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and%-space forms (as a consequence of the skoyt ra-nged

correlations), it is unclear whether or not such behavior
shouM be built into the scaling function X)(y~, 0) (which
strictly speaki~ describes only the limit z 0, r ~)
or its analog in% space. The evidenqe on this point
(Bef. 15) is ambiguously negative. The Fisher-Burford
approximant, in any case, does not contain an energy-
density singularity. See also M. E. Fisher and J. S.
Langer, Phys. Rev. Letters ~20 665 (1968).

3~0. S. Ritchie and M. E. Fisher, Phys. Rev. 8 5,
2668 {1972), Table XXI. Note that the Ising values of
G~ and y quoted in Ref. 31 differ from and supersede
those given in Table XIII of Ref. 13.

32K. G. Wilson, Phys. Bev. 8 ~4 3174 (1971); 4, 3184
(1971).

"3%ben small perturbations dg change the symmetry,
then there may still be an experimentally defined "outer
critical region" within which universal critical behavior
is ob erved. See also Bef. 11.

It is not our purpose here to give a critical review of
the experimental situation. A comprehensive review of
Quid behavior from this point of view has been given by
M. Vincentini-Missoni, J. M. H. Levelt Sengers, and

M. S. Green, Phys. Rev. Letters 22, 389 (1969); J. Bes.
Natl. ~r. Std. (U. S. ) 73', ;63 (j969),
analysis including magnetic data is givenby M. Vincentini-
Missotxi et al. , Phys, Bev. 8 1, 2312 (1970). When ap-

parently similar materials have different critical expo-
nents, we must conclude that (i) universality fail, s, (ii)
there are subtle symmetry differences, (iii) physical ef-
fects such as gravity, coupling to the lattice, etc. , are
complicating the analysis, or (iv) the true critical region
has not been attained.

3~From an experimentalist's point of view this is some-
what of an oversimplification in that it is only the critical
paris of all quantities that are predicted. Sufficient data
must be taken to subtract out noncritical background con-
tributions.

Reference 17, Kq. (3.6). Our notation parallels Ref.
17, although, as pointed out in the text, our sta.tement of
universality is not restricted to models differing by lat-
tice type alone.

37%e are indebted to D. Stauffer for this observation
and much of the following discussion.

38This hypothesis and the consequent relation (5, 10}
have now been tested directly for a variety of systems
by D. Stauffer, M. Ferer„and Michael Wortis, Phys.
Bev. Letters 29, 345 (1972). We take this opportunity
to note the following misprints in their Bef. 38: In Table I
y=s. oy0. 4 for CO, . In the footnotes to Table I, «C~/It
= (2/1r ). .. and "n = 0.0 /0. 03. In their Itef. 11, )(0 =0.1 In

H, O and 0(H, O)/n(CO, ) =-,'.
M. Ferer, M. A. Moore, and Michael Wortis, Phys.

Bev. 84, 3954 (1971).
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The energy spectrum of the lowest (one-cluster) multiplet of the linear anfsotropic spin-i fer-
romagnetic chain is obtained analytically in the absence of transverse mean exchange (j"+j~ = 0)
and neglecting coupling to other states. In the limit where the external field tends to zero, the
semi-infinite discrete spectrum exhibits an algebraic singularity of order 3 as a function of the
field, and an algebraic singularity as a function of the transverse anisotropy parameter I, g~

=2(j"-j~)) of order 3. At zero field the spectrum is bounded and continuous. In the high-field
limit the system approaches the Ising model. A magnetic excitation spectrum of that character
has recently been observed by Torrance and Tinkham in the magnetic salt Cocle ~ 2H&O.

The recent observations by Torrance and Tink-
ham' 3 of a magnon bound-state spectrum in the
magnetic salt CoCl& 2H~O have led to renewed in-
terest in the dynamical properties of the linear
anisotropic ferromagnetic chain. In the Torrance
and Tinkham ' notation, the system is described
by the following spin-2 nearest-neighbor Hamilto-
LQan."

K= —2 Z [j"S)S),g+ 2j (S)S(,g+H. c.)
N

+-.'j'(Sts'„, +H. c. )j+ye, Z Sf . (I)

These authors investigated the magnetic excita-
tion spectrum of (I) in detail and solved numerical-
ly the secular problem which arises from treating

the mean exchange characterized by j and the an-
isotropy characterized by j', as perturbations on
the Ising model characterized by the j' term and
the Zeeman term in (1).

In a previous article, referred to as I, one of the
present authors computed the transverse and lon-
gitudinal magnetic susceptibility to second order in
j' and j, and considered the zero-field limit of the
transverse susceptibility in the absence of j and
for the lowest series of energy levels.

In the present article we show that in the ease
j'=0, the energy spectrum of the lowest series of
levels (the one-cluster multiplet) can be derived
analytically, if coupling to other states is neglected.
These excitations, incidentally, are the ones ob-
served by Torrance and Tinkham. ' Their nu-
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merical solution, which also neglects coupling to
other states, is in excellent agreement with the
experimental results.

The basic physics of the anisotropic magnetic
chain as observed in a ferromagnetic resonance
experiment arises from the symmetry-breaking j'
term in (1), which, especially at low field, induces
strong transitions between the nearly degenerate
Ising levels characterized by the j' term and the
Zeeman term in (1). For the present purposes it
is therefore sufficient to consider the truncated
Hamiltonian

K = —2 ~ [jS S..l+ 2 j (S(S(+1+H c )]+rHo»( ~

g=1

(2)
In order to solve the eigenvalue equation $C 4

=E4, the Ising model with applied field

X,'=-2Z j'S', S'...+yH, Z S',. (3)
f 1 ~=1

is chosen as the unperturbed Hamiltonian. The
lowest series of eigenstates of (3), corresponding
to a single cluster of g adjacent spin deviations,
with respect to the aligned ferromagnetic ground
state I 0), have the energies E'„=2j'+nyH„
n= 1, 2, . . . „N and are characterized by the Bloch
functions

N

@o(k)= Z exp(ik[x(+ 2(n —1)a]~)
i=l

+S( Sj l S(.. l I 0» (4)

which form an orthonormal set provided (0 I 0) = l.
Here, a is the interatomic distance, N is the total
number of spins, and the angular wave number k
runs over the first Brillouin zone, —((/a& k~ )(/a.
The matrix elements of the perturbing Hamiltonian

&, = —2 Z o j (S( S(,l+ H. c. ) (5)

between the Bloch states (4) are

(e„' (k) Ix.'Ie'„.(k'))=()„„,()„„,,(-2j')coska. (6)

X.( ) = 2/0 -2j')+ [( -2j*)'- (4j ) ] ']; (8)

corroborates the above result in the case of the
odd states. X,(z) has a branch cut corresponding
to a bounded continuous energy spectrum from
-4j'+ 2j' to 4j'+2j'.

An exact solution of the eigenvalue problem is
obtained by noticing that ('I) is a recursion formula
satisfied by solutions to the Bessel equation. ' The
Bessel function has the correct high-fj. eld be-
havior, and we obtain for j'coska & 0

c„=AeT(„(o ops)/)Ho)/o(~J coska/yHo).

For j'coska&0 we get

c n ( 1) +~(n-(s 8/~)l)Ho)l&(-I 2g' coskal /rHo)
(10)

(9)

for the odd states, and

c = (- 1) A~( (z-a/ )/)//o&/o (122' coska I/yHo) (11)

for the even states. The boundary conditions are
in both eases given by

1-((E aoo ) o/I/) / H-(o)I 2oj' coska I/rHo) = 0 (12)

eigenvalue problem is )) = j'/yH, . Consequently,
perturbation theory in j' is equivalent to an as-
ymptotic expansion in 1/yHo, i. e. , valid at high
field. In the limit of an infinite field, one obtains
the result c„.=A.5„„.for E, =EP„, i.e. , the Ising
model. At lower field, i. e. , for g&1, perturba-
tion theory ceases to be useful. In the zero-field
limit, however, the eigenvalue problem (V) can be
solved trivially. The bounded and continuous en-

ergy spectrum is given by

E = 2j' -4j 'coska cost,
where the quantum number ~ runs through the
interval 0-—,'p. For odd states the expansion co-
efficients satisfying the appropriate boundary con-
ditions are given by c„' =csin[-,'X(n+1)]; for the
even states by c'„"'=A sin —,'p,n. We notice inciden-
tally that the evaluation in I of the uniform zero-
field transverse magnetic susceptibibty,

Neglecting coupling to states with zero or more
than one spin clusters [see Eqs. (1)-(4)], we can
expand the eigenstates 4' on the set +P„,

for the odd states and

~&-(&""-&s')»H )/o(I2j' coska I/rHo) = 0 (13)

4 =g c„4o(k),

and using (6), we obtain the following recursion
formula for the expansion coefficients c„.'

nyHoc„—(2j' coska) (c„.o+ c„o)= (E —2j*)c„. (V)

The states for even and odd n, respectively, are
decoupled. For N we obtain the boundary con-
dition c 1=0 for the odd states and the condition
cp=0 for the even states.

The dimensionless parameter characterizing the

or the even states. We notice that E'
—yHp.

Equations (9)-(13)provide a complete solution of
the problem in terms of tabulated functions. The
eigenfunctions are given by Eqs. (9)-(11), and the

energy spectra of even and odd states are given

by Eqs. (12) and (13), respectively. Jahnke and

Emdee have plotted the zeros of the Bessel function

Z„(x) as a function of order (/ and argument x from
which one directly can read off the energy spectra.

As discussed above, the high-field limit of the

energy spectrum can be obtained as an asymptotic
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E-2j
)4j'c k

1.2

0.8

0.4

v=2

yHO

2j'cos ka
sink- x cosx= m(v+ 4) &Ho/2 jI' coska I, (15)

+o( -"')),
where a = 1/cosa. ', 0 & o.'& ~m. Setting

E'""=2j ' —4
I

j' coska
I
cosh

and using (14) together with the boundary condition
(13), we get

4l j'costa I 1 1
2j'- E cosX cos&

i. e, , n= X. The zeros of the Bessel function in

(13) are given by the condition

-0.4

FIG. 1. Even energy levels, with corresponding un-
perturbed Ising levels, plotted as functions of the magnetic
field.

series in 1/yHO simply by doing ordinary perturba-
tion theory in j'. From the properties of the Bes-
sel function, we conclude that the energy spectrum
for any nonvanishing value of the magnetic field
is discrete. In the limit of zero field, the infinite
discrete spectrum collapses to a bounded continu-
ous spectrum. This limit, which evidently is very
singular, can be investigated by performing a dou-
ble asymptotic expansion in both order and argu-
ment of the Bessel functions in (10) and (ll). From
Courant and Hilbert we extract the appropriate
asymptotic expansion

J„(ap)= (2/mp, tann)'~ (cos[p(tano. '—o) ——,'m]

where v=0, 1, 2. . . .
For a given value of the discrete quantum number

v, the corresponding energy, level approaches
2j' —4 tj',costa ) as 00 tends to zero. Expanding the
energy around the lower band edge we get

j' 4Ij'coska I+2Ij'coska

y, [3v(v+ 0) yHO/2
I
j' coska I]' . (15)

Since dE/dHO-Ho'~3, we conclude that the discrete
energy spectrum emerges from the lower edge of
the zero-field continuum with infinite slope. The
energy spectrum has an algebraic singularity at
vanishing field of order 3, and an algebraic singu. -
larity as a function of the coupling strength j', of
order g.

We have plotted some of the even energy levels
together with the corresponding unperturbed Ising
levels as functions of the magnetic field (see Fig.
1). The odd levels are obtained from the relation
@065 g 8V8n

0
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