
SPIN DIFFUSION IN THE HEISENBERG MAGNETS. . .

VII. D/Ja used in (5. 1) are 1.62, 0. V 90, and
0. 596 times [AS(S+1)] ~ for the linear, square,
and sc lattice, respectively. Fairly good agree-
ment suggests the occurence of the spin diffusion
also for the isotropic Heisenberg magnet of spin
S= for the linear chain. As the convergence of
the present expansion is similar for finite S and for
the XF magnet of the square, sc, and bcc lattices,
the spin diffusion may occur for these cases too.
It is recalled that Gulley et al. "checked the spin
diffusion constant previously given, in a similar
way for the sc lattice.

Finally we compare our results with previous
theoretical values. As mentioned in the Introduc-
tion, Mori and Kawasaki' essentially suggested to
use formula (1.5) and to approximate I(k, t) for
small gaby a Gaussian distribution function. The

second column [two term (Gaussian)] of Table V
gives the values obtained by this method for the
case of spin —,'. Those values are very good esti-
mates to the values determined in the present work,
which are listed at the last column of the same
table. For large spins, the situation is not
changed. The values obtained by Bennett and Mar-
tin and Resibois and De Leener are 20% less than

the present values.
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The relativistic wave functions, the electronic shielding factors 0&(i=2, 4, 6), the quad-

rupole antishielding factors and quadrupole polarizabilities are calculated for Pr+ and

Tm jons, Two different theoretical schemes, the variational and the outward-integra-
tion methods are used. The results are compared with each other and with experimental
values derived mainly from Mossbauer spectroscopy.

I. INTRODUCTION

For the study of rare-earth and actinide ions in
crystals a first estimate of the crystal field effect
is often obtained by considering a bare crystal field
reduced through shielding. ' Other quantities of
interest that are due to shielding are the nuclear

quadrupole antishielding factor, as well as the
quadrupole polarizability.

Two different schemes have been developed to
deal with the shielding problem. One is a numer-
ical integration method, the other a variational
method. The aim of this paper is to compare the
results of these two methods with each other in
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two test cases, the Pr 'and the Tm ' ion.
The electronic configurations of these ions are

[Kr]4d o4f 5s 5p and [Kr] 4d 4f 5s 5p', re-
spectively. An external charge distribution will
distort the electronic shells. The distorted charge
distribution in these shells gives rise to an addi-
tional potential inside the ion. This is called
"shielding. " For instance, the unshielded crystal
field V& at the site of a 4f electron may always be
expanded as

y~ Q ~m~j y m(8 y) (1)
l, haft

where FP(8, p) are the normaLized spherical har-
monics, and A, are constants determined by the
external charge distribution (ions in.the lattice).
The spherical polar coordinates of the electron are
r, 8, and p; the angles being measured with respect
to a set of mutually perpendicular axes fixed in the
crystal. The radius is measured from the nucleus.
In order to obtain the effective potential due to the
shielding through the other electrons of the ion, it
is customary to introduce the shielding factor o„
which measures the reduction of the crystal field
parameter A, . The shielded crystal field poten-
tial is then given by

Vgy= Z A", r'(I —o, ) Y", . (2)

Because of certain selection rules, only /=2, 4, and
6 occur, and the shielding factor o, is independent
of the quantum number m.

This shielding effect for 4f electrons in the rare-
earth ions has been estimated by Burns~ and cal-
culated both by Sternheimer3 and Ray. 4 The former
used the numerical-integration method and the lat-
ter the variational method to calculate the distorted
wave functions by first-order perturbation theory.
The shielding factor o~ in the Pr3' ions has been
found to be 0. 67 by Sternheimer and 0. 52 by Ray.
However, in their first attempt, these authors
calculated the shielding due to the 5s and 5p shells
only. In later work, ' Sternheimer et al. improved
the calculation of o» and calculated o4 and o6, by
including the shie lding through distortion of the 4s,
4p, and 4d shells. The effect of the further inner
shells has not been calculated. The values of o4
and o6 were each found to be less than 0. 1.

Both direct and exchange interaction between the
4f electrons and electrons in the other shells con-
tribute to the shielding factors o, . The variational
calculations up to date have only been carried out
for the direct part of the shielding factor o&. The
exchange part has been omitted. In this paper we
want to give the results for all shielding factors
o, (I = 2, 4, 6), including direct as well as exchange
contributions, and taking into account all shells.
A slight generalization of the variational method,
which may be useful for further investigations,

will also be given. The calculation has been per-
formed using recently obtained Slater-modified
Hartree-Pock wave functions for the Pr3' and Tm3'

ions.

II. SHIELDING OF 4f ELECTRON AND OF NUCLEUS

It has been demonstrated (Ref. 5, Sec. IV) how

the combined effect of the crystal field and the
electron-electron interaction upon the determinental
wave function of the ion may be expressed in terms
of the solutions ag(nl, m, ) of a single-electron per-
turbation problem. Therefore we will restrict
our discussion to the latter„ to explain the nota-
tion used to designate the various contributions
to the shielding factors, and quadrupole antishield-
ing and polarizability.

Because the crystal field potential is of the form
(1), the shielding of each crystal field component,

H, (f, m)=r'a", r", ,

may be calculated separately.
Consider an electron whose wave function in the

unperturbed ion with the Hamiltonian Ho is

q'(nf, m, ) = ~ 'u'(nf„r) I ",,(8, y) . (4)

The external potential (2) adds a first-order cor-
rection to this wave function,

&$(nl, m, ) = 2A, Z g (nl, m, - lm- lyme, r),
lm gym'

(5)
with

[(2l+ 1)(2l, + 1)]
g'(nl, m, -lm-lgmg, ' r)=

4 (21 I)

x (l,0; l&0 iI&0)(l,m, ; 1m llzmz)

&&~ 'u'(nl, -l-l~; r) r, ~(8, y) . (6)

The angle bracket symbols are the Clebsch-Gordan
coefficients in the notation of Condon and Shortley. '
The functions g have to be determined in order to
calculate the shielding factors. It is customary
to consider these functions are arising from radial
excitations xf /&= l&. If /&W l, , one speaks of angu-
lar excitations.

The perturbational part hP of the wave function
fulfills, in first order in b, P, the differential equa-
tion

(Ho —E„,,) &g(nl;m;) = —[Hq(l, m) -E ] P (nl&m&);

(7)
therefore the angular factors of Hq(l, m)g (nl, m, )
and of b,g(nl, m, ) must be the same. This gives
rise to the condition for /z

II -Il '
&.'I I +I

I
. -- (6)

Since H~(l, m) has even parity (I being even),
and ~p(nl, m, ) must have the same parity. This
further restricts l& as follows:
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If /, is even (odd), then /z has to be even (odd) .
(9)

To ensure that the two sides of E(I. (/) have the
same dependence on the azimuthal angle (t(, the
following condition must also hold:

SPYy
= fB + Pl ~ ~ (10)

The shielding factor for H~(/, m) is written as a
sum of direct and exchange parts

(13)

where V is the external potential and V,« is the
shielded potential at the nucleus. This quantity is
of great interest, because its action on the nuclear
quadrupole moment determines the nuclear quad-
rupole resonance frequency.

The quadrupole polarizability a& is the ratio of
the quadrupole moment induced in the ion by an ex-
ternal charge (e. g. , on the z axis) to the bare field
gradient produced at the nucleus by the external
charge:

Here Q„ is the relevant component of the ionic
quadrupole moment tensor.

These quantities, expressed in terms of the wave
functions, are'

0, =O,D+O,~,
and each term of this sum is calculated as a sum
of contributions from different excitations

a,x= 2 o'x(n/(-/ /t), X=D or E . (12)
nl~ly

These contributions are obtained by numerical
integration of expressions (not given here) in-
volving the unperturbed and perturbed wave func-
tion, and certain combinations of 3 —j and 6 —j
symbols. "

The boundary conditions for the perturbed wave
function are assumed to be the same as for the un-
perturbed wave function, i. e. , that they vanish at
infinity. It has been suggested' that if the per-
turbed wave function mould be required to vanish
at some finite distance from the nucleus, shield-
ing parameters could be obtained which were in
better agreement with experiment than the ones
presently known. This "wave function in a box"
approach would take cognizance of the repulsive ef-
fect of the ligand ion charge distributions.

Apart from the shielding factor, two other quanti-
ties of interest may be easily calculated once the
wave function perturbed by the external charge dis-
tribution is known. These are the quadrupole anti-
shielding factor y„and the quadrupole polarizability
e&. The former is defined through the equation

y„= Z C(/) 2 /g) t u (/))u (/( 2-/t) r dr,
l ]ly

(»)
~, = + C(/, -2 -/, ) f u'(/, )u'(/, -2-/, )r'dr.

(18)
Here,

C(/( -2- /~) =
o (2/( + 1)(2/~+ 1)

l]

y„= 2 C(/,. -2-/&) f u (/, ) v'(/, -2-/&) r dr,
(18)

where v (r) is a solution of Eg. (31) with /= —3.

III. VARIATIONAL METHOD

In the determination of the perturbed wave func-
tions the superposition principle allows to treat
every occupied electronic level and every excita-
tion separately. Therefore the subscripts nl, nz,
and nl&m;- l m- lfsl f will be dropped in the sequel.

The energy of the electron is written as

&
0'+ t v I Ho+Hi I

('+&()
((/" + 6(/( I (/' + &(/')

= Eo+ Ex+ ( +(/(
I

Ho Eo
I
+0 &

+ 2
& 4

(19)
Using the expressions for (/(, L(/(, and Hq given in
Sec. II, the energy reduces to

E = Co + Cg(kg+ C o),
mith

e, = —2 f r ' u'(r)u'(r) d r, (21)

4, = t u'(r) (H, E,)u'(r) dr -. (22)

Co and Cj are two constants. Here, II0 is defined

by &ou =Eou0 0,

2

Ho= —
o +r 1 + V(r),

(2o)

(23)

where l is the angular momentum operator, and

V(r) is the effective potential in which the electron
moves.

The variational functions are chosen as multiples
of the unperturbed function u'(n/;m, ). This choice
allows one to evaluate all relevant integrals which
occur in E analytically„and reduces the minimiza-
tion problem to the solution of a set of linear equa-
tions for the variational parameters. IIexein lies
the simp/icity of the variationa/ method as corn
paved to the numerical-integration method.

=
o (2/, +1) (/,. 0; 20 I/g0) . (I/)

Because of the factor r in the integrand, the
quadrupole shielding factor y„ is very sensitive to
the exact values of u near x=0. In fact, the values
obtained by (15) cannot be considered reliable (see
Tables V and D:). Another formulao may be used
(see Sec. V B), which does not suffer from this
deficiency:
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(24)

The variational parameters are a„. With this
choice,

4 2+a ( rRI+n+2)

C~= 2 a„a„[—I, (I, +1)+I&(I&+1)
m, n

+(m+I+2)(n+ 1+2)](r ""'"'
) . (26)

Here
(r') = J (u')'r'dr.

In the case of a radial excitation(i. e. , for I, = I&)

the orthogonality requirement between u and u
has to be taken into account; hence, one chooses

'=uu(r'Z ra" +f )

It follows that

(2a)

The choice of the polynomial factor of u in the
variational function u is dictated by asymptotic
conditions at x= 0 as shown in Appendix A. The
sums shown in the sequel extend from n= 0 to a
maximum N whose value is discussed below. The
variational function for an angular excitation (i. e. ,
for I, el&) is chosen as

u'=r'+'u'Qa„r" .

1V. NUMERICAL-INTEGRATION METHOD

It follows from (7), that the radial factor of the
perturbational part of the wave function satisfies
the differential equation

(
d l~(l~+ 1) I+ 2 +I'o —Eo u (r)

Ch

= u'(I, m„r)(r ' - (r ') & ...,) (Sl)

Here Vp is the self-consistent potential used in
the calculation of R Hence Vp —Ep may be re-
placed by an expression containing u [see Appendix
A, Eq. (AS)]. If we denote by r„a selected distance
from the nucleus and by ~ the interval at the multi-
ples of which u is tabulated, the method of finite
differences yields

u'(r, ) = u'(r„) (2+ &'(3~ —I)(l~+ I+ I)r „'

["(r,) —2"(r.) -'( . )V"(r.6
-u'(r„,) —b'u (r„)(r„' —(r')5„) . (32)

The wave function is given an arbitrary initial
value u (rz) at the smallest radius at which uo is
known. Then the asymptotic condition

u'(r-~)~e ' 0' (SS)

f= -Za„(r"'),

4 q
= 2Z a„((r ') ( r"")—(r ""')),

C, = Z a„a„(m+ I+2) (n+ 1+2) (r"'"') .

(29)

is used to determine the correct value of u (r&) by
iterative, outward integration of (S2).

V. RESULTS AND DISCUSSION

A. Shie1dinl Factors

We recall that there is a set of va, riational pa-
rameters for every type of excitation nl, m, lm

-num& allowed by the selection rules. They are
now determined by minimizing 4j+ 4» with respect
to the variation of these parameters.

By the nature of the variational procedure one
may include as many parameters as one wishes in
the polynominal series and minimize the energy
with respect to these parameters a„. In the case
of light ions it has been found that two parameters
are sufficient in the sense that the inclusion of
more parameters does not further reduce the en-
ergy within the limits of computational accuracy.

Calculations reported in the literature have used
both positive and negative powers of z in the power
series multiplying u in u . As shown in Appendix
A, the use of negative powers is incorrect. This
explains why the use of more variational param-
eters gave worse results as compared to the nu-
merical-integration method. This point will be
further discussed in Sec. VI.

We have used ten variational parameters. The
omission of the last one of these did not give any
change in the resulting energy or shielding factors
within the last significant digit given in the tables.

In order to make a meaningful comparison be-
tween these and previous results, it is necessary
to note the difference of the unperturbed wave func-
tions used in different claculations. Sternheimer'
used Hidley wave functions, obtained by a solu-
tion of the Ha.rtree-equation. We used Lenander's
method to calculate the wave functions from a
Slater -modified Hartree- Pock equation for both
the variational and the numerical-integration meth-
od. The radial parts of these wave functions,
which we denote by u (r), are tabulated in Table I
for Pr ' and Tm '. As may be seen from Table II
the differences between the two wave functions are
not excessive. We tend to believe that the much
more recent Lenander wave functions of Tm3' and
Pr ' are of superior accuracy.

Coxnputer programs have been developed by other
authors for the calculation of relativistic self-
consistent Dirac-Slater wave functions, which are
known' to yield considerably different values for
(r ), (r ), and (r ) from the ones listed in
Table II.

The perturbational corrections to all pertinent
orbitals have been calculated and plotted, but are
presented here in Figs. 1 and 2 merely for Pr ',
and only for one radial and one angular excitation
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TABLE I. Radial factor of the wave function of an electron in the outer n$ shells of the Pr ' and Tme' iona. The en-

ergy and the radius (r) are given in Rydbergs, and in units of a0=0.529x 10 cm, respectively. Four different radial
intervals are used in the four sections of the table. Energies and wave functions for the 1S, 2S, 2P, SS, SP, Sg), 49,
4P, and 4D inner shells do not generally differ very much from those for the neutral atom (Ref. 23) and are not shown,
but they may be obtained from MAPS (Ref. 24).

Ion-
Shell

Energy
r

0. 005
0. 010
0.015
0. 020
P. 025
0.030
0. 035
0.040
0. 045
0.050
0. 055
0. 060
0. 065
0.070
0. 075
0.080
0. 085
0.090
0, 095
0.100
0.105
0.110
0.115
0.120
0.125

0.150
0.175
P. 200
0.225
0.250
0.275
0.300
0.325
0.350
0.375

0.500
0.625
0.750
O. 875
1.000
l. 125
l.250
1.375
l.500
l. 625
1.750
l. 875
2. 000
2. 625
2. 625
S.250
3.875
4. 500
5.125

Pr3+

5$
-4.606

U'(r)

1.002 xlp i

1.429 x 1O-'

1.453xlo i

1.209xlp i

8. 025 xlo 2

3.106 x 10-2

-2.089 xlp 2

—7. 146 xlo 2

-1.178xlp i

-1.579x 10 i
-1.908x 10-i
-2.158 x 10
-2.328xlp i

-2.420 xlp i

-2.438xlo i
-2.387x10 i

-2.275 x 10-i
—2. lp9 x 10-l.89V.1O-i
—1.645 x 1O-i

-1.362 xlo i
—1, 054xlo i

-7.288 x 10"2
—3.918x 10-2

-4.899 x 10-'

1.592xlo i
2. 827 x 10-i
3.471xlp i

3.520xlp i

3.064xlo i

2.237xlo i

1.178x 10"i
1.114x 10-3

-1.158 x10
-2. 251 x lp

-5.232 xlp i

-3.986 xlp i

-5.692 xlp 2

3.13O x 1O-'

6.149 x lp-i
8.193x 10-i
9.309 x 10-i
9.676 x 10"i
9.498 x 10-i
8. 961xlo-i
8.210xlp i

7, 357 x 10"i
6.479 x 10"i

2. 884xlo i

1.088xlp i

4.027x10 2

1.359 x 1P-2

4. 306 x10

Pr'
5P

-3.492
U'(r)

9.211x10 3

3.169x 10-2

6.129x 10"2

9.345 x 10-2

1.249.1O-i

1.535 x 10"
1.776 x 10
1.965xlp i

2. 095 x10-i
2. 167 x 10-i
2. 182x 10
2. 142xlp i

2. 053 x10 i

1.918x 10-i
1.745xlo i

1.538 x 10-i
1.303x 10-i
l. O46»O-i
7.728 x 10-2

4. 876x 10 2

1.955 x 10
—9.922xlo 3

—3.927x1Q 2

—6.816x 1Q

-9.627x10 2

—2. 1V1x 1O-'
—2. 926xlp i

-3.181xlp i

-2.983 x 10
—2.428 x 10"i
—1.625x 10
—6, 781x 10

3.218 x10"
1.302x 10
2. 207 x 10"

4. 719x10-i
3. 872 x 10-i
1.176x 10-i

-1.942 x 10"i
-4.690xlp i
—6.760xlo i
—8. 114xlp i
—8. 839x 10-i
—9.061x 10"i
—8. 908xlp i
—8.496xlp i
—V. 918xlp i

-7.246xlp i

-3.933xlp i

-1.809 xlp i
—8. 017x1P
-3.247x10
—1,244 xlo 2

Pr"+

-2.662
U'(~)

1.100xlo 6

1.638x10 ~

V. 723 x 1O-'

2. 276 x 10-4

5.186xlp 4

1.005xlo 3

1.740xlp 3

2. 779 x 10-3

4. 168xlo 3

5.956 x10-3
8.179x10 3

1.088x 10 2

1.407x 10 2

1.779 x 10
2. 206 x 10-2

2. 688 x 10"2

3.226 x 10-2

3.822 x 10-'
4.474x lp 2

5. 183x 10 2

5.948xlp 2

6.768x 10 2

7, 641xlp 2

8, 567 x 10-2

9.543 xlp 2

1.511xlo i

2.163xlo i

2. 879 x 10 i

3.630xlp i

4.392x 10
5.144xlo i

5.867xlo i

6.549xlo i

V. 181x 1O-'

7.756 x 10-i

g. 730xlo i

1,038x 100
1.O1V x 10'
9.502xlo i

8.626x10 i

7. 707xlp i

6.813xlp i

5.978x 10"i
5.218 x 10
4. 538 x 10"~

3.936x 1O-'

3.408xlo i

2. 947 x 10-i

1.361x 1Q"i

6.078xlp i

2 786x10
1,.211x 10 2

5.100x 10+

Tm
5S

-5.569
p'(r)

1.187xlo i

1.576 x 10-i
1.446x10 i

1.004 xlp
4. 037xlo 2

—2.482xlp 2

-8.780xlp 2

—1.437 x 10
—1.897 x10-i
-2.242 xlp i

-2, 467xlo i

-2.575 x 10
-2.574xlo i
-2.4V3 x 1O-'

-2.285x10-
-2.024 x 10-i
-1.703 x 10-i
—1.335xlp i

-9.343xlo 2

-5, 114x10 2

—V. 713 x 1O-'

3.588x 10-2

7.879 x 10-2

1,203 x10 i

1.598x10 i

3.123x 1O-'

3.730x10 i

3.460xlp i

2.524 x 10-i
1.185 xlp i

-3.150xlp 2

-1.785 x 10-i
-3.089 xlp i
-4.141x 10"i
-4.902 x 10-i

-4.584 x 10
-3, 701x 10

4.215xlp i

7.626 x 10-i
9.591xlo i

1.034 x 100
1.024 x 100

9.597 x 10'
8.667 10 i

7.619xlo i

6. 565x10
5.571xlo i
4.673xlP i

1.665 x 10-i
5.194xlo 2

1.635 xlp 2

4. 737xlo 3

1.286xlp 3

Tm"
5P

-4.101
U'(r)

1.313x 10-2

4.399xlp 2

8.274 x ]0-2

1.225xlp i

1.58gxlo i

1.888 x 10-i
2. 108x 10"i
2.242 x 1O-'

2.289xlo i

2.252 x 10-'
2. 141 x ].0-'
1.963 x 10
1.727 x 10-i
1.446 x 10-i
1.128 x 10"i
7. 847 x10-2
4.237 x 10
5.403 xlo 3

-3.167x 10-2
—6.819x 10-2
-1.036 x 10

373 x 10-i
—1.690 x 10"i
—1.983xlp i

-2.249x 10 i

-3.131x 10-i
—3.249xlo
-2.726 xlp
-1.760xlp i

-5.524x10 '
7.213 x10
1.929 x 10"
2.980 x 10
3.821x 10"i
4.427xlp i

4.222 x 1,0"i

8.698 x 10-2

-2.990x 10-i
—6.117x lp-i
—8.194x 10"i
—9.306 x 10-i
—g. 665x10 '
—9.493 x10
—8.976 x 10-i
—8.259 x 10-i
—V. 445 x 1O-'

-6.605 x 10-i
—5.786xlo i

-2.598xlp"i
-1.023 xlo i

-3.997x10
-1.438xlp
-4.891x10 '

TDl

—3.380
U'(r)

3.175xlo I

4.66gx10 5

2. 175x10 4

6.335 x 10-4

1.427 x 10-3

2. V32 x 1O-'

4.680 x 10-3

V. 388 x 10-3

1.096x 10 2

1.549 x 10-~

2.104xlp 2

2. 768 x 10-~

3.543 x 10-&

4.433 xlp ~

5.438xlo ~

6.559 x 10"&

7.792 x 10-3

9, 137xlo-2
1.059 x10"i
1.214 x lO-'
1.380 x 10-i
1.555 xlp i

1.738 xlo
1.930x 10-i
2.129xlp i

3.216 x 1O-'

4.396 x lo-i
5.596 xlo
6.757xlo i

7.838xlp i

8.109x10
9.656xlp i

1.037 x 100
l.095 x 100
1.141x 10'

1.212x 10
l.125 x 10'
9.865xlp i

8.418xlo i

V. 094 x 10"i
5.911xlp i

4. 904 10 i

4. 063xlp i

3.364 x 10-i
2.787xlp i

2.310x 10-i
1.918x 10"i
1.595xlo i

6.088 x 10"2

2.286xlo 2

9.032xlp 3

3.395 x 10 3

1.233 xlo 3
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TABLE II. Comparison of the means of different powers of the atomic radius in atoxnic units of the 4f eIectron in

Pr ' and Tma' ions. Sternheimer used Freeman snd Watson's (r )4f calculated from Hartree-Fock wave functions

&given as 1.086). He also used (r )4f and (r )4~ calculated from Ibdley's Hartree wave functions. In this work the
mean radius of the 4f wave function was generated from Lenander's computer program for Slater-modified Hartree-
Fock wave functions.

Freeman
and Watson

1.086

2. 822

15 726

Ridley

2. 839

16.017

Lenander

1.099

2. 834

14.419

Freeman
and Watson

0. 646

Bidley

1.068

3.653

Lenander

0.6220

0. 9687

3.2133

for each method of solution, and for external and
internal perturbations, respectively.

The perturbational parts u (r) of the wave func-
tion arising from the external radial excitation
5p- 2-p are plotted in Figs. 1(a) and 1(b); those
arising from the external angular excitation 5p - 2

-f are plotted in Figs. 1(c) and l(d). These are
calculated by the numerical [l(a) and l(c) ] and
variational [l(b) and 1(d)] methods, respectively.
Also shown on each figure is the unperturbed 5p
function u'(r). The scale of the abscissa is not

arbitrary but is determined by the magnitude of

0
I

-I.O-

I 40

5

5p(unperturbed)

r (a. u.)—
-I.O-

I '40

i 5p (unperturbed)

r (a.u.)—

7

0.5 (
I

0
I

p
+3 I I 0.5

I 3

I

I

ii
I'I I

0~I l~
I

II
l~

-05 -0.5-

'0
(c)

-I,O-

-1.40
I

(d)

5 f (unperturbed)

r( a. u.)—
I I

2

FIG. 1. Radial factor g (5p0) of an unperturbed wave function of Pr ', together with the first-order perturbational
correctiong'(5p0 2 p0) shown in (a) and (b), and g'(5p0 2 $0) shown in (c) and (d), due to the l=2, m=0 spherical
harmonic component of an extema/ potential. Compare diagrams on left and right to collate the results of the numerical
integration with those obtained by the variational principle. Compare diagrams at top and bottom to see the effects of
radial and angular excitations.
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u (r) through the inhomogeneous differential Eq.
(31). It should not be disturbing that the perturbed
part of the wave function appears to be as big as
the unperturbed wave function: As long as A, «1,
Eq. (5}ensures that the total perturbational func-
tion n, p is small compared to g .

Figures 1(a) and 1(b) show, that for the radial
excitation the two methods lead to very similar
wave functions. Since the excitation has the same
angular momentum quantum number as the unper-
turbed state, they have the same number of nodes.
In addition, the nodes of the two functions essential-
ly coincide with those of the unperturbed function.
The numerical wave function in 1(a) is noticeably
smaller at small radii (within the first two nodes)
than its variational counterpart.

Figures 1(c) and 1(d) show considerable differ-
ences between the wave functions of angular exci-
tations obtained by the numerical-integration and
variational method. The nodes forced on the varia-
tional function at the nodes of the unperturbed func-
tion completely alter the behavior of u (r) for r& 3
a. u. The numerical function has no nodes at all.
We believe that the variational function does not
correctly reproduce the effect of the perturbation,
because it forces the perturbed wave function to
have nodes where the unperturbed wave function
has its nodes.

These properties of the wave functions are re-
flected in the shielding factors, as discussed be-
low.

Apart from the excitations arising from Hq(l, m)
[Eq. (3)], with /&0, we also calculated wave func-
tions v (r) for excitations with I & 0. These are
needed to evaluate Eq. (18). Their significance is
elaborated in Appendix B. A representative set of
these functions is plotted in Figs. 2(a)-2(d).

The results for the shielding factors are pre-
sented in tabular form. All entries under the
heading "Sternheimer numerical integration" are
taken from the references cited below under the
name of this author.

Tables III-V present the contributions to the
shielding factors arising from the different excita-
tions in Pr ', Tables VI-VIII show the correspond-
ing results for Tm '.

The calculations have been carried out not only
for the excitation shown in the tables, but for all
inner shells as well. It was found, however, that
the contribution to o~ of each of these excitations,
ranging from 1s-d to 3d g, was less than 0.001.
These small, but numerous, contributions of the
inner shells have been included in the cumulative
results of Tables IX and X.

The most conspicuous features of these results
are the following.

There is a general agreement with respect to or-
der of magnitude and sign of the three values ob-

tained for each entry in the table. This indicates
that all three calculations are free from basic er-
rors.

We see from Tables III and VI, that the theo sets
of results obtained by numerical integration for
gs(nl, - lt) are close .The two largest contributions
5p-f and 5s- d agree within 6%. The 5p-p con-
tributions differ by - 35/0. Although we are unable

to tell why some contributions differ more than

others, the general trend seems to be that the
radial excitations (which give antishielding, thus

negative contributions) differ more than the angular
excitations.

On the other hand, the differences between the

resuLts obtained by the variationaL and numericaL-

integration methods are considerable in particular
in the case of the most important 5p-f contribution

(35/q). These differences arise from the differ-
ences of the perturbational part of the wave function,

which is shown in Figs. 1(c}and 1(d). As has been

noted earlier, the variational ansatz forces u (r) to
have nodes everywhere where uo(r) has nodes,
whereas the nodes of the true wave function may be

located elsewhere. The resulting distortion of the

shielding charge distribution from the actual one

seems to give rise to the large differences in the

shielding factors. In contrast to this, the radial
excitation 5p- 2-p gives rise to close values of

oz obtained by the numerical and variational meth-

ods. This reflects the fact noted above, that the

radial wave functions do not differ substantially.
The summaries in Tables IX and X show that

o2 as calculated by the integration method may be

considered as correct probably within 5/o, where-

as the variational value should be taken only as
indicative.

For o4 the situation is less favorable: Here the

direct and exchange contributions to the shielding
factor almost cancel, so that the deviations in the

results of the two numerical integrations, which

are of the order of 10/g, make the final results in

Tables IX and X differ by a factor of 3.
This is not very serious, because o4 is less

than 0. 1, and therefore the crystal field reduction

factor 1 —o'4, e. g. , for Pr ', is 0. 97 or 0. 91, re-
spectively.

Best concurrence between the three results is
observed for oe. Here the exchange shielding is
larger than the direct shielding by a factor of 2;
therefore the cancellation observed in o4 does not

occur,

B. Quadrupole Antishielding Factors and Quadrupole
Polarizabilities

We have used two different methods to calculate
the quadrupole antishielding factor y„. One meth-

od determines the perturbative correction u' to
the wave function due to the quadrupole moment
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FIG. 2. Radial factor u (5PO) of an unperturbed wave function of Pr together with the first-order perturbational cor-

rectionn

s'(3p0 ——3-p0) shown in (a) and (b), and g'(Gp0- —3-f0) shown in (c) and (d) dne to the i = —3, m =0 spherical
harmonic component of an internal (nuclear quadrupole) potential. Compare diagrams on left and right to collate the re-
sults of the numerical integration with those obtained by the variational principle. Compare diagrams at top and bottom
to see the effects of radial and angular excitations.

TABLE III. Contributions to the shielding factor o2 of the 4f electron in Pr

Excitation Direct shielding factor aL) Exchange shielding factor oz

nl] ly

5s d
5P -P
5P -f
4s d
4P -P
4P -f
4d- s
4d d
4d g
3s~d
3P -P
3P f
3d s
3d d
3d g
Total

Variation al
principle

0.3127
-0.1805

0.4135
0.0319

—0.0001
0.0407

—0.0379
—0.0043

0.0551
0.0009
0.0002
0.0010
0.0002
0.0003
0.0008

0.6346

Numerical
integration

0.2834
—0.1444

0.5825
0.0382

—0.0014
0.0481

—0.0340
-0.0060

0.0563
0.0015
0.0002
0.0011

—0.0010
0.0003
0.0008

0.8254

Sternheime r
numerical

integration

0.2895
—0.1873

0.5759
0.0356

-0.0018
0.0493

—0.0375
—0.0075

0.0611

0.7778

Variational
principle

—0.0544
-0.0387
—0.0619
-0.0088
-0.0012
-0.0111

0.0094
—0.0031
—0.0142
-0.0002
—0.0001
-0.0002
-0.0001
-0.0003
—0.0002

-0.1078

Numerical
integration

—0.0455
0.0342

—0.1076
-0.000
—0.0004
-0.0133

0.0079
—0.0007
—0.0146
-0.0003
-0.0001
—0.0002

0.0001
-0.0003
—0.0002

—0.1512

Sternheimer
numerical

integration

-0.0361
0.0427

—0.0817
-0.0096
-0.0005
-0.0134

0.0084
-0.0006
-0.0155

—0.1063
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TABLE IV. Contributions to the shielding factor 04 of a 4f electron in Pr.

3401

Excitation Direct shielding factor OD Exchange shielding factor az

nl] ly

5s g
5p-f
5p
4s g
4p ~f
4p
4d d
4d g
4d i
3s g
3p-f
3p h

3d d
3d g
3d i

Total

Variation al
principle

0.0366
0.1317
0.0576
0.0012
0.0034
0.0018

-0.0023
0.0040
0.0031
0.0
0.0
0.0
0.0
0.0
0.0
0.2374

Numerical
integration

0.0392
0.1964
0.0597
0.0013
0.0041
0.0019

—0.0026
0.0043
0.0031
0.0
0.0
0.0
0.0
0.0
0.0
0.3075

Sternheimer
numerical

integration

0.0436
0.2128
0.0700

—0.0028
0.0048
0.0035

0.3318

Variational
principle

-0.0218
—0.1090
-0.0260
-0.0010
—0.0043
-0.0013
-0.0007
-0.0084
—0.0016
-0.0
—0.0
-0.0
-0.0
-0.0
-0.0

-0.1742

Numerical
integration

-0.0236
-0.2093
-0.0271
-0.0011
—0.0051
—0.0013

0.0000
—0.0087
—0.0016
—0.0
—0.0
-0.0
—0.0
-0.0
—0.0

—0.2779

Sternheimer
numerical

integration

—0.0248
-0.1820
-0.0288

-0.0003
-0.0100
-0.0018

—0.2470

of the charge distribution from Eq. (31), with l = 2,
and uses Eg. (15) for y„. The second method
finds the perturbative correction v' to the wave
function due to the nuclear quadrupole moment
from Eq. (31) with l = —3, and uses Eq. (18) for
P 00 ~

The quadrupole antishielding factors obtained
by the first and second method will be denoted by
the adjectives "external" and "nuclear, " respec-
tively. They are listed in Tables XI and XII for
the ions Pr *and Tm ', together with the values
previously obtained by Sternheimer in Ref. 3.

It has been proven by Sternheimer and Foley
that in theory, the two methods give the same re-

suits for y„ in first-order perturbation theory. In

practice, the two results often differ, because
the perturbational corrections to the wave func-
tion are not accurately calculated.

Care has to be exercised in connection with the
interpretation of Sternheimer's statement, that
the two quadrupole antishielding factors so ob-
tained are equal in second order. Second order
perturbation theory usually means calculating the
wave function and the energy from the Schrodinger
equation up to terms in second order in the per-
turbing potential. Instead of this, the cited author
determines the perturbed wave function from the
first-order perturbation and Eg. (31), where the

TABLE V. Contributions to the shielding factors 06 of a 4f electron in Pr+.

Excitation Direct shielding factor oz Exchange shielding factor Oz

nl] lf

5s-i
5p h

5p -i
4s i
4p
4P-i
4d g
4d i
4d k

Total

Variational
principle

0.0061
0.0211
0.0117
0.0001
0.0002
0.0001
0.0007
0.0003
0.0002

0.0404

Numeric a1
integration

0.0064
0.0230
0.0117
0.0001
0.0002
0.0001
0.0008
0.0003
0.0002

0.0428

Sternheimer
numerical

integration
ratios

0.0066
0.0265
0.0130

0.0461

Variational
principle

-0.0094
—0.0533
-0.0104
-0.0001
-0.0006
-0.0001
-0.0060
-0.0005
-0.0002

-0.0806

Numerical
integration

-0.-097
-0.0567
—0.0105
-0.0001
-0.0006
—0.0001
-0.0065
—0.0005
—0.0002

-0.0850

Sternheimer
numerical
principle

integration

-0.0099
-0.0649
—0.0113

—0.0861
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TABLE VI. Contributions to the shielding factor 02 of a 4f electron in Tm '.
Excitation Direct shielding factor oz Exchange shielding factor Oz

5s- d
5P -P
5P -f
4s d
4P -P
4P -f
4d s
4d d
4d g
3s d
3P-P
3P-f
3d~ s
Sd d
3d g
Total

Variation al
principle

0.2951
—0.2209

0.3836
0.0330

-0.0012
0.0405

-0.0388
—0.0058

0.0505
0.0011
0.0003
0.0012
0.0002
0.0003
0.0009

0.5398

Numerical
integration

0.2937
-0.1779

0.4625
0.0422

-0.0016
0.0493

—0.0420
-0.0062

0.0518
0.0020
0.0002
0.0012

-0.0014
0.0003
0.0009

0.6748

Sternheimer
numerical

integration

0.2737
—0.2401

0.5001
0.0395

—o.ooze
0.0458

—0.0395
0.0078
0.0498

0.6189

Variational
principle

-0.0447
0.0459

-0.0490
-0.0090
-0.0080
-0.0109

0.0100
—0.0013
—0.0129
-0.0002
-0.0001
-0.0003
—0.0001
—0.0003
—0.0002

-0.0739

Numerical
integration

—0.0434
0.0387

—0.0643
-0.0114
-0.0002
-0.0136

O. 0104
0.0004

—0.0132
-0.0004
-0.0001
-0.0003
-0.0002
-0.0003
—0.0002

—0.0976

Sternheimer
numerical

integration

—0.0335
0.0453

-0.0618
-0.0104

0.0024
-0.0124

0.0094
0.0016

-0.0125

-0.0741

right-hand side is multiplied by a factor which
represents the effective potential due to the charge
distribution and its first-order induced moment.

It will be shown in Appendix B that in the varia-
tional calculation the external and nuclear methods
(using u' and v', respectively) also give the same
results with the additional feature, that even in
practice the numerical results are equal up to the
last significant digit which may be obtained in the
solution of a set of linear equations of order N,
where N is the number of variational parameters
used. Therefore, the tables contain only one set

of variational values in contrast to the two sets of
values of y„,„,and y„,„„obtained from the numer-
ical solution of the differential equation.

Again, the conclusion is, that the values ob-
tained by the variational calculation should not be
considered as reliable as the ones calculated by
numerical integration. The tables show that siz-
able contributions arise from the shells not con-
sidered by previous authors. We consider the
nuclear values of y„ the best, because they are not
so sensitive to uncertainties in the wave function
close to x= 0.

TABLE VII. Contributions to the shielding factor 04 of a 4f electron in Tm+.

Excitation Direct shielding factor 0& Exchange shielding factor oz

5s-g
5P -f
5P h

4s ~g
4P -f
4P h
4d d
4d» g
4d i
3s ~g
3P -f
3P h

3d —d
3d~g
3d

Total

Variational
principle

0.0368
0.1298
0.0562
0.0014
0.0037
0.0020

-0.0029
0.0038
0.0029
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000

0.2337

Numerical
integration

0.0398
0.1608
0.0592
0.0014
0.0046
0.0020

—0.0031
0.0041
0.0029
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000

0.2719

Sternheimer
numerical

integration

0.0409
0.1926
0.0652

0.2987

Variational
principle

—0.0202
-0.0992
-0.0231
—0.0012
-0.0046
-0.0013

0.0006
-0.0078
-0.0014
-0.0000
-0.0000
-0.000O
-0.0000
-0.0000
-0.0000

-0.1582

Numerical
integration

—0.0220
-0.1632
-0.0245
-0.0012
-0.0056
—0.0014

0.0012
—0.0082
—0.0014
-0.0000
—0.0000
—0.0000
—0.0000
—0.0000
-0.0000

—0.2265

Sternheimer
numerical

integration

-0.0223
-0.1629
—0.0259

—O. 2112
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TABLE VIII. Contributions to the shielding factor g6 of a 4f electron in Tm '.

Excitation Direct shielding factor gD Exchange shielding factor fT@

nl] ly

5s -i
5p
5P -i
4s i
4p h

4p
4d -g
4d —i
4d k

Variational
principle

r

0.0061
0.0217
0.0118
0.0001
0.0002
0.0001
0.0006
0.0002
0.0002

0.0410

Numerical
integration

0.0067
0.0245
0.0120
0.0001
0.-0002
0.0001
0.0007
0.0002
0.0002

0.0448

Sternheimer
numerical

integration

0.0071
0.0294
0.0143

0.0508

Variational
principle

-0.0090
-0.0533
-0.0100
-0.0001
—0.0007
—0.0001
-0.0054
-0.0004
-0.0002

—0.0794

Numerical
integration

-0.0097
-0.0581
-0.0102
—0.0001
—0.0007
-0.0001
-0.0059
—0.0004
—0.0002

—0.0855

Sternheime r
numerical

integration

—0.1106
—0.0713
—0.0121

-0.0940

The same remarks hold also for the quadrupole
polarizability of the ions in question, displayed in
Tables XIII and XIV. In the case of Pr ', our val-
ue 5'7. 27 is considerably larger than the present
value 41.28 in the literature. This is not due to
the contribution of shells neglected previously, but
to large differences in the 5s -d, 5P P, and

5P -f contributions.
In summary we draw the following conclusions.
The numerical integration method is quantita-

tively more reliable for calculations of the shield-
ing factor than the present form of the variational
method.

Another variational ansatz, such as

@1/ 2u'(r)=e-so "p(r),

with &(r) a polynomial may give more satisfactory
results. This would, however, deprive the varia-
tional method of iis great advantage which results
setting u' proportional to u . In that case no nu-
merical integration had to be carried out in cal-
culating the energy since all integrals reduced to
the form f(u )2r"dr= (r").

The second conclusion is that the present state
of the art allows a calculation of the factors
(1 —o', ) with an estimated accuracy of roughly 5'fo.

Based on a comparison of the nuclear and external
quadrupole antishielding factors (which should be

equal), we estimate the accuracy of this factor and

of the quadrupole poiarizability as 10%.

VI. COMPARISON KITH EXPERIMENTAL RESULTS

The shielding of the external (crystal) potential
and of the internal (nuclear quadrupole) potential

plays an important role in many experiments, no-
tably in nuclear alignment, nuclear magnetic reso-
nance, Mossbauer effect, optical (luminescence)
spectroscopy, magnetic susceptibility, etc. None

of these experiments enables one to determine the
shielding factors o, or the antishielding factors y„
independently. For instance, by studying the tem-
perature dependence of the nuclear quadrupole
splitting of Tm '

by recoilless nuclear resonance
absorption, the ratio (1 —y„)/(1 —oz) was deter-
mined for Tm(C~H, 804)3 QH20 and Tm20~,

' and for
the hexagonal intermetallic compounds TmRu„
Tmae~, and TmMna. " In all of these compounds
the rare-earth ions are at sites with lower than

cubic symmetry. This gives rise to a crystal field
component of the type Az(l —o'~) [cf. Eg. (2)]. In

compounds, where the site symmetry is cubic, the
term involving o2 is absent, and only o4 and o6 ap-
pear. Since the latter shielding factors are much

smaller than o„ the inaccuracy of the experi-.
ments'6 does not allow conclusions about o4 and o'6,

or, from an opposite point of view, o4 and o6 are
not needed to interpret the experimental results

TABLE Ix. Summary of the results for the shielding
factors g& of a 4f electron in Pr

TABLE X. Summary of the results for the shielding
factors g& of a 4f electron in Tm3'.

g2
0'4

g'6

Variational
principle

0.5391
0.0643

-0.0403

Numerical
integration
(this work)

0.6667
0.0272

—0.0421

Sternheimer
numerical
integration

0.0672
0.091

—0.040

Variation al
principle

0.4659
0.0755

-0.0384

Numerical
integration
(this work)

0.5772
0.0454

—0.0407

Sternheimer
numerical

integration

0.545
0.088

—0.043
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TABLE XI. Quadrupole antishielding factor of Pr3'.

Excitation

5s-d
5p ~p
5P -f
5s
4P -P
4P -f
4d- s
4d-d
4d-g
3s
3P -P
3P-f
3d~ s
3d d
3d g
Total

Variational
principle

0.5521
—143.3075

0.6289
0.2421

—25. 7773
0.2561

-0.5836
—5.8406

0. 2600
0.1056

-4.0670
0.1039

—0.2794
—0.3162

0.0861

—177.9367

External

Numeric al
integration

0.1374
—54.6081

0.5224
0.0812

—8.0535
0.1719
0.0363

—2.5909
0.2303
0.0458

—1.4082
0.0795

—0.0123
—0.3113

0.0897

—65.5897

Sternheimer
numerical
integration

0.566
73 ~ 7
0.515

—72. 619

Nuclear

Numeric al
integration

0.1561
—54.4924

0.5229
0.0851

—10.7758
0.1719
0.0268

—2.8901
0.2302
0.0465

—1.6946
0.0795

—0.0132
—0.3249

0. 0898

—68.7422

Sternheimer
numerical
integration

—69.7

—8.81

—2.83

—1.545

—0.322

—80.9

within the limits of accuracy. Magnetic suscep-
tibility measurements in cubic compounds, even
if they are of high accuracy' do not lend them-
selves to a determination of 04 and o6, because
the core crystal field parameters A4 and A6 can-
not be calculated by any present model even to an
accuracy of the order of o4 or a'6.

We therefore concentrate on the ratio (1 —y„)/
(l —o2), which was determined as explained
above. ' '" The quadrupole splitting, which is di-
rectly measured, is given by

e'&&')4y i -o'2

J n 1-Rq r 4y J+J
4A' 1 —y2

e (r)4x 1 —as )
Here Q is the nuclear quadrupole moment,

(34)

TABLE XII. Quadrupole antishielding factor of Tml',

Excitation

nip ly

5s d
5P -P
5p ~f
4s d
4P-P
4P -f
4d s
4d d
4d ~g
3s ~d
3P-p
3P -f
3d~s
3d
3d ~g
Total

Variational
principle

0, 46
—121.87

0.53
0.20

-20. 70
0.21

—0„47
-4.52

0.20
0. 09
3431
0. 09

—0.22
-0.23

0. 07

External

Numerical
integration
(this work)

0.18
—50. 85

0.49
0.07

—6.21
0. 14

—0. 04
—1.98

0.18
0. 04
1Q 12
0. 06

—0. 01
—0.23

0. 07

Ster nheimer
numerical

integration

0, 468
—65.5

0.491

-64.541

Numerical
integration

(our values)

0.19
—52. 29

0. 50
0. 07

—9.21
0. 14
0.03

—2. 39
0.18
0. 04
1t 37
0. 06

—0. 01
—0. 25

0. 07

Nuclear

Sternheimer
numerical
integration

—67. 2

-6.79

-2.18

—1.18

—75. 3



ELECTRONIC SHIELDING OF Pr ' AND Tm ' IONS IN. . . 3405

TABLE Xiii, Quadrupole polarizability of Pr ' in a. u.
(0.5292 A) .

Excitation
nl] ly

58 ~d

5P-f
5g ~p
4P -P
4P-f
4d~ 8
4d d
4d g
Total

Variation al
principle

12.28
8.01

30.12
0.08
0. 03
0. 12
0.06
0.10
0.27

51.09

Numerical
lntegr ation

10.89
7.28

38, 40
0. 09
0. 03
0. 14
0. 08
0. 09
0.27

57.27

Sternheimer
numerical
integration

7.23
6.58

27.47

41.28

TABLE XIV. Quadrupole polarizabilitJJ of Tm + in a.u.
(0.5292 A) .

(Jll o. l~d') are the reduced matrix elements (for Tm '
including an intermediate-coupling correction), Bo
is the atomic (4f) Sternheimer shielding factor,
and the brackets ( ~ )r denote the thermal average
of the expectation values of the angular momentum
of the ion, in different crystal field levels. Aa and
A~~ are the crystal field coefficients introduced in
Eq. (1), and (r")4z is defined in Eq. (2V), with
u =u4&(r) Wit.hin the framework of crystal field
theory the thermal averages ( )„are known func-
tions of the temperature once the crystal field
parameters A, are known, since the latter unique-
ly determine the crystal field levels.

The measurements of ( aE)r were evaluated by
two methods. In the first method the crystal field
coefficients A, were taken from optical spectro-
scopic data, while for (r")4& theoretical estimates
were used. In the second method no data other
than ( &E)& were used, in conjunction with a high-
temperature expansion of the thermal averages
( )r in Eq. (34). The results obtained by the
two methods were consistent. Table XV shows

TABLE XV. Comparison of experimental data with
theoretical values obtained in this work.

Theoret. ExPt.
(th1s work) Ref. 14

mS+ TmE8

7 )/(1- (I,) 154 250

0, 577

Expt. Expt. Expt. Expt.
Ref. 14 Ref. 15 Ref. 15 Ref

2O3 TmRU2 TmRe2 Tm MQ

130

0.57 0.58 0.64

the experimental results together with the theoret-
ical values obtained in this work. The agreement
for the intermetallic compounds is satisfactory,
but for the ethylsulfate compound the agreement
is bad. This corroborates the conclusions of
Freeman and Watson' according to which covalen-
cy and overlap contributions play an important role
in determining the energy spectrum of an ion, and
the idea of an "isolated ion in a crystal field" does
not describe the situation adequately in that par-
ticular crystal, even if shielding is taken into ac-
count. We believe, that the presently available
Slater-modified Hartree-Fock wave functions for
ions are adequate for the calculation of the shield-
ing factors and quadrupole antishielding and polar-
ization, if the numerical integration method is
used, and the contribution from all shells is taken
into account. (The calculation of shielding factors
starting from the Dirac equation for relativistic
wave functions is extremely complicated and has
not yet been attempted. ) Disagreement with exper-
iment indicates, that the crystal field picture is
inadequate for the crystal in question, and the
combined effects of covalency, overlap and pos-
sibly nonlinear shielding may be estimated from
the results of the comparison.

Neutron inelastic scattering experiments have
been carried out on a series of praseodymium
monochalcogenides and monopnictides. " These
crystals have the NaCl structure, and the crystal
field Hamiltonian of the Pr ' ion in the J= 4 multi-
plet ma, y be written

H.,=a, ( ') p, [0,'(4)+ 5O', (4)]

~.("»4loe(4) -»oe(4)].

Excitation
nip ly

5s d

5P-f
4s d

4P-f
4d s
4d d
4d g
Total

Variational
principle

4. 91
3.64

12.68
0. 02
0.01
0.04
0, 02
0. 03
0. 07

21.43

Numerical
integration

4. 54
3.38

15.44
0, 03
0. 01
0. 04
0. 02
0. 03
0. 07

23. 57

Sternheimer
numerical
integration

2. 89
3.09

11.46
0.02
0.01
0.02
0.01
0.02
0.04

Here 0"„are the Stevens operator equivalents, P4

and y4 are reduced matrix elements as tabulated
by Hutchings. The coefficients A4 and As are
identical to A4 and As, respectively. The exper-
iments yield the energy differences of the lowest
crystal field levels of the Pr + ion, from which A4
(r~) and Ae(r ) can be deduced. These are listed
in Table XVI.

Similar values are obtained for Pr compounds of
Bi, As, P, Te, Se, and S. Using the lattice con-
stant a = 6. 376 A for PrSb, and unspecified values
for (r ) and (r ) for Pr, the authors of Ref. 19
calculated the parameters listed in Table XVI.
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TABLE XVI. Crystal field parameters in the chal-
cogenides PrSb and TmSb at the Pr and Tm ion sites.
The values of (r") used for the theoretical estimates in
the last two columns are taken from Table II, last col-
umn. For PrSb the effective charges Z=+2 are used for
Pr and Sb, respectively. For TmSb, Z is left as a pa-
rameter. Point charge crystal field model is used for
the theoretical estimates. n. n. = six nearest neighbors
only; data in meV.

Expt, This
Refs. 19-21

wo 1'k

All Iofls
'I'heoret.

Befs. 19-21 n. n.

PIsb w (r4&

PI-Sb A.,&r'&

TmSb A4(r )
YmSb W, &r')

8.3+0.3
0. 17+0.12
6. 81+0.10
0. 44 +0.04

8. 4
0. 14
1.98Z
0, 022Z

8. 50
0. 128
l. 835Z
0„0198Z

8. 89
0. 169
1.92Z
0. 0262Z

The calculations were done by a point charge near-
est-neighbor model with an effective charge of —2.

There is an unexpectedly good agreement bebveen

the experimental and calculated values of these
authors. Similar good agreement has been found
for the other six compounds.

To check this result, we performed two calcu-
lations. In the first calculation we used the same
model, as the authors of Ref. j 9. In another mod-
el a sum is carried out over all the ions in the
lattice, assigning+ 2 and —2 charges to the Pr and
Sb ions, respectively. (For + 3 and —3 charges
the results should be multiplied by f. ) In the
nearest-neighbor point charge model the coeffi-
cients A4 and A.6 are given by

&,= —14.4Z(14/a'), ~,= —14. 4Z(6/a')

if the charge Z is expressed in units of the elec-
0

tronic charge, a in &, and the results for A.4 and A6
in eV. Taking into account all ions, the formulas
are

A4 ——14. 4 Z2 s Q( (35X( —30 Xg R;+ 3R, )/Rg,

X,= —14.4Z2 '
—,
' Z, (231X,'- 315X', R,'

+105X', R4 5R')/R"

where X;, F;, Z, are the coordinates of the ions
and R;= (X, + I'&+Z&) ~ and the sums are over all
ions except the one at the coordinate origin. Us-
ing (r ) = 0. 222 A, (x )= 0. 317 A, we obtain the
set of results shown in Table XVI.

The agreement of our results with experiment
is good for PrSb, but bad in TmSb. %e tend to
believe that the good agreement in the case of
PrSb (as well as in the case of other Pr-chalco-
genides and pnictides) is fortuitous, the more so,
because the choice of S= 2 effective charge on the
Pr-ion to achieve this agreement is not readily
justifiable. Once agreement has been forced for
one compound, other isomorphic compounds will
also conform because the crystal field coefficients
scale with powers of the lattice constant.
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APPENDIX A.; ASYMPTOTIC BEHAVIOR GF WAVE
FUNCTIONS AT r =0

For our numerical solution of Eq. (2&), the

asymptotic behavior of the solution u'(r) at r= 0
is of no importance. The function u' is given an
arbitrary value at x& (the closest point to r = 0,
for which u" is known) and the integration pro-
ceeds outward. The correct. value u'(xt) is de-
termined by the asymptotic behavior of u' at x- ~
through iteration. In the numerical integrations
necessary to find the shielding factors, u'(r) is
not used at any point r in the closed interval (0, et).

In contrast to this, the asymptotic behavior of
u (v) at ~= 0 is important in the variational meth-
od. Here an analytic form of u'(x) is used, and

integrations are carried out analytically. To min-
imize the energy any series expansion of u'(v) may
be used (including positive and negative powers of

x) as long as the energy expression, which is an
integral over the wave function, is convergent.
However, the use of such arbitrary series expan-
sions for u' will not lead to correct values of the
shielding parameters if u' has an incorrect asymp-
totic behavior at x=- 0.

To determine the correct asymptotic behavior,
let us set

u (l, )=r"'
n=o

eo ~0

u'(l, -l-l&)=r' Z a„x", asc0.
n=o

The leading power I;„in (Al) reflects a well-known
property of the Schrodinger equation with centro-
symmetric potential. In (A2) the constant o is to
be found.

Making use of the equation

1 ud'(nl, ) l;(l; + 1)
V p0

0 nE& 0 y&2 &2

= —(l, + 1) c~ + Ld.„r", (A3)
&0 0

we conclude, by physical rather than mathematical
reasoning, that c110. This is so, because for
small i' the effective potential V(r) must reduce
to the Coulomb potential of the nucleus. The con-
stants d„are certain combinations of the constants
which occur in (Al) and (A2). Setting

(c,/c o)(l, + 1)= d, e 0, (A4)

Eq. (31) may be written as follows for small x:
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[- o(n —I)+lz (ii+1)]r" 3Z a„r"+d, r
n=0

x Za„r" —2&r Ena„r"
n=Q n=f

+r Z Z d„a„r"'"-Z n(n —1)a„r"
n=Q m=0 n=a

is=
I l~ II ~ If~+I f. (A6)

Hence (i) is excluded.
(ii) The second possibility is

= ly+1.
Equating the lowest powers of x on both sides of

(A5) yields

Q= l +l)+ 3o (A7)

For radial excitations l& = l
&

again there are two
possibilities. (i) In the first case we have
—c((& —I)+lz(i&+I)=0, hence o(=i&+1 .

Equating lowest powers of x on both sides of
(A5) leads to &=l, +2=i&+ 2, since l, =i&. This is
a contradiction, and (i) is excluded.

(ii) The second possibility is

ak l]+1.
Achievement of identical asymptotic behavior for

r=0 on both sides of (A5) now requires

(r/+l~+1 5 rl~+g ( l )) Q r n

n=Q

For angular excitations (l, el&) there are two possi-
bilities to explore. (i) In the first case we have

—o'(& —1)+ lg(lg+ 1)= 0,
hence

n= ly+1 .
In this case r ' is the lowestpower of r on the

left-hand side of (A5) with a nonvanishing coeffi-
cient, while on the right-hand side it is x'~ "'.
Consequently, we must have o.'= l&+ l+ 2. Since n

is already determined, this leads to l& = l, + l + 1.
This condition cannot be fulfilled, since the an-

gular parts of the wave function must also corre-
spond on the two sides of the equation, which gives
the condition

u'(l, - l - ly) = u (l, )

with

g(r) =pa„r" .

(82)

(82)

4f and 4q are givenby

@&-—2f r'uo(l&)u'(l&-l -lz)dr, (84)

( d~ ly(lg+1)
@a= ~'((g-) -(y)(l I + ' I + )'(&) —&,)t,dr

x u'(l)- l - ly) dr . (85)
After some manipulations we obtain

dg + l„
(86)

with
B(l(,' ly) = ly(ly+ 1) —l ((l, + 1) .

Making use of (83) and (86), the variational equa-
tions

8C f 842
+ =0, m=0, . .. , N

Ban Ban

may be written

ga [mn+B(l„ l&)](r"'" ~) = (r""),

for l& l
&

the homogeneous differential equation for
u(l, -l -lz) has no solution, because the constant
E, which appears in the equation is not an eigen-
vdue. (The eigenvalue is Z, .) The homogeneous

equation for u'(l, - l- l, ) has the solution uo(l, ),
which, multiplied with a constant f has been added
to the particular solution of the inhomogeneous
equation.

APPENDIX 8: VARIATIONAL CALCULATION OF
QUADRUPOLE ANTISHIELDING FACTOR

Let us denote the type of integral which occurs
in the quadrupole antishielding factor p„by

I~, (l, - l&) = f r~uo(l, ) u'(l, - l - I&) dr .
The function u' is obtained by minimizing the

expression C f+ 43 with respect to the variational
parameters an. The latter occur in the expansion

&=l]+ 3 . (A8) n=0, . . . , N ~ (89)
In summary, we arrive at the following variation-

al wave function, written in terms of u:

u'(l, - l - lz, r) = uo(l, ; r) r"3Z a„r"
n=Q

for l &0 l&, (A9)

u'(l&-t-ii, 'r) =uo(l r)(ra 2 a„r"+f)
n=Q

The solution of this system of equations is

a„=G „(l„ly)(r'"), m=0, . . . , N

with

G „=[mn+B(l„ l&)](r"'" ) .
Note that

n=&n

(810)

(811)

(812)
for l, =lz. (A10)

Here, we have taken into account the fact, that
An important property of the matrix G„„(l&, l&) is

that it does not depend on l. The only dependence
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of a„on l enters through the inhomogeneous term
(r'") of the set of Eqs. (89).

Having determined a, hence u'(l, -l -4&), from
(82) and (83), we insert the result into (81) and obtain

As a special case, for l =2, p= —3 we obtain

y„,„,(l,- 2- l~) = f r-'u'(l, ) u'(l, - 2- l, ) dr

= J r u (l,)v'(1,- —3-lq)dr

=y„,„,((l)- —3-l~) . (815)

= 2 6 „(l„lq)(r"")(r~) .

From this and (812) it follows that

Ipi(ii lf) Ilp(li lf) '

(813)

(814)

This shows, that within the accuracy of the in-
version routine for the matrix G ' the external and
nuclear quadrupole antishielding factors are equal.
This has been verified by the numerical calcula-
tions.
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