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A theoretical criterion for the occurrence of the spin diffusion is given in terms of the
"friction function" or "memory function" which occurs in the kinetic equation of the Fourier-
space transformr(k, t) of the two-time spin-pair correlation function. The friction function
in the limit of k Ois determined with the aid of the short-time expansion of the two-time
spin-pair correlation function forthe square, sc, and bcc isotropic Heisenberg magnets at
infinite temperature, and the criterion is checked. The spin diffusion constants for spin
1/2 are 0. 86(kla2, 0.619Za2, snd 0. 609Jam, respectively, for these lattices, where Zis the
exchange integral and a is the lattice constant. The spin diffusion constants for larger spins
are also provided. It should be noted that 0.509Ja is in complete agreement with t'he experi-
mental value (0.525+ 0. 06)Ja2 for the bcc solid He . ~ For the one-dimensional isotropic
Heisenberg magnet and for the square, sc, and bcc XY magnets, the friction function could not

be determined in the present calculation. Suggested values of the spin diffusion constant are
given for these lattices. Comparison is made with the results of Windsor's computer-sim-
ulation calculation. There exists no spin diffusion for the one-dimensional XY model.

I. INTRODUCTION

It has not been clear theoretically whether spin
diffusion occurs in the Heisenberg magnets, even
though the formulas are provided by which one can
calculate the spin diffusion constant, assuming its
occurrence. In the present paper, a theoretical
criterion is given for the occurrence of the spin
diffusion in the Heisenberg magnet, and it is
checked for the isotropic Heisenberg magnet and
the XY magnet. Discussions are restricted to in-
finite temperature.

If the spin diffusion occurs, the Fourier-space
transform

I(k, f)= d I(k, f)

takes appreciable value of O(k ) only before a short
correlation time ~„gave a formula

D= —lim 0 I(k, 0) f I(k, f) dt . (1.2)
k~0

In evaluating D with the aid of this formula, Mori
and Kawasaki assumed a Gaussian distribution
function for I(k, t). Then D is calculated from the
knowledge of the terms of O(t ) and O(t') of the
short-time expansion of I(k, f).

On the other hand, Resibois and De Leener in-
vestigated the following kinetic equation, which is

I(k, f) = N (8„-'(I)S f'(0) )

of the two-time spin-pair correlation function be-
haves as follows:

I(k, f) = (const)e

for small wave vector k and large time t, where
D is the spin diffusion constant. Mori and Kawas-
aki, assuming that

valid at infinite temperature:

f t

, I(k, f)=- ~ r(k, f-f')I(k, f')df'.

They gave the following formula:

D= -, 1'(k, f)dt
~

1
2 ek' (1 4)

"0 5=0

which is easily obtained by substituting (l. 1) into

(1. 3) and assuming 1'(k, f) decays to zero. We see
that (1.2) and (l. 4) are equivalent by taking another
time derivative of (1.3). Resibois and De Leener
used a solution of an approximate integral equation
in place of 1'(k, t) of (1.4). Bennett and Martina

also discussed the spin diffusion with the aid of the
function 1"(k, f) or its Fourier-time transform.

In the present paper, we investigate the kinetic
equation (1.3) for small k and show (i) that the spin
diffusion occurs, if there exists a positive value

0, and if the friction function 1'(k, t) for ll k I
& 0, is

so short ranged that conditions (A) and (B) given

below are satisfied for its Laplace transform
I'~(k), and then the value D occurring in the condi-
tion (B) is the spin diffusion constant. It is further
shown (ii) that the spin diffusion constant D can be
calculated by the following formula:

D= f, 4(t) dt, (1.5)

0 (f) = —11m[I(k, f)/0 I(k, 0) ] (1.6)
0

Condition (A). There exists a negative number
s such that I'~(k) is an analytic function of p when

Rep& s and I k I & k, .
Condition (B). I'~(k) is O(k ) if Rep &s and

lim-„. o lim~. o I'~(k)/0 -=D is not zero.
In a recent paper, the short-time expansion co-
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We are concerned with I(k, t) which is a two-time
correlation function of S„-'(t) and S „*(t):

I(k, t) = N (S"'(t)S."„'(0)), (2. 1)

where N is the total number of spins in the system
and

S g(t) istS„g -iHg S + Q s s $k Rg

The Liouville equation for S~'(t),

Sf'(t) = t [jj, S1'(t)],

js reduced to the generalized Langevin equation

SI'(t) = —~ I'(k, t —t ) S"„'(t ) dt + R"„"(t)
Q

(t&0), (2. 3)
where

r(k, t) = (R-„"(t)R;"*(o)) (2. 4)

(RI"(t)s-„'(0)&=0, t o.
In deriving (2. 3), use is made of the fact that

(s „-'(o)s -„'(o)
&

= o

(2. 6)

at infinite temperature. By taking the correlation
of (2. 3) with S ~'(0), we have

efficients of the two-time spin-pair correlation
function of the Heisenberg magnets of spin —,

' at
infinite temperature have been given up to O(t )
for the linear chain and up to O(t ) for the square
and sc lattices. The coefficients for the bcc lat-
tice have been obtained up to O(t ), and the ex-
pansion coefficients for an arbitrary spin for these
lattices have been obtained up to O(t ).' By using
those coefficients, we express 4(t) defined by (l. 6)
as a product of a Gaussian distribution function and
a power series in time t. We check the conver-
gence of the result when the power series is trun-
cated. Based on this result, we discuss the condi-
tions (A) and (B) for I'(k, t), and give an estimate
of D for these lattices.

In Sec. II, we sketch a derivation of the condi-
tions (A) and (B) and the formula (1.5). In Sec.
DI, I'(k, t) and 4(t) are obtained for the isotropic
Heisenberg magnet and the XF magnet at infinite
temperature for the linear, square, sc, and bcc
lattices. Results are given and discussed in Sec.
IV. Comparison with previous works and experi-
ments is given in Sec. V.

II. BASIC THEOREM

is not zero. Here s is such a negative number that
0& s & s(k) for small values of k. An existence of
such an s is guaranteed under the condition (A).

If we could calculate I'(k, t) and show that the
above conditions (A) and (B) are satisfied for its
Laplace transform I ~(k), we predict the occur-
rence of the spin diffusion and give the spin dif-
fusion constant D by

D= lim lim r~(k)/k
k0 PO

If r~(k)/k is found to be a continuous function of

k, we can exchange the order of the limits and

have

D = lim lim r~(k)/k (2. 9)
P-0 k-0

The Laplace transform I~(k) of the second deriv-
ative of the I(k, t) with respect to time t is given by

Ip(k) = P Iq(k) PI(k, —0) —I(k, 0) = —I(k, 0)

(2. io)
When r~(k) is of O(k ), the limit of k-0 of this
equation gives

lim ', = —lim ~
' — =—4~ . (2. 11)r, (k) . I,(k)

k» Q

Thus the formula (2. 9) is also written as follows:

ip(k)
k'I(k, O)

(2. 12)D = —lim lim
P"0 k" 0

It should be noted that the order of the limits in
(2. 12) cannot be changed because

lime, (k) = -j(k, O) =O.
p 0

The inverse Laplace transform of (2. 11) gives

lim 3 = —lim s
' —= 4'(t) . (2. 13)r(k, t) . I'(k, t)

k»0

j~(k) = c "&(0)/[p+ r~(k) ], (2. V)

where g'o'(0)=I(k, 0)= —,'S(S+ 1) for spin S at infinite
temperature.

The inverse Laplace transform of (2. V) gives

I(k, t) =c' '(0) e ' (t- ) (2. 8)

for small k, if (A) the abscissa of convergence
s(k) of the Laplace transform I~ (k) is negative, and

(B) r~(k) is O(k ) if Rep & s, and

Iimiim r (k)/k =D
k» Q p»Q

~t
I(k, t) = — I'(k, t —t ) I(k, t ) dt (2. 6)

Equation (2. 12) is now written as follows:

D= f 4'(t) dt, (2. 14)
4

Q

This equation is solved by the Laplace transform.
By denoting the Laplace transforms of I(k, t) and
I'(k, t) as I~(k) and r~(k), respectively, one has

where
4 (t) = —lim [I(k, t)/k I(k, 0)]

k 0

This is the required equation (1. 5) .

(2. iS)
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nI &on& k
n=t 2n ! 2g

Here

s, =-', s S(S+1), (3.2)

where z is the coordination number of the lattice
and J is the exchange integral;

III. I'(k, t) AND 4'(g)

The short-time expansion of I(k, f) at infinite
temperature is obtained from the short-time ex-
pansion of the two-time spin-pair correlation func-
tion a(5«, t)=-(s&'(f) S&'(0)) by a Fourier-space
transform:

Isotropic Heisenberg magnet

Lattice M] M] M~&4) (6) Mt (8)

Linear 0.5 1.0 9.0 170.0
(p, =1.50) (p, =2. 83)

4948. 0
(p8= 5.89)

Square 0.5

0.5

5.0

9.0

175.0 11350.0
(p4= 1.17) (pe =1,51)

549.0 61138.0
(p4 = 1.13) (p6 ——1.40)

bcc 0.5 13.0 1125.0 179334.0

(p4 —-1.11) (p6 =1.36)

TABLE I. Values of M~'+ &=I, '%)/k « = (&d )q
41+k a as k 0 for the Heisenberg magnets of spin $ at
infinite temperature.

I,"'(k) = o,"'(0)= —,'S(S+ 1),
(2+&(k) Q o, &ots&(g ) s&lt R&y

(S. 3)

Linear 0.5 0.0 0.0

XY magnet
Lattice M M " M M (6)

0

0.0

0

0.0

The values of o ' "'
(%&&) have been given in Tables

IV-VI of Ref. 4 for the Heisenberg magnets of spin
—,
' at infinite temperature, for the linear, square,
and sc lattices. The values for the bcc lattice are
given in Table III of Bef. 5. For the isotropic
Heisenberg magnet n = t; and for the XY magnet
n = 0 and J must be replaced by J, . For an arbi-
trary spin 5, 0 ' "' is expanded in powers of
—,'S(S+ 1):

sc 0.5

bcc 0.5

Square 0.5 2.0

4.0

6.0

32.0

(p4 =1.33)

128.0
{p4= 1.33)

1064.0
(pe =2. 22)

8288. 0

(p, =2.16)

288. 0 28 128.0
(p4=1. 33) (p, =2. 17)

(~'")- = &'"I.""&(k)/I.&o&(k) .
By expanding the exponential in the summation

of (3. 3) and noting the sum rule

2& ogg (5&f) 0

we have

I ' "'(k) =k a M ' "'+O(k )

(3.4)

(S. 8)

for an arbitrary direction of k, where

M ""&=Z&&r,""&(5&~)X&~'/a'.

X,z is the x component of %«and a is the lattice
constant. The values of M ""' for spin —,

' are
listed in Table I. For an arbitrary spin, we have

M &'"&=K,M„,&'"&[-,'S(S+1)]'. (3.7)

The coefficients M ~' "' are listed in Table II,
where M, ~'s"' (n = 0, 2, 4) are the contributions of

sion must be replaced by g„" oM, ,~&s"&Z„J,o" /Zo".

By taking the second derivative of (S.1), we have

o.""&(~ ) =Z, &r. ,s"&(5„)[-,'s(s+1)]~,

and the coefficients o ~&a"&(lT&&) have been calculated
for 2n ~6.

The coefficients I ""'(k) are related with the so-
called moments (o& ")&, , which are the expansion
coefficients of I(k, I)/I(k, 0), by

g t) = —J I~ (k)+~ () ~(

(3.8)
Substitution of (3.8), (3.1), and (3.8) with (3.3) in
to (2. 15) gives

1 nM &2n+s&

e(t& z'a'r. ™(0&'(ns.'"=+2
&2 &, ~z, &.

'") .

(S.9)
In a separate paper, ~ the short-time expansion

of I'(k, t) is obtained from the expansion (3. 1) of

I(k, f) as follows:

1 nF &2n&

n=l + ' ss
where

I" &o&(g) I &o&(&)/I.&o&(k)

&'&(k) I.&" (k) '
'-'"(@=I"„o(r)

— I. (~)

etc. It is noted that the expansion coefficients of
I'(lt, t)/ko are equal to the corresponding expansion
coefficients of 4'(t) plus a term of O(ko). It follows

from this fact that, when one could obtain 4(f)
which is valid for all times, from the short-time
expansion (3.9), he could also obtain I'(R, t) which

is valid for all times, from the corresponding ex-
pansion (S. 10), if l~ is very small. If the Laplace
transform &1&~ of the obtained 4(t) has a negative
abscissa of convergence and 4'o &0, I'(R, f) ob-
tained in a similar way would also satisfy the same
properties, if lt is very small. Thus by taking ad-
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TABLE II. Expansion coefficients of 0 (t) of order
and [3S(S+1)]~ cf. (3.9) and (3.7). ~& &'+) for the

isotropic Heisenberg magnet, and M0 &' for the XY
magnet. Isotropic Heisenberg magnet XY magnet

TABLE III. Parameter p4 for It (t). For the Gaussian
distribution function p4 = 1.

2n p

2 2
4 2
4 3
6 2
6 3
6 4

&222)
'tsar&

8.0
—16.0
128.0
89.6

—2508. 8
10905.6

&22I).

O,p

Linear chain
8.0

—6.4
25.6
68.04+$

—710.52 —v
1743.44 +~

Square lattice

—9.6
102.4
-19.32- g

—1004.84 —$
6616.46+ $

4, p

39.88+ y
—792.44 —~3
3545.68+ ~

Lattice

Linear
Square
sc
bcc

S=—12
1.50
1.17
1.13
1.11

1.81-1.78
1.22-1.24
1.16-1.17
1, 13-1.14

Lattice

Linear
Square
sc
bcc

1.33
1.33
1.33

8.67 - 7.10
1.65-1.82
1,49- 1.58
1.43 - 1.49

2 2
4 2
4 3
6 2
6 3
6 4

2 2
4 2
4 3
6 2
6 3
6 4

2 2
4 2
4 3
6 2
6 3
6 4

8.0
—16.0
384.0
89.6

—6348.8
68761.6

8.0
—16.0
640.0
89.6

—10188.8
179865.6

8.0
—16.0
896.0
89. 6

—14028.8
342681.6

8.0
—6.4
153.6
68.04+ ~5

—2246. 52 —g
3

16079.44 + 4
sc lattice

8.0
—6.4
281.6
68.04+ g

—3782.52 —$
46799.44 + $

bcc lattice

8.0
—6.4
409.6

68.04+ $
—5318.52 —~
93903.44 + g

—9.6
230.4
-19.32 —g3

—2284. 84 —$
33775.48+ ~

—9.6
358.4
-19.32 —y

3

—3564. 84 —y
86511.48 + y

—9.6
486. 4
—19.32 —ps

-4844. 84- ~f

162287.48+ $

39.88+ ~
—1816.44 —~

3

18905.68+ y

39.88+ ~
—2840. 44 —7

3

46553.68+ ~

39.88+ ~s

—3864.44 —g
3

86489.68 + $

and a power series of 72.

2g m (2) (s. 16)

I ("(0) (Ss)'(Ss )" )
(s. 15)

The factor M„&2&/I, &"(0) is equal to 2 S(S+ 1) for the
isotropic Heisenberg and XY' magnets of the lattices
under consideration at infinite temperature. 7~
is so chosen that g

& & is zero. The parameter
7G2 and the coefficients $,&2"& for spin —, are listed
in Table IV. For an arbitrary spin 8, 7~2 and
$„&4&/(4@2)2 are calculated with the aid of the fol-
lowing formulas:

vantage of the continuity of the coefficients
I' ' "& (k)/0 with respect to k, we can conclude the
conditions (A) and (B) for I'(k, t). It is, therefore,
sufficient to discuss the properties of 4(t) and @2.

In analyzing the two-time spin-pair correlation
function and its Fourier-space transform' or the
friction functions for these quantities, we intro-
duced the Gaussian distribution function by using
the first two terms of the expansion. For (3.9),
we have

J'2&22[M & 2&/I & 0& (0)]8- s /2sG (s. 11)
where

(3. 12)

If an expansion

1 — -2 X + 2 X — X + — X —+ ~ ~ ~ (3. 13)4t 61 8!

g
&4&

(2 )' (2 )M'" 2z M'"~
where

Mss 1
'

&4& &4& S(S+ I)&(

2 ~ (2) 8 ~ (2) at23 at22
S e ' u22

(3. 18)
Mss 1

M &6& M &6& S(S+ 1) l~

(sz )'M '" (a )'M '" "' "' 3 )

s(s+s))'

TABLE IV' Va].ues of vg =2g M~( /M~(4 and the
coefficients $ I 2") of Eqs. (3.15) and (3.19) for spin y.

Isotropic Heisenberg magnet

Lattice 7 2 ] (0)
$

(2) ] (4)
$

(6) ( (8)

can be expressed by a Gaussian distribution func-
tion e", the ratio of the coefficients

Vl 4 m6 VE8
P4=3m Pe=-5 3m 3 P =-7

5 3m
(s. 14)

must be unity. The values of p2„ for the expansion
of 4(t) given by (3.9) are included in Table I for
spin —,. p4 for S=2 and S=l-~ are given in Ta-
ble III. We express 4'(t) as a product of (3.11)

Linear
Square
sc
bcc

Lattice

Square
sc
bcc

2 0 1 0
0 8 1 0
0 6667 1 0
0. 6154 1 0

-40
50 -200

126 -776
222 —8448

2. 0
1.5
1.3333

1 0 16 -208
1 0 64 —1216
1 0 144 -4416

XY magnet

1 Q
(0)

$
(2)

$
(4)

$
(6)

0 ,() 0;
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s~s~~ [4s(s+i}is]"'

0 I.O 2.0
v= 4Jt

5.0

FIG. 1. + (t) givenby (3.15) as a function of v = (2z~)~ Jt for the isotropic Heisenberg magnet at infinite temperature;
(a) linear chain, (b) square lattice, (c) sc lattice, and (d) bcc lattice. Label n(g =2, 3, 4, 5) indicates that the power
series on the right-hand side of (3.15) is truncated at gth term. As $~

' is zero, we have the Gaussian distribution
function for n =2; label G is associated in addition to 2 to indicate this fact.

The values of M ~'3"' are found in Table D; n = I;

for the isotropic Heisenberg magnet and e = 0 for
the XF magnet.

The time integral of 4'(t) given by (3.15) is cal-
"ulated by

J
e(t) dt= Ja'

(0&(0) 2
a
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finite temperature; {a) square lattice, {b) sc lattice, {c)
bcc lattice.
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IV. RESULTS AND DISCUSSIONS

The limiting function 4(t) is calculated by using
the formula (3. 15), where the power series on the
right-hand side is truncated to the exactly known
terms. Curves are shown in Fig. 1 for the iso-
tropic Heisenberg magnet of the linear, square,
sc, and bcc lattices and in Fig. 2 for the XF mag-
net of the square, sc, and bcc lattices. The num-

ber n (n= 3, 3, 4, 5) denotes that the curve is ob-
tained by truncating the power series in the large
parens of (3. 15) at the term of O(~ "). As $

' '=0,
the curve for n= 2 is for the Gaussian distribution
function. The values of the integral fo" 0 (f) dt are
obtained with the aid of the formula (3. 19) and are
listed in Tables V and VI, where "n term" has the
same meaning as n associated with the curves in
the figures. In Figs. 1(b) and 1(c), the curve for
n= 3 is not given for S= —,', for the difference of that
curve with the curve for n=4 is so small that they
collapse to the same line. As seen from Table IV,

g
(s' is negative and hence the curve 4 is always

below curve 3. From Figs. 1(b)-1(d), we con-
clude a satisfactory convergence of the present
expansion for the isotropic Heisenberg magnet. of
spin —,

' for the square, sc, and bcc lattices. The
values of p4 and p6 for the isotropic Heisenberg
magnet of spin —,

' given in Table I are near to unity
for the square, sc, and bcc lattices, suggesting a
convergence starting from the Gaussian distribu-
tion function, Table III shows that the values of p4
for these systems are almost the same also for
larger spins, and we can expect a satisfactory con-
vergence for larger spins for the isotropic Heisen-
berg magnet of these lattices.

As mentioned in Sec. III, 1(k, f) has expansion
coefficients of O(k ). As the differences of the ex-
pansion coefficients I'(k, t)/k and those of 4 (f) are
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D/Ja =f~ S(f) dt/Ja for spin s. X term
(V=2, 3, 4, 5) denotes the values of the integral when
the sum in (3.19) is terminated at @=N —1.

Linear
Square
sc
bcc

1.772
0.793
0.591
0.492

Isotropic Heisenberg magnet
2.105 1.920
0.842 0.839
0.620 0.618
0.512 0.507

2.190 2 ~

0.840
0.619
0.509

Two term
Lattice (Gaussian) Three term Four term Five term D/Ja

Linear 1.813 1.717 l.659 1.640 1.618
Square 0.810 0.800 0.794 0.792 0.790
sc 0.605 0.601 0.598 0.598 0.596
bcc 0.503 0.501 0.499 0.499 0.498

Square 1.47 -1.49
sc 1.02-1.03
bcc 0.81 0.&3

TABLE VI. fo 4(f)dt(Ja2) t[vS(S+1)j t~2 for spin
larger than ~. The values will be very good estimates
for D(Ja ) [~S(S+1)f' for the isotropic Heisenberg
magnets of the square, sc, and bcc lattices.

Isotropic Heisenberg magnet (three term) XYmagnet (three term)
Lattice S=1 S=I S=~ S=T S= Lattice S=1

Square
sc
bcc

1.253
0.886
0.724

XY magnet
l.410 1.325
0.997 0.953
0.814 0.776

-1.4
1.0

-0.8

I (k) =-,'[p +(4J, sin-,'k) ]
'

Substituting this into (2. 7), we have

(4. 2)

of O(k ), we can expect the same convergence for
I'(k, t)/IJ' as for 4(t) when k is very small. The
determined function 4 (f) is a product of a Gaussian
distribution function and a polynomial. Its Laplace
transform 4 ~ is expressed in terms of the para-
bolic-cylinder function and is an entire function.
For small k, 1 (k, t)/k will take the same form as
4 (f) and hence I'~(k)/k will be an entire function,
satisfying the condition (A). The value
lim~. o lim"„„oI ~(k)/k must be lim~. s C~ which is
nonzero as listed in Table III. Thus condition (B)
is also satisfied. %'e nom conclude that the spin
diffusion occurs for the isotropic Heisenberg mag-
net of spin —,

' at infinite temperature, for the
square, sc, and bcc lattices. The obtained spin
diffusion constants are listed in Table V for these
lattices. The result of the three-term approxima-
tion given in Table VI mill give reliable values of
the spin diffusion constant D for these systems of
higher spins.

As shown in Figs. 1(a) and 2(a)-2(c), conver-
gence of the expansion (3. 15) isnotsatisfactory for
the linear Heisenberg magnet and the square, sc,
and bcc XY magnets. Since me have no theoretical-
ly determined function 4(f), we cannot discuss an-
alytic properties of the Laplace transform C~. %e
are not sure whether the spin diffusion occurs for
these systems. The last column for the linear iso-
tropic Heisenberg magnet and XY magnet in Table
V and the part for these systems in Table VI give
the suggested values of the spin diffusion constant,
if the spin diffusion occurs for these lattices.

For the one-dimensional XY magnet of spin —,',
the exact j(k, f) is known

I(k, t)= —,
' Js(4J, tsin-,'k) . (4 1)

This function oscillates at large g and cannot de-
scribe the spin diffusion. The Laplace transform
of (4. 1) is

HKI SEW BERG MAGNET

0.8-
0

R ~ (O, O, O)

$ C

$e

LATT I C E

0.6-
K

b

R s (1, 1, 1)

+ R s {2,0, 0 )

0.4- 6~R ~ ( I, O, O)

0.2-

x
x

~R ~ (1, 1, 0)
x

++ gbx

0 2.0
I I

4.0 6.0 8.0

r ~ 2~3 Jt t 4S (S+ I ) /33

FIG. 3. Comparison of the asymptotic behavior of the
two-time spin-pair correlation of classical spin for the
sc lattice; O, c),'&&. . . are due to computer-simulation
calculation of Windsor, and the solid lines represent the
solution of the diffusion equation. Zg is the total number
of neighbors with a relative coordinate equivalent to R,
including R itself. Z@=1 when 8 = (0, 0, 0).

I'~(k) = [ps+ (4J,sin-,' 0)']'I ' —p . (4. 3)

This I' (k) has a branch point on the imaginary axis
and does not satisfy condition (A). If one calculates
4(i), one obtains 4(t) = 2J, a which is independent
of time; cf. Table I.

In the present analysis, me considered the iso-
tropic Heisenberg magnet and the isotropic XY
magnet. In these systems, 8»' for k= 0 coxnmutes

with the total Hamiltonian, and I (k, f) does not de-

cay when k= 0 and I (k, f) for very small 0 decays
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TABLE VII. Comparison of the asymptotic behaviors of 40-(R, t) for the isotropic Heisenberg magnet at infinite
temperature, obtained by the computer simulation calculation for classical spin (W) and by the spin diffusion (S-D). The
values of the computer simulation for the linear and square lattices are read from graphs in Fig. 5 of Ref. 13. The
values for the sc lattice are taken from Table I of Ref. 13.

Linear chain D=1.62Ja [+(S+1)]'
R= (o)

S-D
(2)

W

(3)
S-D

(4) (5)

4.0
5.0
6.0

0.165
0.143
0.124

0.157
0.140
0.128

0.265
0.246
0.220

0.290 0.274
0.264 0.224
0.243 0.216

0.269
O. 248
0.231

0.197 0.249
0.187 0.233
0.168 0.219

0.082
0.143
0.149

0.230 0.025
O. 219 0.054
0.208 0.094

0.213
0.206
0.198

Square lattice D =0.79Ja [+(S+1)j
R=(o, o)

W S-D
0, o)

S-D S-D
(2. o)

W S-D
(2 1) (2, 2)

W S-D

4.0
6.0
8.0

0.078
0.053
0.026

0.071
0.048
0.036

0.230
0. 183
0.111

0.228 0.~06
0.164 0.141
0.127 0.128

0.182
0.141
0.114

O. 119 O. 116
0.107 0.105
0.099 0.091

O. 217
0.167
0.174

O. 186 o.024
0.180 0.072
0.163 0.057

O. 048
0.058
O. 058

sc lattice D =0.596Ja [gS(S+1))

R=(0, 0, 0)
W S-D

(1, 0, 0)
W S-D

(1, 1, o)
W S-D

(1, 1, 1)
W S-D

(2, 0, 0)
W S-D

4.0
6.0
8.0

0.043
0.025
0.013

0.039
0.022
0.014

0.185
0.105
0.068

0.164 0.272
0.101 0.161
0.070 0.103

0.228
0.159
0.116

0.117 0.106
0.080 0.083
0.049 0.065

0.058
0.032
0.038

0.055
0.049
0.040

Error 0.005 0.013 0.018

sc lattice

0.014 0.013

R=(2, 1, O)

W S-D
(2, 1, 1)

W S-D
(2, 2, o)

W S-D
(2, 2, 1)

W S-D
(2, 2, 2)

S-D

4.0 0.162
6.0 0.205
8.0 0.119

0.153
0.153
0.135

0.112
0.137
0.137

0.107 0.025
0.120 0.025
0.112 0.072

0.026
0.037
0.039

0.007 0.036
0.054 0. 058
0.119 0.065

0.013
0.006
0.026

0.004
0.009
0.013

Error 0.025 0.025 0.018 0.025 0.014

very slowly. We discussed whether this slow de-
cay can be accounted by the spin diffusion. Re-
cently attention has been called to the nonergodic
nature of the one-dimensional anisotxopic XF mod-
el. ' For this system 8-' for k= 0 does not commute

k
with the total Hamiltonian, and hence I(k, t) decays
to a value different from the initial value at t = 0
evenfor k= 0. This implies that the behavior of I(k, t)
cannotbe described by the spin diffusionfor this system. .

V. COMPARISON OF THE VALUES OF D

First we compare our result with the experiment
for the bcc solid He . The value obtained by
Thompson et al. is D = (0. 525 +0. 06)jg~ in our
unit. Our result D=O. 509Ja for spin —,

' is in com-
plete agreement with the experiment.

In the next place, we compare our results with
Windsor' s computer -simulation calculation for
classical spin (S= ~). When the spin diffusion oc-
curs, the asymptotic behavior of I(k, t) is given by

(2. 8) for small k. The asymptotic behavior of the
two-time spin-pair correlation function o(R, f) is
given by an inverse Fourier transform of that ex-
pression. The result is

o(R, t) = [a/(4~Dt)"'] e-' "",
where d is the dimension of the lattice. This re-
sult (5. 1) is obtained by using the expression (2. 8)
in place of I(k, t) also for large k and then by ex-
tending the region of the integration over k to the
whole space. By considering that both I(k, t) and
the expression (2. 8) for large k decay to zero fast,
we confirm that it cannot affect the asymptotic be-
havior. Figure 3 shows the comparison of this
asymptotic behavior with the results of the com-
puter-simulation calculation for the sc lattice. An

agreement is observed at T ~ 5. 0. The numerical
values at v=4. 0, 6. 0, and 8. 0 are compared in
Table VII. Similar comparisons for the linear
chain and the square lattice are included in Table
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VII. D/Ja used in (5. 1) are 1.62, 0. V 90, and
0. 596 times [AS(S+1)] ~ for the linear, square,
and sc lattice, respectively. Fairly good agree-
ment suggests the occurence of the spin diffusion
also for the isotropic Heisenberg magnet of spin
S= for the linear chain. As the convergence of
the present expansion is similar for finite S and for
the XF magnet of the square, sc, and bcc lattices,
the spin diffusion may occur for these cases too.
It is recalled that Gulley et al. "checked the spin
diffusion constant previously given, in a similar
way for the sc lattice.

Finally we compare our results with previous
theoretical values. As mentioned in the Introduc-
tion, Mori and Kawasaki' essentially suggested to
use formula (1.5) and to approximate I(k, t) for
small gaby a Gaussian distribution function. The

second column [two term (Gaussian)] of Table V
gives the values obtained by this method for the
case of spin —,'. Those values are very good esti-
mates to the values determined in the present work,
which are listed at the last column of the same
table. For large spins, the situation is not
changed. The values obtained by Bennett and Mar-
tin and Resibois and De Leener are 20% less than

the present values.
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The relativistic wave functions, the electronic shielding factors 0&(i=2, 4, 6), the quad-

rupole antishielding factors and quadrupole polarizabilities are calculated for Pr+ and

Tm jons, Two different theoretical schemes, the variational and the outward-integra-
tion methods are used. The results are compared with each other and with experimental
values derived mainly from Mossbauer spectroscopy.

I. INTRODUCTION

For the study of rare-earth and actinide ions in
crystals a first estimate of the crystal field effect
is often obtained by considering a bare crystal field
reduced through shielding. ' Other quantities of
interest that are due to shielding are the nuclear

quadrupole antishielding factor, as well as the
quadrupole polarizability.

Two different schemes have been developed to
deal with the shielding problem. One is a numer-
ical integration method, the other a variational
method. The aim of this paper is to compare the
results of these two methods with each other in


