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The dynamic wave-vector-dependent susceptibility of a model order-disorder ferroelectric
is studied with particular emphasis on the contributions from the nonlinear terms in thekinet-
ic equation for the fluctuations in the polarization. The Hamiitonian is that of a spin-)ising
model in a weak rapidly fluctuating transverse field which simulates the role played by the
phonons in bringing about the reorientation of the dipoles. Nonlinear effects are shown to
remain. small as T approaches T,+. As a consequence the susceptibility is quite adequately
approximated by the Debye form with a width inversely proportional to the static suscepti-
bility. Below the Curie point the nonlinear terms become much more important. The domi-
nant nonlinear process involves the decay into two fluctuations, a process forbidden by sym-
metry in the disordered state. . The results of the theory are compared with experiment.
Agreement is found in some cases, Lack of agreement in others is attributed to the short-
comings of the model.

I. INTRODUCTION

In recent years interest has grown in the dy-
namical properties of systems undergoing second-
order phase transitions. ' Among these are, for
example, the magnetic transitions (ferromagne-
tism and antiferromagnetism), the liquid-gas tran-
sition near the critical point, the X transition in
liquid helium, various soft-mode structural tran-
sitions, and the displacive and order-disorder
transitions in ferroelectrics and antiferroelectrics.
In analyzing the dynamics particular attention has
been paid to the wave-vector-dependent dynamic

susceptibility g(q, ~) which is associated with the
order parameter for the transition. In many cases
detailed information about the susceptibility has
come from inelastic neutron scattering studies
where the scattering cross section for momentum
transfer Nq and energy transfer h(d is simply re-
lated to g(j, u&). Although neutron scattering is a
versatile probe, it suffers from the limitation that
the measurements are hampered by finite resolu-
tion. As a consequence phenomena associated with
small q and are sometimes obscured. This is
particularly important near the critical point where
there frequently is a "softening" of the character-
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. istic frequency as well as an increase in the cor-
responding correlation length. Light scattering
and ultrasonic attenuation have also been used to
probe the dynamics of the order parameter. In
systems where the e~eriments are feasible, de-
tailed information about the dynamics of the very-
long-wavelength fluctuations in the order param-
eter can often be obtained.

Another method of obtaining information about
the critical dynamics of ferroelectrie and ferro-
magnetic systems is to make explicit use of the
fact that the polarization or magnetization is the
order parameter for the transition. By measur-
ing the zero-field ac susceptibility one obtains
g(0, ro) directly. Experiments of this type are
particularly valuable in cases where the interest-
ing dynamical features are restricted to frequen-
cies -25 GHz. At present we are unaware of any
measurements in ferromagnets which have
focused specifically on the critical point. In fer-
roelectries, on the other hand, a great deal is
known about the ac suscept'. bility near T, . Exten-
sive measurements of the frequency and tempera-
ture dependence of g(0, id) have been reported in
the literature. s

In interpreting the ac susceptibility measure-
ments it is important to establish that the range of
frequencies employed in the experiment spans the
important features in the power spectrum of the
order parameter. If this is not the case the mea-
surements provide an incomplete picture of the
critical dynamics. Such considerations are par-
ticularly important for displacive ferroelectrics.
In these systems the onset of the transition is sig-
naled by a decrease in the frequency of a zone-cen-
ter transverse-optical-yhonon mode. If the fre-
quency of the optical mode is outside the range of
the apparatus, the description of the dynamics
which is provided by the measurements may be
misleading.

In the case of the order-disorder ferroelectrics
the same considerations of course apply. How-
ever, in these systems the critical behavior is often
limited to comparatively low frequencies which
are determined by the relaxation rate for the orien-
tation of the dipoles in the absence of cooperative
effects. When this rate lies within the microwave
range a rather complete picture of the dynamics
can be obtained.

In this paper we will outline a theory for the
dynamics of the order-disorder transition in fer-
roeleetrics. It will be applicable both above and
below T,. An important feature of the theory is
that it incorporates nonlinear terms in the relevant
kinetic equations. These lead to departures from
the familiar Debye form for the susceptibility. h

The importance of the departures is ascertained,
and an approximate yarametrized expression for

g(q, ~) in the paraelectric phase is obtained.
The remainder of the payer is divided into two

parts. The model Hamiltonian, kinetic equations,
and resulting susceptibility are discussed in Sec.
II. In Sec. III the predictions of the theory are
compared with experiment and with those of other
theories.

II. KINETIC EQUATIONS AND DYNAMIC
SUSCEPTIBILITY

A. Kinetic Equations

where F, denotes a quasiclassical fluctuating trans-
verse field governed by a Hamiltonian, Ã3, S„' is the
g component of the spin, and the sum is over the Dt

sites. The E, are postulated to have the proper-
ties

(Z, (t)), =0,

(z, (t)z, (t') ), = ~„f(t - t'), (4)

p (t) eiXiii/h ~ e-iRiit/h—e , e

and the brackets ( ~ ~ )s denote an average over
the eigenstates of 3C~.

The spin-flipping term is meant to simulate the
role played by the yhonons in bringing about the
reorientation of the dipoles, an effect which can
often be interpreted as a thermal activation pro-
cess. We postulate that the txansverse fields are
uncorrelated from site to site and that the auto-
correlation function f(t) decays in a. time which is
short in comparison with the characteristic time
associated with a spin flip. We also postulate
that the spin-bath coupling is sufficiently weak so
as to have a negligible effect on the thermodynam-

In this section we outline a model calculation of
the wave-vector-dependent dynamic electric sus-
ceptibility. The analysis begins with a discussion
of the model Hamiltonian. Following many authors
we approximate the order-disorder ferroelectric
by a spin- —,

' Ising model, where the +-,' eigenvalues
characterize the two orientations of the dipole:

x,=-Qz„s.'s', .
f, j

Here the 8,' are spin operators and the J,&
are in-

teraction constants associated with the pair of
sites i, j. Typically, in the ferroelectric transi-
tion, we expect J„to have both long- and short-
range components.

Since the z components of the spin all commute
among themselves the Hamiltonian Xo is devoid of
dynamics. Following Sandy and Joness we intro-
duce time-dependent effects by adding to Xo a
spin-bath coupling of the form
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ic properties of the order-disorder system in the
temperature range of interest. In the evaluation of
correlation functions involving products of spin
and field operators it is assumed that the spins and
fields can be treated as independent systems, an
approximation which can be expressed symbolical-
ly as

&») = &»o&», ,

r„(q)=y, (q)-' J dt(N, (t), N, ), (7

where N& denotes the Fourier transform

Ng=Zqe '~' &S~,

and yr(g) is the susceptibility associated with the
order parameter

(s)

q, (q)=(N, , N, ) .

In Egs. (7) and (9) we have

(g 8)-f dy &e&«o+Ig&ge-&t&co'3&&B)
0

—(1/vcr) &A) & B), (lo)

where X is Boltzmann's constant and T is the tem-
perature, while in Eq. ('7)

where &
~ ~ ~ )o denotes a thermal average over the

eigenstates of X0.
The calculation of the dynamic susceytibility be-

gins with the appropriate kinetic equations. In a
recent paper~ the author has outlined a general ap-
proach to the yroblem of critical dynamics in easy
axis ferromagnets and antiferromagnets. In that
paper kinetic equations were obtained for the so-
ca11ed critical dynamical variables, which in-
volved products of the long-wavelength Quctuations
inthe order parameter and the energy density.
The theory developed in Ref. V can be utilized in
the present study with only minor modifications.

In its dynamics the order-disorder ferroelec-
tric resembles the antiferromagnet in that in both
eases the q =0 component of the relevant order
parameter fails to commute with the full Hamil-
tonian. There is a difference, however, in that
the energy of the antiferrromagnet is approximate-
ly constant, whereas the coupling S„I", which leads
to time-dependent behavior in the order-disorder
system, also allows for the exchange of energy be-
tween the dipoles and the bath. In the antiferro-
magnet the time dependence of the q =0 component
of the order parameter arises from the transverse
terms in the exchange interaction, whereas the
decay of the q = 0 fluctuations in the energy density
is determined by the spin-lattice coupling.

In order to ascertain the importance of this dif-
ference it is necessary to compare the decay rate
of a fluctuation in the order parameter with the de-
cay rate of a fluctuation in the energy density. %e
estimate the former from~

Ng = (1/ih') [No, Xg] .

The evaluation of the relevant commutators to-
gether with the approximations reflected in Eqs.
(8)-(5) leads to the result

r~(@= x'(r)/xr (i)&'

where

1/r =I o f dtf(t) . (18

The symbol y (r) denotes the susceptibility of the
noninteracting lattice

(12)

~o(r) =X/4Zr . (14)

The calculation of the decay rate for the fluc-
tuations in the energy density proceeds in a
similar fashion, i.e. , we have~

r, (o) =(rc, )
' f"dt(x, (~),x,), (15)

where

Z, = (I/~e) [X„X,] . (15)

dA~ =- r„(&) Z U„(&,)-'g„,
B,n

(20)

in which the symbols A~„denote normalized prod-

The symbol C~ denotes the specific heat

c, =(1/Ar')[&x', ), -&x, )',] .

From Egs. (3)-(5), (15), and (16) we obtain the
result

r, (0)= c„'(7)/c, ~,
where 7. is given by Eg. (13). The symbol C&, (r)
denotes the high-temyerature approximation to the
specific heat

c,'(r) = mZ, z'„/sz.r ' . (»)
It should be noted that in evaluating Eq. (15) we

have approximated the numerator by its limiting
value at high temperatures, which should be satis-
factory for qualitative estimates.

Comparing Eqs. (12) and (1S) we conclude that at
high temperatures the decay rates for the long-
wavelength Quctuations in the energy density and
the order parameter are roughly comparable.
However, in the vicinity of the critical yoint the
divergence in the susceptibility is generally much

stronger than the divergence in the specific heat.
Thus we have 1„(0)«re(0) for r= r, . As a con-
sequence, the Quctuations in the energy density
are to be excluded from the set of critical dynam-
ical variables in the order-disorder problem,
which is to say that the fluctuations in the order
parameter decay isothermally.

The theory of Ref. 7, when transcribed to the
order-disorder system, leads to a kinetic equa-
tion for the order parameter of the form
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ucts of p factors of the order parameter No. That
is, we have

No —&No &o
lo 1n [(N N ) ]1/2 (21)

Ng)„-N, )- &N;~,gN=, )&o

[(No, oN e, No o N; )oj

For a given P the sum over q involves qo' terms,
that is, the number of combinations of P factors
of the order parameter which have wave vectors
which sum to q. As in Ref. 7 we include only
those fluctuations with wave vectors )q I -g, ,
where K, is the inverse correlation length asso-
ciated with )(r(q). The U o denote elements of the
inverse of the reduced susceptibility matrix. The
reduced susceptibility matrix itself is of the
form'0

( son-1 ~y-1 -1/ 2

XI,&. i &No&o le=o sEas-i &No&o le.o

(23)
where the symbol &No&eo denotes the mean value
of the order parameter in the presence of a, static
external field E whose interaction with the system
is written —END.

When the terms with 8 & 1 are omitted from the
right-hand side of Eq. (20) the following linear
equation is obtained:

(24)

corresponding to the exponential decay of the fluc-
tuations. Keeping higher-order terms leads to
nonlinear effects. As will be discussed in Sec.
II 8, the importance of these terms depends on the
relative magnitudes of the elements of U'. Prior
to considering this, however, we should point out
that Eq. (20) has a, simple physical interpretation.
According to the standard arguments" we may re-
gard the fluctuations in the polarization as being
driven by a time-dependent thermodynamic field
E(q, t)e'o'~ according to the equation

(N iz i h(E+2St '(No)o &~ ~u&(
(28)

The elements of U ' are then obtained from the
coefficients in the expansion of &No)o in powers
of E. The analogous results for the three-dimen-
sional Ising model follow from the work of Essam
and Hunter. Limiting values of (U )+ as T- T,x
are given for both models in Table I.

From Table I it is evident that the entries
(U '),o, p even, are zero for T & T, , a result which
reflects the symmetry of the disordered state. ~

Furthermore all the entries are temperature inde-
pendent. As pointed out in Ref. 7 this is a con-
sequence of the singular part of the free energ~
being a function of the variable E/~ T —T, ~~ near
7,. A somewhat surprising feature of Table I is
the near equality between the vajues calculated in
the mean-field approximation and the "exact" val-
ues for the Ising model with nearest-neighbor in-
teractions.

To obtain an expression for the dynamic sus-
ceptibility we must first calculate the relaxation
function (A,&(t), A, ;). The imaginary part of
)((q, &u) is then given by the integral'o

)("(q, (u) = (u)(, (q)II J dt e '"'(A;, (t), X, ; ), (29)

A

TABLE I. Limiting values of (U )i~. MFA denotes
mean-field approximation [Eq. (28)]. IM denotes simple-
cubic Ising model with nearest-neighbor interactions
(Ref. 12).

B. Dynamic Susceptibility

As noted above the importance of the nonlinear
terms in the kinetic equations depends on the rel-
ative magnitudes of the elements of U. it is ap-
parent that in a loose way we can identify ~U (P
& 1) as a dimensionless coupling constant charac-
terizing the decay of a Quctuation in the polariza-
tion into products of p such fluctuations. In order
to obtain quantitative estimates it is necessary to
postulate a particular functional relationship be-
tween &No&o and E. We consider two limiting
cases, mean-field theory and the "exact" results
for the three-dimensional Ising model. In the
former the functional relationship is expressed by
the equation

In the linear theory E(q, t) and Ne(t) are related by
T —Tc +

MFA IM MFA
T=Tc

IM

(26)

leading immediately to Eq. (24) with U»I'„(q)
=X/)(„(q). Viewed in this context Eq. (20) is seen
to reflect a more general relationship between E
and N which can be written symbolically as

a-')ii

(U-')i3

(U ')i4

(U-') i,

—{o.z4)'~

(O. O].)i/2

(I )i/2 (p 4p) i 4

(P)'s (O. 1O)'~

—(p. o25)'~

(o. oo6)'2

E ='aN+ QN2+ cN3+ ~ ~ ~ (2'I) ~Not available.
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where R denotes real part. Because of the magni-
tude of (U '),z the calculation of (A&&(t), Aq ~) in
the ordered state appears to be prohibitively corn-
plex. In the disordered state (0 ')~3 and (U ),4 are
zero and (U ')„ is small. These results suggest
that above T, it is a reasonable approximation to
consider only the decay into three modes. In such
an approximation we omit all off-diagonal entries
in U ' except (U '),~ and (U ')8,. The matrix U

has the form

(1 0 —B

1U=
B-0 I

(80)

The results of Sec. II can be summarized quite
briefly. Above the transition temperature the

where B= (U ')&s and I denotes a unit submatrix.
The equation that results from using the approxi-

mate expression for ~U Eq. (80), can be written

(81)
et 1 B"— (1 —B )q'

A formal solution to (81) can be obtained by iter-
ation with the zeroth-order solution being A&&(t)

=A&~e ~', where f', is the renormalized decay
rate

I, = r„(q)/(I —B') . (82)

The relaxation function is then found by taking the
inner product of Az&(t) with A, &. Since the ex-
pansion parameter B is fairly small we may ob-
tain a crude approximation to the relaxation function

by stopping after the first iteration. The resulting
expression then has the form displayed in Eq. (40)
of Ref. 7, where the sum over P is limited to one
term. The dynamic susceptibility that is obtained
by this procedure has an imaginary part which
can be written

g' (q, &u) r, Br, ) I'3 Bl,
(oXr(q) (u +1, 1 —r, & (u +I'3 rq —I",

(33)
In this equation I'3 is an effective decay rate which

is approximately equal to the zeroth-order rate of
decay of (As, (t), A~„) when all three modes have
wave vectors in the vicinity of E,. Since we have

r~(K, ) ~ I'„(0), r~ is at least as large as 8I'„(0).
Also, it should be noted that we have made the
approximation

(Ag„, Ag g)- (U )qq,

in evaluating the inner product prior to computing
Such an approximation was made previously

in the derivation of Eq. (20).'

III. DISCUSSION

dynamic susceptibility is predicted to have very
nearly the Debye form with a width inversely pro-
portional to Xr(q). Nonlinear effects, which re-
flect multimode decay, remain small in the limit
T- T,+. This happens for two reasons. First,
the decay into two fluctuations is forbidden for
reasons of symmetry. Second, the quantity
B f', /(13 —I",), which measures the contribution
to g" from the first allowed nonlinear decay pro-
cess, is -0.1. Below T, nonlinear effects are pre-
dicted to be more important since the two-fluctua-
tion decay is no longer forbidden. As a conse-
quence it is expected that y" (q, ~) will deviate sig-
nificantly from the Debye form

The theory outlined in Sec. II is of course based
on a particularly simple model of an order-disor-
der ferroelectric. In order to ascertain the ex-
tent to which the theory is applicable to real sys-
tems it is necessary to examine the more ques-
tionable features of the model in some detail.
Especially relevant here is the suitability of the
dynamical term X& for describing the reorienta-
tion of the dipoles. We have assumed that this pro-
cess could be simulated by a randomly fluctuating
transverse field. Such an approximation would

appear to be satisfactory as long as the reorien-
tation involves some sort of thermal activation as
opposed to unassisted quantum-mechanical tunnel-
ing. Also, in a thermally activated process we ex-
pect the decay of the fluctuation to take place in a
time on the order of the inverse of a thermal pho-
non frequency which is usually much less than
1/I'„, a condition we have assumed in Sec. IIA.

A somewhat more subtle approximation is the
assumption that the yhonons act as a thermal bath
for the order-disorder system. With the yarticu-
lar choice for X& it was found that the fluctuations
in the polarization decay isothermally near T,
since 1"„(0)«rz(0). However, if the heat capacity
of the phonons is not large in comparison with the
heat capacity of the order-disorder system, as may
be the case near T„ the decay is no longer iso-
thermal if the rate of transfer of heat from the di-
poles to t::~e phonons greatly exceeds the rate of
transfer from the sample to its thermal bath. Very
roughly then, within the framework of the model,
the conditions necessary for isothermal decay will
certainly prevail as long as the fractional increase
in the specific heat of the sample relative to its
value far away from the critical point is small.

The prediction of an approximate Debye form
for y(q, +) with a width inversely proportional to

gr (q) is not of course unique to our theory. Early
work of Mason'4 and more recent studies of
Yamada, Fujii, and Hatta, "as well as Sandy and

Jones, have led to essentially the same result.
The present theory extends the work of these au-
thors in thatitattempts to assess the importance of
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the nonlinear terms in the relevant kinetic equa-
tions. It should be noted that our conclusion is at
variance with the theory of Nishikawa which pre-
dicts large deviations from the Debye form as T- T,+.'6 The theoretical approach followed in Ref.
16 is sufficiently different from our own that we

have not been able to pinpoint the origin of the dis-
crepancy. Also, Suzuki, Ikari, and Kubohave car-
ried out studies of the dynamics of the two-dimension-
al Ising model. ' Starting with the master equation
and using the techniques of series expansion they find
that as T- T,+, y(0, to) has a frequency dependence
of form f(&o/(T —T, )")where ~ = 2. 00 + 0.05. Our
theory, applied to that system, leads to x=P, the
exponent of the susceptibility. ' At present we do

not know if the difference in the values of g re-
flects the use of the fluctuating field as opposed to
the master equation or is a consequence of the ap-
proximations which were made in obtaining Eq.
(33).

As noted in the Introduction zero-field measure-
ments of )((0, to) near the critical point have been
reported for many ferroelectrics. Because of
domain effects the interpretation of the data for
T & T, is complicated. Above T, the over-all shape
of )((0, &o) is conveniently characterized by a
polydispersive parameter p which measures the

deviation from the Debye form"

(34)

where )((0, ~) denotes the contribution from the
atomic polarizabilities. Near T„7' varies as
)((0, 0)-)((0, ~) in almost all instances. With re-
spect to P, however, a significant variation is
found from material to material. In agreement
with our theory, there are a number of systems
where p is approximately one. These include
Rochelle salt (p=1), s NaNOa (p=0. 94), a and

NH4Fe-alum (0. 95& P~ l). ' On the other hand in

KNO3 we have /=0. 57, which appears to be in
disagreement with the theory. ~3 ~ Although specu-
lations on the origin of the discrepancy are risky,
we suspect it has to do with the suitability of our
model Hamiltonian. As discussed in Ref. 22 there
is a strong dipole-lattice coupling in KNOB which
is believed to reduce the transition from second
to first order. Such an effect is of course absent
in our model. Because of this it is our opinion
that future progress in understanding the critical
dynamics of the order-disorder ferroelectrics
lies in working with more realistic Hamiltonians
rather than in refining calculations based on
simple models.
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