,1,2 113

0, 0, 1
1, 1, 2

111
111 112

2, 1,0
1,1,1 1,1,2

sj, nk, an
j, k, n

1
3

22
219

3
43

475

1

39
403

3
47

643

1
4

40
455

3
46

582

1,0, 2

1
4

36
318

112
3

47
648

40
448

1
18

271

3, 0, 0

6
46

460

1,1, 2

1
24

489

6
54

636

0, 0, 3
1,1,1

1
24

492

3
29

325

2. 2 1
1,1,1

30
420

3
47

604

2 1.2
1,1,1

30
495

aj, ak, 4n
j, k, n

10
205

10
88

976

Zj, ~k, an 3, 2, 0 3, 0, 2
111

10
340

1,1,0
112

2
16

160
1810

2, 0, 3
1 1.1

10
349

1t 1t 3

2
16

170
2130

3 1.1111
20

350

2
15

132
1362

1 1.3
1,1,1

20
418

1,0, 1
1,1,2

2
16

169
2061

4, 1,0
111

5
127

113
2

16
170

2143

4, 0, 1
1,1,1

5
182

lt 1~ 1

1
9

95
1081

1,0, 4
1,1,1

5
201

2, 0, 0
112

1
12

171
2041

5, 0, 0
1,1,1

1,1,3

1
12

176
2341

0, 0, 2
1 t 1t 2

2, 2, 0
1,1,2

2, 0, 2
1,1,1 1,1,2

2 1 1
1,1,1 1,1, 2

1,1,2ill
2
4
6
8

1
12

168
1968

1
12

176
2340

6
84

1084

6
144

2062

6
139

1945

12
138

1643

12
168

2361

12
158

2050

bj, Ak, 4n
j, k, n

1,1, 2
1,1, 2

3, 1,0
1,1,1 1,1,2

3, 0, 1
lt lt2

1,0, 3
1,1,1 1,1, 2

4, 0, 0
1,1,1 1,1,2

Aj, Ak, bn
j, k, n

12
168

2410

0, 0, 4
1t 1j 1

1
40

1140

66
974

222

90
1590

106
1836

3, 2, 1
1,1,1

60
1130

96
1424

312
lt lt 1

60
1340

4
106

1955

2, 1,3
ltltl

60
1417

4
105

1871

3, 3, 0
1 ~ 1 t 1

20
540

4
106

1975

3, 0, 3
1t 1t 1

20
939

1
30

622

4, 1,1111

1
40

1121

1,1,4111

30
922

6
8

Zq, ~k, Sn 4, 2, 0

15
433

4, 0, 2
1,1,1

15
713

2, 0, 4
111

15
741

5, 1,0
111

6
218

5, 0, 1
1,1,1

6
309

1,0, 5

6
343

6, 0, 0ill
1

63
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5.2—

SE,RIES EXTRAPOLATION FOR
SUSCEPTIBILITY AND CORRELATION

RANGE

d=3

v = vi= vii = v~ = v(~ = v = ~ ~

It then follows from the scaling relation y~= v

x(2 —p „) [Eq. (5. 2V)] and Eq. (6. 6) that

5
~min 8

(6. 9)

AJ

hJ

p

2Pb=), 2S
4, 8—

4.6

4 4

4.2—
0

X» X»» X»

0.4 0.5

0

= 5/4b
g2

II

4 +2
Nb=1

(MEAN FIELD) ~

x

X

since q„= 1. It would be interesting to verify Eq.
(6. 10) by an exact calculation. This completes the

estimate of the two-dimensional exponents, which

are summarized in Tables II and III.

3. Three-Dimensional Case

In this case there are no exact results, and the

series estimates are somewhat less accurate than

in two dimensions. Nevertheless, it seems likely
that in analogy to the two-dimensional case there is
only one correlation length,

v„= v, = v„= v, = v=0. 64~0. 05. (6. 11)
FIG. 6. Series extrapolation for the Ising half-space

in three dimensions of the local susceptibility X~, the
bulk susceptibility X&, and the correlation ranges gg

There is again no reason to assume that any of the
effective correlation exponents are different.

Concerning the correlations, we have the exact
results v„= 1 = v and the numerical results v„-= v,
= 1. Thus scaling possibility (II) [Eqs. (5.30) and

(5. 31)] reduces to (I), and we have [Eq. (5. 28)]

Then, from the value y~= -', and the scaling relation
(5. 2V), we find r) „=0.64 (note that this value is
not, a priori, related to the value of v). From the

scaling law for starred exponents, y*= v*(2-g*),
i. e., y& &—- vg(l g„) (see Table I) and the calculated
value yq, &=0 from Fig. 7, we find

which identifies g &, as q„ i.e. ,

,= g~= 0.64.

v= vmax= v)(= ~ ~

%'e therefore assume

(6.6)

(6.7)

Further, from the scaling laws 2p*+y*= 2 —n*
[Eq. (5. 15)] and n* = n, = n + v we find

P*= P q
= 0. 64 + 0. 08,

since we consider the possibility

(6.8)

highly unlikely. Indeed, the scaling relations (5. 5)
and (5.16), 'y, =y + v and n, = n + v, most probably
involve v» and the results y, =~ and n, =i [Eq.
(4 6)l imply v, = 1. Thus we conclude that in two
dimensions there is only one correlation length:

which differs from the mean-field answer P~= 1
and from the generalized expression P, = P+ v= 1

[Eq. (4. 15)] obtained by assuming a temperature-
independent extrapolation length.

The scaling result for the surface free energy
E„namely, a, = &+ v, yields

n, = 0. 765,

TABLE VI. Susceptibility coefficients for d =2.

0
1
2
3

5
6
7
8
9

10

1

12
36

100
276
740

1972
5172

13492
34876

1
3
7

19
49

127
321
815

2041
5117

12763

X2

1

11
29
71

179
447

1125
2803
6945

17441

1
4

12
36
91

231
569

1411
3473
8582

21167

Xs

1
1
6

25
90

303
962

2951
8782

25645
73072

Xi, f

1
2
2

8
18
36
80

170
382
828

0
1
4

13
40

117
332
921

2512
6757

18004

(2

0
1
3
9

28
81

225
615

1666
4467

11837

2(j

0
1

19
63

193
565

1603
4451

12153
32763
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and that for p„y, = y+ v yields

y, =1.89, (6. 16)

which is lower than our direct calculation (cf. Fig.
7),

y, = 2. 0 + 0. 08 .
Let us note that Allen" has estimated y, from
slightly longer series for thin films, and he finds'6

y, = 1.95 + 0.08, (6. 18)

which is in slightly better agreement with the scal-
ing estimateI (6. 16), and tends to reinforce our con-
clusion that there is only one correlation-length
exponent [Eq. (6. 11)]. The results for d=3 are
also listed in Tables II and III.

VII. CONCLUSION

We conclude by summarizing the principal re-
sults of this investigation.

(i) Phase transitions are studied in d-dimen-
sional magnetic systems with free surfaces. A
number of new critical exponents must be defined
in order to describe the thermodynamic singular-
ities and static correlations near the critical point
(Sec. III). These exponents refer either to surface
quantities or to local quantities. By a surface quan-
tity we mean a contribution to the free energy which
remains proportional to the number of spins on the
free surface of a system as the total number of
spins goes to infinity. A local quantity is the
thermodynamic average of an operator defined at
a point, e.g. , the surface magnetization.

(ii) The phenomenological or mean-field theory
is formulated quite generally, in terms of a bound-
ary condition on the order parameter at the sur-
face. This condition introduces a new length which
is in general unknown, but which may be calculated
in simple cases (Sec. II). Generally speaking, for
magnetic systems this length is of the order of the
interaction range R = $0, in contrast to supercon-
ductors where the length is very much larger than

$0, due to specific properties of the electrons (Sec.
11 B4). The critical exponents are evaluated in the
phenomonological theory.

(iii) The exact solution of the nearest-neighbor
Ising half-plane derived by MW is discussed in de-
tail (Sec. IV A) and related to the general formula-
tion mentioned above. The critical exponents of
this exact theory differ from those of the molecular-
field theory.

(iv) An exact reformulation of the half-space is
presented, whereby the system is separated into
the bulk plus a pure (d-1)-dimensional surface
problem, with a complicated temperature-depen-
dent interaction between spins. The critical ex-
ponents of this surface problem (starred exponents)
may be related to the previously defined exponents

7 — SERIES EXTRAPOLATION FOR
X) ) AND Xs

ys 2.0

N

tU

50
O

FIFLD)

0.) 0.2 O. '5

)/2

(„(, , ))

I

0.4 0.5

FIG. 7. Series extrapolation for d = 3 of the local sus-
ceptibility X& ~ and the surface susceptibility X~.

of the half-space (Sec. IV B).
(v) A scaling theory for the surface problem is

shown to hold exactly for two dimensions, where
the surface is a line. A similar scaling is as-
sumed to hold in three dimensions, and yields re-
lations between the exponents of the half-space
(Sec. V B). These relations are also verified in
molecular-field theory for d=4, so that the starred
problem is a nontrivial three-dimensional model,
all of whose exponents have been determined and
shown to satisfy scaling exactlyl

(vi) The scaling of correlations between a sur-
face spin and a spin in the interior is also dis-
cussed. Due to the anisotropy introduced by the
surface it is necessary to assume, in general, that
the correlation exponents v and q depend on direc-
tion. From the scaling assumption for the correla-
tion function, additional exponent relations are
found (Sec. VD).

(vii) Series expansions have been performed for
the half-space to tenth order in two dimensions and
to eighth order in three dimensions. A number of
critical exponents are determined in this way, and
agreement is found with the exact calculation of
MW and with the scaling assumptions, wherever
applicable (Sec. VIA). It is found that for both
d= 2 and d = 3 the exponent v is independent of
direction, but g is strongly anisotropic. A similar
situation holds in the phenomenological theory.

(viii) Using the numerical calculations and the
various scaling assumptions, all the critical ex-
ponents for the three-dimensional Ising half-space
have been estimated. This constitutes the central
result of the present paper, and it is summarized
in Tables II and III. The only previous estimates
of these exponents were those of the molecular-field
theory, and in many cases the differences are con™
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TABLE VII. Susceptibility coefficients for d = 3.

XQ

1
6

30
150
726

3510
16710
79494

375174

1

21
93

409
1837
8209

36969
166041

X2

1
6

29
137
621

2821
12661
57185

257333

1
6

30
149
709

3341
15409
70853 '

322865

1
1

10
71

440
2553

14126
76071

399868

Xi, i

1

12
40

136
516

1968
7904

31756

0
1
6

31
156
765

3714
17827
85144

2
4ii

0
1

23
110
527

2519
11931
56534

24
0
1
7

41
223

1153
5799

28593
139671

sider able.
(ix) The most promising experimental'methods

for testing some of the predictions of the present
paper are Mossbauer or LEED measurements of
the surface magnetization and LEED experiments
on critical scattering from the surface. ' "' ' It
must be noted, however, that all the numerical re-
sults were obtained under the assumption of ideal
surfaces and in particular that the exchange inter-
action is unmodified by the surface. This con-
dition is of course very difficult to verify in prac-
tice. Present experimental data'"" seem to agree
better with the mean-field result g = 1 than with
our result P, = —',, obtained for the case of equal in-
teractions between all spins. The source of the
discrepancy is not clear to us at the moment, but it
could be due to experimental inaccuracies or to a
significant weakening of the exchange interactions
at the surface of the crystal. More experimental
and theoretical work is needed to clarify the situa-
tion.
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APPENDIX A' REDUCTION TO PURE SURFACE PROBLEM

We begin with the Hamiltonian, Eq. (4. 30), which
we write explicitly as a sum over e and n with,
in general, i=(o., n). Letting 8~beanearest-neigh-
bor vector within a layer, we have (N= N, N")

N+

n=i 0,~1

where by definition o ~
=—0. We define

0 e=oo,» (A2)

and separate out the term with n = 1 in Eq. (Al),

gQ
Q= —J Q {o~ 0~~ g

+ + 2o~ 0'iii, p}
o 1

sr+-J Q Q (og „(Tg g4, „2+(7y „0'y,„g}—Hg Q &

The partition function, Eq. (4. 31), is
(As)

Z(r, a,) =2-" p exp((k~r)-' Q [JH H, rs
{a~=+1) a~1

+H, o*.+ V(r, (o:})]), (A4)

where

exp((k~r)-' V(r, (o"}))=2-'"-" ' Q exp((J'/ksr)
ffyg ~~+1 }

(A7)

where we have written H, -=H*. The Hamiltonian
3.'* is of order N~, and from Eqs. (As)-(A7) and

.x[2 vz&iwp + Z Z (&B,no8~84, n+ 2' ii oB n+1)l) ~

(As)
In the limit N, - ~, N" - ~the function V(r, (o "})is
proportional to NE, (r), where F, is the free energy
per spin of the bulk system Eq, (3.1). There is,
however, a correction of order N*, which yields

P'(T, (ir",)) = lim
~

—
~ V(T, iir', }}-NE (T))i, ii

N ~~,N1

(A6)

The quantity V* remains of order unity. We now

may define a very complicated temperature-de-
pendent Hamiltonian, but one involving only the
spins o* in the surface,

N

3.'*=-J g o,"o*,p+N~V*(r, fo~})-FP' Q o*, ,
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(3. 1) we see that its free energy

F*(T,H~}. -=kz T lnz ~ (T, H ~ ),
Z~ (T, H ~) = 2-Ã~ Q e-x IAzr

[g Q~y f )

(Aa)

F*(T,H, ) =F, (T, H, ) ~ (A10}

is just equal to F,(T, H~), defined in Eq. (3.1), ex-
cept that the field H, acts only on the surface,

troduced by the surface. As was shown in Sec. II,
even in mean-field theory the exponents depend on
direction, i. e. , g„~ T/g [Eqs. (2.43) and (2.46)],
and it is interesting to calculate the correlation
function for arbitrary angle 8 in this case. Ac-
cording to Eqs. (2. 3V), (2. 36), and (2. 33), we have,
for d=2~

~-w(e }&

C, ( p, z, t) =~ —
~

~

~

dq cos(qp)
(7) „0 j-+ ~r&e

with
APPENDIX B: SCALING RELATIONS FOR CORRELATION

EXPONENTS r'(q) = q'+ &". (B2)

The scaling form (5. 24) for the correlation func-
tion, which is assumed to hoI.d in bulk, must be
generalized to take into account the anisotropy in-

In order to integrate Eq. (Bl) we expand in X and
use an integral representation of the Besse1. func-
tion, ~4

~g(p, z, t) =(&/~k) Z f dx cos(xp/$) (-I)"[(&/g)(I+x')' ']" exp[-(z/g)(1+x ) ]
n=O

(B3)

s s us 4 I(&'+u')'"/0))
»" (

n=o
(s4)

whichfor z/X-m, p/X-~becomes (p=r sin8, z=r cos8)

C, (p, z, t) = (X/mg) [coseK, (r/&} (X+/r} sin 8K&(r/$)+ (A/5) cos 8K&(r/$)+ ~ ~ ]. (B5)

50(t) = gl(e) t "miz+ gz(8) t '"m~~-'"', (B6)

with 6v &0. Let us for concreteness assume that

It is easy to verify that in the limits 8= 0 and 8= —,'m

Eq, (B5) reduces to Eqs. (2.46) and (2.41), respec-
tively.

The result in Eq. (B5) shows that for all angles
84 —2mwe have g~=1, but for 8=-,'m, g«/2=g„=2. It
is natural to assume this type of behavior in general,
as in Eq. (5. 25), and a similar form for the corre-
lation length

in Eq. (5. 25) we have

fg (k&)=0 fi(«0 fa ( ~ z}~0 (av)

and calculate the susceptibility X,. According to
Eqs. (3.10) and (5.25) we have, for d= 3,

y, =4m f' d8 cose+, (8) f drr' "m~~I'"[r/$~(t), 8]

+f.«) f «~ "-~""r"'[r/(,(t), 8]& (»).
Substituting x = r/$q (t) we find

) «/2
g& = t "m'm' "m&~' f d8 cose[g&(8)+gz(8) t'"] "m&~f, (8)G&(8)

y t "ma&~~ "min ~"~ f dg cose[g (g) ~& (8)p&]&&mtn 6&f (g)G (g) +. . . (BQ)

where

G, (e) = 4z f,
"

dxx -"
~ r"'(x, e) . (alo)

Since there is no reason for any of the above inte-
grals to vanish identically we find in general

r 1 vmax(2 g mig) ' (all)
Clearly this result will also hold if q „0q, [cf.
Eq. (BV)], since we can measure angles from an
arbitrary direction. The moments of the correla-
tion function may be calculated in similar fashion:

( p'&

( z} =(4v)
t' «/2

S 28 ~ 40

d8cos8 z Q, (8), drr "
& r"'[r/g~(t}, e]+f,(e)cos 8

.e 0

drr'" ~ '"r'"[r/4(t), 8)+ ],
(B12)
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whence

and by Eqs. (3. 19) and (3.20) we have

&i~
—~i —t'max ~

(B13)

(B14)

ft /2
&&I

= f de cose $ o"&&Gs(8)t "e'

where

G,(e)=4&f dxx'~~r&"(x, e)

(B17)

(B18)

If there is a direction with a smaller true exponent
than the maximal one [i.e. , if in Eq. (B6) we have

g, (8 „)=0], then for this direction the true and ef-
fective correlation exponents disagree.

For the case of continuously varying exponents,
as in Eq. (5. 25a}, we ma, y a,iso calculate &,. 1st
us assume a correlation length of the form

t-max(ve (2-qe ) 3
Xg

™
t 0

(B19)

or

is a bounded and regular function of 8. Now the
integral in Eq. (B16) can be evaluated using the
method of steepest descent, ' yielding

4(t) =(,t "e, (B15) &, = max [v&& (2 —
»&&)] . (B20)

with pe a smooth function. Then we have

if /2 00

&&, =4&& jo decos8 f d& x "&&r [x/4(t), 8],

(B16)
and, putting x =r/(, (t),

This result agrees with Eq. (B11)above, since in
that case q~ =q „and v~= p almost everywhere,
and max[v&&(2 &I&&)]= v,„(2-» „).

Let us now discuss briefly the other scaling
possibility, (D), Eq. (5. 26), using the variables
u= p/$„, v =a/g, (for d=3),

&&, =(2&&)(,', (, f, duu j dv[f, («t'"/v)r«&(u, v)(u'g, ', +v'(2) '"""&"

+ f (&&t6"/V)r&5&(M V)(&&3)~+&&2)2) &in&I+'&m&ii+&&i&&+ ~ ~ ' ] . (B21)

An inspection of Eq. (B21) shows that the leading
asymptotic behavior of X, will depend both on the
relative magnitudes of $„and g, (i.e. , on the sign
of 5v) and on the precise behavior of the function
f4(x) for small and large x. Thus many different
cases must be considered and no simple behavior
emerges. For the effective exponents v and p„
on the other hand, it is straightforward to verify
that for reasonable functions [f;(x) and I' ' (u, v)]
these agree with the true exponents, i.e. ,

(B22a)

enough, and to derive series expansions of local
quantities near a surface, if N~ is sufficiently large
(one takes the limit NI - ~ as the last step of the
calculation, considering quantities at fixed posi-
tions near one of the two free surfaces).

Consider a spin correlation function

)
Trexp[(m/kaT}Z«, &o&o&)op. op ~

TI'
exP [ (2 eT/ks T) $ & &I & o& oy]

(cl)
with o& =+1 and with the brackets (ij ) meaning that
each pair of nearest neighbors i,j is counted once.
As usual we make use of the identity

&i = &j. ~ (B22b) exp[(2 J/k~ T)o& o~) = cosh'(2 J/ka T)
As mentioned in the text, there is no evidence at
present that the exponent v, has any angular depen-
dence, so the different cases considered here may
not need to be distinguished, and the results of
Eqs. (B11)and (B20) reduce to

&& [I+o,o, tanh(2Z/k, T)], (C2)

and get, writing v =—tanh(2 J/k» T),

&, = v(2-q. ..) . (B23) TI' @&&g & [1+ (o&o&)v](opiogrn+ I&i}o"o~'+'" TrH &„,[1+(o&o,)v]
(c3)

APPENDIX C: SERIES EXPANSIONS FOR ISING SYSTEMS
PATH FREE SURFACES

Consider a large cube of size ~=MR, with two
free surfaces, which is periodic in the other (d- 1)
dimensions (Fig. 1). This system can be used to
derive series expansions for films, if N, is small

If any index i occurs an odd number of times in a
term of the product of the denominator, this term
will vanish on performing the trace. This leads
to a graphical prescriptiog for the series expansion
of the denominator, associating with each term
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(o,oJ)o a line connecting two vertices i, j and writing

where P„(l) denotes the total number of graphs with
E lines in the lattice which have only even vertices
and where each nearest-neighbor bond of the lat-
tice is used at most only once. (Note that a vertex
is called even if an even number of lines meet at this
vertex. ) The graphs which are to be considered
are polygons on the lattice (which can consist also
of disconnected parts). The effect of the free sur-
faces enters in this expansion only in the actual
counting of the P„(l)'s. Similarly one gets for the
numerator

Trrr„[1+(,o) ](;. ,". ;)=Z q„, (l). .
(C6)

q„,i. q(l) denotes the total number of graphs in the

lattice with / lines and only even vertices except
the vertices r and r+r, which are odd vertices.
Again each bond of the lattice has to be used (at
most) only once. The typical graphs that are to
be considered are chains (which can be linked to
polygons). The numbers q„,z i depend also on
r' and not only on r, as in the bulk case.. It is well
known that the disconnected diagrams which lead
to divergent terms in the limit N- ~ in both series
in Eqs. (C4) and (C5) cancel out when the ratio
equation (C3) is taken, making excluded volume
corrections necessary. (For a thorough discussion
of this point see Ref. 43. ) As mentioned above, we
obtain the final results by keeping r fixed near the
surface and then letting N~- ~. The actual enumer-
ation of graphs was performed in the case of the
quadratic (2d) and simple-cubic (3d) lattices only.
No triangles occur in these cases and thus the
actual expansion for (o,".o,"., ;) is

(oY oi .«&=o' "(qg t ~, i (I i.)+qN, P,P(l i. +» &"[q~P~(l i.+4)-PE(4)qN i,~(i i. )] o'

+[qN, p~p(lmi~+6) —qN~y~~p(iIi~+2)Pz(4) qar, p, y(l m)i'(6)] o +(qz, p', p (lmi~+8) —qg~yi y (i~i, +4)Pg(4)

- q„,. , (i...+2) p„(6)-q„,, ,(i.„)p„(8) +q„,, , (i.„)[p„(4)]')&'+ "}, (C6)

where the power of the leading term l „is simply
given by

(ak, «) (d=2): l i.=&&+«
(~q, ~It., «) (d=3): l,.=&j+&&+«.~

~

(C'7)
From Eq. (C6) one actually sees on doing the
counting that disconnected diagrams cancel out.
In the coefficient of g™"~one has to consider the
overlap of the chain q„q, q (l „) with the square
P„(4); in the coefficient of v'I"'6 one has to con-
sider the overlap of the chain q„z z(l „+2)with
the square P„(4) and the overlap of the chain q„;.;
&& (l „)and the hexagon P„(6). The next term is
considerably more involved; one has also to con-
sider the overlap of three diagrams, namely, the
chain q„y. ~(l „)and the two squares P„(4), and
one must also take care of counting correctly the
disconnected diagrams of P„(8) [=two squares
P„(4)], in which both parts overlap with the chain

q„ i. z(l „). These complications are the reason
that no higher-order terms than o'0 (d = 2)
and p (d = 3) have been calculated. Note that in
contrast to the bulk case one has to repeat the
procedure for a variety of r' values (e.g. , we have
to put r' in a.Q the rows 1, 2, . . . , 10 for 4 = 2 for
at least some of the graphs, depending upon what
r is considered). Putting r' more towards the in-
terior of the system one recovers the bulk case;

I

aO bulk correlation coefficients have also been cal-
culated and the complete agreement with the cor-
responding results of Fisher and Burford ~ (Appen-
dix B, Tables XVI and XVII of Ref. 46) served as
a check for the correctness of the counting proce-
dures.

The counting of graphs was perforxned as follows:
As a first step we count all the connected diagrams
on the computer by a "systematic drawing proce-
dure. " All the coordinates of a N= (MP system
(M =10-20 is sufficient in our case) are kept in
the storage. The coordinates of r' and r and the
number of lines l are specified. Now the program
starts a drawing procedure going from r' to one of
its nearest neighbors (= "drawing" the first line),
from these to a nearest neighbor of this place
("= "drawing" the second line), and so on. Only such
lattice points are considered at each drawing step
of the procedure, at which there still remains the
possibility that one can get to the point r'+r with
the remaining number of lines (i.e. , the inter-
mediate points must not be too remote). This re-
striction is essential for getting reasonable com-
puting times (our total time needed for all r' 's,
r 's and d = 2 and d'= 3 was about 20 min on the
IBM 360/91 of the Institut fiir Plasmaphysik,
Garching). Immediate reversals in the drawing
procedure are, of course, forbidden. The ver-
tices of the graph which is drawn step by step are
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labeled and stored, and if one gets in the course
of the procedure to some vertex a second (third,
etc. ) time, it is easy to find which bonds ending
at this vertex are already occupied (a second use
of these is forbidden). This trial drawing is suc-
cessful if it is possible to reach r'+r in spite of
the various restrictions. The surface plane acts
simply as a geometrical restriction. This draw-
ing procedure has to be systematically repeated,
and thus the total number of yossible graphs is
counted. One must take care of the overcounting,
however. Everything is correct for simple chains
or simple polygons (which are counted by taking
r =0). If one has precisely one fourfold vertex
in the graph occurring, it is simple to recognize
that this graph is just counted tmice, so that there
is no difficulty in correcting for this overcounting.
In the case of higher-order connected diagrams
(one sixfold vertex, or two fourfold vertices, etc. )
it was found convenient to store these lines explic-
itly, and any new graph is compared to the pre-
viously stored ones: If it turns out thai the graph
is identical to one of them the new graph is aban-
doned, while otherwise the new graph is added

into storage. Since only rather low orders in
the series expansion were calculated, only a
small number of these highly connected diagrams
could occur, and therefore such straightforward
procedures as described above were sufficient.
Also, it was sufficient to count the overlays of
lower-order disconnected diagrams by hand, using
the Qs, t ~, v(f t ) QE, s', 5(~ t '+2) QE, IN', f(~ t +

P~(4), Ps(6), and P~(8) which had been calculated
explicitly by the computer program. It is clear
that the explicit drawing of overlays by hand would

already be too tedious in the ninth order (d = 3) or
the eleventh order (d = 2), respectively. In this
case one mould have to consider a far more so-
phisticated programming also to count the over-
lays (or at least most types of them) on the com-
puter. These problems are discussed in more
detail by Fisher and Burford. More recently,
renormalized linked-cluster expansions ~ have
been successfully used to derive higher-order
terms of series expansions, and this tetchpitiue
also seems preferable if one wants to i%end the
present investigation to a semi-infinite Heisenberg
model.
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