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We have been studying the statistical mechanics of one-dimensional Ginzburg-Landau fields
for real, complex, and phase-only fields. Here, results for the specific heat, the order-
parameter-order-parameter, and energy-density-energy-density correlation functions, will
be presented. Formally, these solutions are of interest because they describe the behavior
of systems which are nearly ordered but do not undergo sharp phase transitions. Physically,
the real-field results may have application in some organic chain systems, while the complex
field and phase-only fields are associated with superconducting strips and linear arrays of
coupled weak links, respectively.

I. INTRODUCTION

In bulk three-dimensional systems, the onset
of a second-order phase transition is character-
ized by the continuous growth of an order param-
eter when the temperature decreases below a
critical temperature T, . The nature of the order
parameter varies with the type of phase transition.
Some examples are the relative density between a
gas-liquid phase, the superconducting pair ampli-
tude, magnetization, and molecular orientation.
In general the order parameter is a field which,
as the examples illustrate, can be real, complex,
vector, or tensor in character.

In addition to the order parameter, its spatial
correlations as well as correlations of its inten-
sity are often of interest. Landau introduced a
simple phenomenological approach to determine
the thermodynamics and the static spatial corre-
lations in the vicinity of the critical temperature.
A free-energy functional is constructed by expand-
ing the free-energy density in powers of the order
parameter ( and its spatial gradient. Then equa-
tions for g as well as its various correlations are
obtained by requiring the functional to be station-
ary. This leads to the so-called mean-field solu-
tions. Perhaps the best-known example of this is
the:Ginzburg-Landau theory of superconductivity.

As is known, these results are only approxi. —

mate, leading, for example, to an incorrect tem-
perature dependence for g and the range of its
correlations near T, as well as to the prediction
of long-range order in reduced dimensions. Now,
it can be argued that this simply represents a
breakdown of the analytic form assumed for the
free-energy density. However, it appears more
likely that the difficulty is associated with the im-

portance of fluctuations near T„and that the Lan-
dau free-energy functional should be used as an

energy functional in a canonical average over-all
g fields.

In general, such functional integrals are ex-
tremely difficult to evaluate. While various per-
turbation and truncation procedures have been de-
veloped to deal with this type of problem, none ap-
pear sufficiently powerful to give a detailed treat-
ment of the critical region. However, for one-di-
mensional systems the transfer matrix technique
can be used to reduce the functional integration to
a one-particle quantum-mechanical problem. 3 In

this form, straightforward numerical procedures
can be used to obtain an essentially exact solu-
tion.

Here we present in detail results ' obtained
from an analysis of one-dimensional systems
characterized by real, complex, and phase-only
order parameters. Results for the temperature
dependence of the order-parameter, the specific
heat, the order-parameter-order-parameter, and
the intensity-intensity correlation functions will be
given. Formally, these solutions are of interest
because they describe the behavior of systems
which are nearly ordered but do not undergo sharp
phase transitions at any finite temperature. Phys-
ically, the real-field results may have application
for linear chain molecules, while the complex and

phase-only fields are associated with superconduct-
ing whiskers and linear arrays of weak links, re-
spectively. It has also been suggested that near
T„ the application of a magnetic field to a bulk
superconductor can separate the Landau levels of
the order parameter field sufficiently that only the
lowest one is important, resulting in an effectively
one-dimensional system. Finally, we hope that
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these exact results for one-dimensional systems
will stimulate further experimental work with the
goal of making detailed comparisons to test the
validity of the functional generalization of the Lan-
dau theory.

II. FORMULATION

Here we take a simple form for the energy func-
tional F [g];

(2 1)

The coefficient a vanishes linearly as the reduced
temperature f = T/T, approaches unity;

o= (f —1)a' .

a', b, and c are positive constants and )p ls a 'telll-

perature-independent length set by

(2. 3)

The form of F in Eq. (1) is essentially that of the
Ginzburg-Landau theory of superconductivity in
the absence of a vector potential. In this work, we
will use this form for three cases: (i) it real, (ii)
g complex, and (iii) g phase only. In this latter
form, the magnitude of g is fixed, but its phase p
is aGowed to vary so that only the derivative in
Eq. (1) is relevant and

Here 6 lg(x) I'=
I g(x) i —(I g i') is the intensity fluc-

tuation. The usual mean-field thermodynamic
properties are obtained from a saddle-point ap-
proximation of Eq. (2. 6) in which a mean field (
is determined from

(2 9)

The lowest-order fluctuation contributions to Eqs.
(2. V) and (2. 6) involve a harmonic approximation
in which F[/] is expanded to second order in the
fluctuations about the mean field. In the Sec. III
these results will be reviewed.

As is well known, the transfer-matrix technique
allows one to replace the functional integration by
an eigenvalue problem. In this one-dimensional
case, the eigenvalue problem can be reduced to a
one-particle quantum-mechanical problem. This
approach has been discussed by several authors'
and is simply related to Feynman's path integral
formulation of quantum mechanics. Here we give
a brief summary of the ideas as they apply to the
real- and complex-fieLd cases.

It is convenient to consider boundary conditions
appropriate to a ring of length L. Dividing L into
N segments of length dK, an explicit expression
for the partition function Eq. (2. 6) is

(2. 10)

F[q]=f; dec'IvyI2. (2 4) with

Using F[(]as the energy associated with an or-
der-parameter configuration g, the partition func-
tion for a canonical ensemble can be expressed as
a functional integral

g f 6ye 8J'l83- (2. 6)

A precise definition of this functional integration
will be given below. Proceeding in the same
spirit, the order-parameter-order-parameter
and intensity-intensity correlation functions are
formally given by

& ( )= &0( )0*(0)&=f W ( "'"'/2')4( )0*(0)
(2. 7)

Because of the quadratic nature of Eq. (2. 4), the
continuous phase-only problem is trivially soluble.
A more interesting case is the discrete phase-only
problem associated with a linear array of weak
links. In this case,

F[~]=-&1«cos(~1-~1-1) (2 6)

) 1/2

(g real), (2. 12a)

dg, =I
' — d(Re), ) d(lmg, ) (g complex) .( p, c

(vhx 2

(2. 12b)

In all these expressions, Eqs. (2. 9), (2. 12a), and

(2. 12b), the parameter P has been set equal to its
value P, = (kT,) at the transition temperature.
The significant temperature variation is contained
in the parameter a. The length &x is of order $2,
so that the factors in Eqs. (2. 12a) and (2. 12b) are
constants and play no role in the calculation of the
thermodynamics or correlation functions.

In order to further reduce Eq. (2. 10), we for-
mally introduce an additional variable g,' and write

(2. 11)

The ring boundary conditions imply g„.1 equals p1.
The integration elements dg, depend upon the na-
ture of the field. For the real and complex fields
we take

=f 6~(e ""'/~)6l~(.)I'6I~(0)I'
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6((i —4() = ~.+.*(4f)+..((i) (2. 14)

so that

~ =~.J dtl" AN ~'(ll) exp[- &.(&&/&0)&(41 4N)]

".exp[- &.(«/&0)f(43 4~)]~.(4i) (2. »)
This expression for Z can be directly evaluated
if the 4„are eigenfunctions of the transfer opera-
tor

Jd(~ exp[- &.(&&/&0)f(A.i 4~)]+.(6)
= exp[- p.(«/to)~. ]+.(8&, i), (2. 16)

g Q e -sg(L/40) Ig
Pf (2. 1'7)

For a thermodynamic system in which I,/(0- ~,
only the ground state contributes and the free en-
ergy per unit length is

f= (- &~,/I-) in2'= &o/ho (2. 18)

Following this same procedure, the correlation
functions can be expressed in terms of the 4„
eigenstates,

~i(.) = ~. I&+. I~ I
+0) I' -p[- ~.(./~0)(e. —~0)]

(2. 19)

~.(~) = ~.
I
&~.16 1~ I'I ~0& I'-p[- 1.(./~0)(~. —eo)] .

(2. 20)
For distance x» $0, the lowest excited state cou-
pled by the matrix element determines the behavior
of the correlation functions.

The transfer-matrix-eigenvalue equation [Eq.
(2. 16)] can be reduced to a one-particle quantum-
mechanical problem by expanding 4 „(fr,) about 4'„
x (g...) and carrying out the dg, integration. Only
the even terms contribute and to leading order in
4x one finds

dq) exp[- P.(&~/50)f((~.i 4~)][+.(4~.~)

+ (g( —g) z)'1"(4~+~)

+ '((~ 4(.i)-'+"—(0i.~)+ ' ' ']
= exp[- p. (&&/&0)(s I e~.~ I'+ & Ie~.i I')

1 Ax)0
& &+ —

~ z +n ]+a

x exp[- S.(«/&o~f(Vi (~)1 exp[&.(«/4)f(4 4-~))

"e»[-P.(»/&0)f((2 6)] . (2. »)
Now, the 5 function is expanded in terms of a com-
plete set of normalized eigenstates

Formally, the derivative term can be exponentiated
and combined with the "potential" to order 4x so
that the transfer eigenvalue Eq. (2. 16) becomes

exp[- p, (n x/(o) H] +„=exp[- p.(»/]0) &.]+. .
(2. 22)

The effective Hamiltonian is just that of a particle
moving in an anharmonic potential;

R Q2
8= ——

z
— —

~ +a gl +b gl (2. 23)

For a real fieM, this is one-dimensional in g while
for a complex field, the real and imaginary parts
of g form a two-dimensional space with

QPJ Qa

(2. 24)

The anharmonic potential al( I +h !pl is shown in
Fig. 1 for three different temperatures. For T
& T„ the minimum in the potential occurs at I( I

= 0, but when T & T, the minimum is displaced to
s, finite value of I( I. For the real field, the po-
tential is symmetric under the discrete parity op-
eration (-—g. For the complex fieM, the poten-
tial depends only upon the radial I(~ I coordinate
and exhibits a continuous guage symmetry reflected
in the y independence of the potential.

The formal relationship between this quantum-
mechanical problem and the original statistical
mechanics problem offers some insight into the
nature of the solutions given in Sec. III. The role
of time is exchanged for the distance times i and
5 is replaced by kT'„&0. Thus the time correlations
of the position of a particle in the potential are
related to the space correlations of the order pa-
rameter. However, because t is replaced by ix,
the oscillatory time behavior of the particle cor-
relations is replaced by damped spatial correla-
tions in the statistical mechanics problem. Thus
the eigen energies set inverse correlation lengths
rather than characteristic frequencies. Continuing
with the analogy for T above a narrow critical
region about T„ the particle follows an essentially
classical motion, while when T approaches the
critical region the quantum mechanical motion of
the particle becomes increasinlgy important. At tem-
peratures suff iciently above T„ the harmonic part
of the potential dominates. However, in a critical
region near T„ the potential is very anharmonic,
and the particle can tunnel between the potential
minima. This leads to a near degeneracy of the
ground state and the low-lying excited states as T
decreases below T,. This near degeneracy is re-
flected [Eq. (2. 19)] in an increased range of the
correlations. Jn summary, this formal analogy im-
plies that the mean-field results of the original
Landau approach [Eq. (2. 9)] are to Hamilton 8
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equations in mechanics as the functional integral
formalism [Eqs. (2. 6)-(2. 8)] is to quantum me-
chanics.

III. MEAN-FIELD AND PERTURBATION-THEORY RESULTS

The anharmonic potential a I( I + t/Ig I was shown
in Fig. 1 for different temperatures. At tempera-
tures low or high compared with T„ the ground-
state energy is dominated by the potential minimum
so that mean-fieM theory forms a useful starting
point. For T & T„ the minimum lies at the origin
while for T & T, it occurs at lg I equal to —a/2b.
Within this mean-field approximation the free en-
ergy is just

uR 1 )8 sR

pR c s ~P-- ~(+ II ) (3. 5)

Within this harmonic approximation the ground-
state energy is

+8 t ~8 1/8

&2 Pc
/al ] t ~(y ~

1/2

(3.4)

Inserting these transformations into the expres-
sion for &, Eq. (2. 23), and keeping only terms
quadratic in d g yields for both real and complex g,

—(a /4b) f /go, T & T,0, T&T, (3. 1)
Here 4t is a fractional measure of the temperature
width of the critical region ' relative to T„

g = + (- a/2t/) ~/8+ aiIt

and for the complex field

(3 3)

v(y)

and the resulting mean-field specific heat has the
mell-known jump discontinuity as T decreases be-
low T„

~& = « "/ho2&T. .
A perturbation theory for T & T, is obtained by

expanding g about its mean-field value; for the real
field we have

(3. V)

Physically, 4T measures the size of temperature
region below T, in which the thermal energy kT,
is sufficient to drive the order parameter to zero
over a mean-field coherence length. Above T„
the mean field vanishes and the harmonic approxi-
mation gives for a real field

and for a complex field there is an extra factor of
2 which arises from the iwo-dimensional nature of
the Hamiltonian.

Now, as discussed in Sec. H, Eq. (2. 18), the
free energy per go length is just equal to Ro. and
the specific heat is proportional to the second
derivation of a o with respect to temperature. Nor-
malizing the harmonic perturbation results for the
specific heat to d, C [Eq. (3.3)], it follows for T& T,
that

——=-1+8 [/Rt/(1 —t)] / (3. 9)

(3. 10)

is valid for both real and complex g. Using the
harmonic approximations for T & T, we have

—=- (1/8&2) [a t/(1 —t)]'"

Fig. l. Anbarmonic potential vs t g) for different
temperatures.

for the real field and as discussed, the result for
the complex field merely has an extra factor of 2.
The singularities at T, are, of course, an artifice
of perturbation theory and in Sec. Dt, numerical
solutions will be given which show a smooth be-
havior throughout the entire temperature region.

From the form of the Hamiltonian it follows thai
the average value of the square of the order pa-
rameter can be obtained by differentiating &0 with
respect to a:
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(S. 11)

Using the harmonic approximation, this gives for
(I( l ) in the region T & T„

(3. 12)

Above T„ for the real field, one finds

(3. 13)

with, as before, an additional factor of 2 for the
complex case. Finally, within this same set of
approximations, the energy-level differences vary
as kT,(l —f)" so that

MPLEX

REAL

and both coherence lengths diverge at T,.
IV. EXACT RESULTS

(3. 14)
I

-3.0 0
I

t.o
I

2.0

There exists a large literature on the quantum-
mechanical anharmonic oscillator. Of the vari-
ous approaches, we chose to generate a truncated
matrix representation of the Hamiltonian using a
basis of n harmonic oscillator states. The scale

-5.0 .0

Fig. 2. Free-energy vs temperature. The mean field
(——) and harmonic approximations (——-) are shown

for comparison while the exact solutions are plotted as
the solid lines.

Fig. 3. Expectation value of field intensity vs tem-
perature. The mean-field result is shown dashed.

of the basis state wave functions is set by mini-

mizing the ground harmonic-oscQlator- state ex-
pectation value of H for T equal to T,. The ma-
trix is then diagonalized numerically giving eigen-
values and eigenvectors. As discussed in Sec. II,
the statistical mechanics is dominated by the
ground state and first few excited states. The
number n of basis states was varied to obtain nu-
merical convergence; we found that taking n = 20
gave accurate results over the temperature region
of interest.

The ground-state energy ~0. which is the free
energy for a section $0 in length, is plotted in Fig.
2 for both the real and complex fields. The long-
dashed line represents the mean-field result [Eg.
(3.1)]and the short-dashed lines are the harmonic
approximations [Egs. (3.6) and (S. 8)]. Asymp-
totically, both above and below 7.'„ the solutions

approach the results of the harmonic approxima-
tions. Note that the exact free energies vary
smoothly through the critical region.

The ground- state expectation value (@011(I I +0)
can be obtained directly from the expression for
i@0) as well as by differentiation of the ground-
state energy as discussed in Eg. (3. 11). Our nu-

merical results for this expectation value are corn-

pared with the mean-field behavior in Fig. 3.
Above T, the mean field vanishes so that the exact
result must lie above it. However, as the tem-
perature is lowered below T„ the exact result be-
comes smaller than the mean-field value and as-
ymptotically approaches the mean-field behavior
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2.0

l.5—

C I.O
hc

Real field

0.5

0---
-3.0 -2.0 -1I.O 0

(t-I)
l,o 2.0 3.0

from below. This contraction of the range of the
ground-state wave function is associated with the
quantum-mechanical motic~ of the particle in the
anharmonic well. The ground state corresponds
to an even-parity state with a finite amplitude at
the origin.

The existence of the inflection point in
(@oI Ittl l4'0) means that the specific heat of the
one-dimensional system has a peak. The specific
heat was calculated from the first temperature
derivative of (+0[ lg I'I4'0). The results obtained in
this way for the real and complex fields are shown
in Fig. 4. The mean-field result corresponds to a
step discontinuity 4C for T & T,. Similar results

Fig. 4. Specific heat C vs temperature for real
(dashed) and complex (solid) fields. 4C is the molecular-
field-step discontinuity.

for the specific heat of the complex iield have been

previously reported by Marcelja using another
method. '2 The extra phase degree of freedom of
the complex field spreads out the temperature re-
gion over which the field ordering occurs, giving
rise to a smaller bump in the specific heat. The
differences between the real and complex fields
are closely associated with the topology of their
potentials. For the real field, the particle must

pass through the local potential maxima at (= 0 as
it goes between the two potential minima. How-

ever, for the complex field, the two-dimensional
nature of the potential allows the particle to orbit
the origin. Furthermore, the two-dimensional

phase space of the complex potential weights the
larger l(l regions, pushing the expectation value

ot (If l ) up and smoothing out the specific heat.
Before leaving these thermodynamic properties,

it is worthwhile comparing them with previously
obtained results for small superconducting parti-
cles. For particles with all dimensions small
compared to the coherence length, the order pa-
rameter is uniform. Therefore, the functional
integration simply reduces to one ordinary integra-
tion. The average of the square of the order pa-
rameter for the complex field of a small particle
is shown in Fig. 5. This average lies above the
mean-field result at all temperatures. For this
zero-dimensional case, the statistical average
simply weights each value of ( with a Boltzmann
factor determined by the energy a lg I +h lg l . The
two-dimensional phase space pushes the weight to
larger Ig I so that (l pl ) approaches the mean-field

Fig. G. Expectation value of the
field intensity vs temperature for
a superconducting small particle.
Here dd = 2(b/2Va' P~) where
V is the volume of the small par-
ticle. The dashed curve is the
mean-field result [after Muhl-

schlegel et al. (Ref. 13)j.

0
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5.0

40

3.0

tpll /6t

a

2.0

1.0

0 t.
—XO -2.0 -1.0

I

0 )0(t- 1)
b,t

I

2.0
I

5.0

Fig. 6. Inverse correlation lengths $~ and $2 vs tem-
perature for real (dashed) and complex (solid) fields.

(4. l)
For the real field, && is the first excited state, an
odd parity state, and &~ is the second excited state
which has even parity. For the complex field, &q

is the lowest excited state having one unit of angu-
lar momentum while &3 is the second excited state
of zero angular momentum. In Fig. 6 these in-.

verse correlation lengths are plotted as functions
of temperature. In contrast to the behavior of $z,
the energy-density fluctuation correlation length
igz has a maximum slightly below T, and remains

result smoothly from above. Therefore, the spe-
cific heat of the small particles is monatomic in the
critical region. Of course, at temperatures below
the critical region the specific heat decreases from
the mean-field jump. Measurements of the dia-
magnetic susceptibility of small particles and
whiskers should provide information on (I g I ) for
these systems.

A direct calculation of the correlation functions
C~(x) and Cl(x) using five intermediate states
showed that these functions rapidly approached
the asymptotic forms determined by the lowest
energy intermediate states. The resulting corre-
lation lengths for Cq and Cz are

&i'= &o'P(&i —&0), &a~= &O'P(ea- &0)

&= Io (P&~) (4. 2)

If, contrary to the previous cases, E& is tempera-
ture independent, then the only temperature de-
pendence is that due to P, and the specific heat per
weak link is given by

C E, IO'(pE, ) ~(fo(pE, ) l~

Nk Io(pE&) (Io(P&i) I
(4. 3)

Alternatively, if the dominate temperature varia-
tion is associated with E&, the specific heat is

short range throughout the transition. Physically,
the loss of order-parameter-order-parameter
correlations involves changes in the sign of g and
for the real field this implies that g must vanish
at some point. The finite energy associated with
this provides a barrier for T & T, giving rise to the
exponential growth of $& below T,. However, C, (x)
for the complex field can decay simply by phase
fluctuations which by gradually changing y involve
arbitrarily small energies. Mathematically, these
features reflect the fact that the Hamiltonian for
the real field is invariant under the discrete parity
transformation g- —g while the Hamiltonian for
the complex field is invariant under the continuous
gauge transformation I g I - I ) I

e'". The real field
corresponds to a one-dimensional problem in which
for T & T„ the relative splitting of && —&0 depends
upon "tunneling" through the region of zero (.
This tunneling decreases exponentially with tem-
perature. However, for the complex field, the
potential becomes cylindrically symmetric, and
the relevant splitting for T & T, depends only upon
the additional energy associated with one unit of
angular momentum. From the expression for the
kinetic energy [Eg. (2. 24)], it follows that the ad-
ditional energy associated with one unit of angular
momentum varies as ig I and hence one obtains
the much slower [ht/(1 —t)] variation of $j for
the complex case.

The discrete phase-only case has been exten-
sively studied as the classical-planar Heisenberg
model of magnetism. '" Here our major point is
that arrays of Josephson junctions or weak links
provide a physical realization of this model. The
isolated superconducting regions can be well below
their transition temperatures so that each has a
well developed order parameter. However, be-
cause of the weak coupling between the supercon-
ductors, the critical region for the relative phase
ordering of the different superconductors can be
shifted to lower temperatures. Here we briefly
summarize the expected behavior for such phase-
only systems.

The eigenvalues of the transfer matrix are mod-
ified Bessel functions I„(PE&). Therefore, the par-
tition function for a linear array of N weak links
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C &E, I"p(PEi) I'o(PE, ) e E& I'o
Ãk &k T Ip(PE g)

Ip(PE)�)
& (k T) Io

(4. 4)
The correlation functions can also be expressed

in terms of modified Bessel functions. The phase-
phase correlation function between two regions
separated by l weak links is

This can also be expressed in terms of Bessel
functions, and one obtains

Io (PE&)Cp(~)=I (pE )
~, o (4. 7)

As before, the energy density correlations are
short range, in this case in fact, zero range.

l
C g) (ei@~ typ-) 1(p 1)

Io(PEg)
(4 &)
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