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by interference effects, a number of parameters were
adjusted in an attempt to achieve a fit. The theory failed
to describe certain observed spectral features, and it
is ambiguous whether the deviations were associated
with damping. An experiment on soft polaritons in
LiNb03 has recently been published by Rokni et al.
(Ref. 8), but the paper differs greatly in spirit from
ours, and a detailed line-shape analysis is not presented.
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A detailed indirect-coupling model is given for the origin of ferromagnetism in Fe. With no
free parameters this model describes the difference in behavior of the average moments and
hyperfine fields in EgSi and EeA1 aQoys. The hyperfine-field results lead to a possible opera-
tional distinction between localized and nonlocalized d electrons.

I. INYRonUCTIOW

Ever since the early sixties it has been realized
that ferromagnetism in Fe arises from indirect ex-
change coupling of the magnetic ions, when calcu-
lations of the direct interaction showed that this
mechanism was too small' and of the wrong sign.
Furthermore there is strong experimental evidence
that the major portion of the Fe momentislocalized.
This evidence comes from neutron scattering~ ex-
periments, specific-heat measurements4 which gave
an entropy associated with the transition through
the Curie temperature of Nk ln3, and equality of
the high-temperature moment and the saturation
moment of Fe. This indicates that the intra-atomic
coupling in Fe is considerably larger than the
coupling between moments. 6

Some indirect coupling between the magnetic ions
takes place through the 4s-like itinerant electrons.
The polarization of the 4s electrons has been mea-
sured directly by Mossbauer~ and by NMR' experi-
ments, by measuring the hyperfine-field behavior
with alloying. While the net polarization was found
to be + 0.05 to 0.08%, 8 the polarization at the first
(Nl) and second (N2) neighbors is dominant and neg-
ative (opposite to the Fe moment) and thus would
tend to make Fe antiferromagnetic. Therefore we
infer that the ferromagnetism arises from a long-
range Ruderman-Kittel-Kasuya-Yosida (RKKY)-type

indirect exchange interaction of the itinerant 3d-like
electrons. We can reasonably estimate an apply
limit for the number of these itinerant d electrons.
Since the first- and second-neighbor shells are very
close together in a bcc lattice and since Fe is a
rather stable ferromagnetic (for instance upon al-
loying) the first node of the itinerant d's RKKY-like
oscillation cannot be in closer than about the third-
neighbor (N3) shell. Assuming then that it is at the
N3 shell we find from the form of the RKKY function
(treating the itinerant d's as free electrons) that an
upper limit to the total number of itinerant d's is
about 0. 34 per atom. Assuming that this itinerancy
character is equally divided among the seven d elec-
trons in Fe yields an upper limit of the fraction of
itinerancy for each d electron of 0.05. Thus an uP-
per limit to the amount of itinerant moment in Fe is
0. 1 p~. This agrees with the above-mentioned ob-
servations that the Fe moment is essentially local-
ized.

Owing to the complex nature of the theory of ferro-
magnetism it has been impossible to theoretically
derive the amount of locality or nonlocality of the
3d wave functions. In fact even the definition of
what is meant by local or itinerant electrons is ob-
scure in the theories. We shall show that hyperfine-
field measurements on the other hand lead to a simple
operational distinction between localized and itinerant
electrons. Since the itinerant d electrons have strong
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overlap with the localized d's while the 4s-like
conduction electrons have little if any overlap mith
the d wave functions the moment of an Fe atom is
essentially locked in by the itinerant d's. Thus
while the 4s-like electrons do not have any ap-
preciable effect on the magnetization or total spin
of Fe, for such an atom with quenched orbital mo-
mentum, they do completely dominate the hyper-
fine field. Using this model (mainly localized d's
ferromagnetically coupled by the itinerant d's and
antiferromagnetically coupled by the 4s-like elec-
trons) we derive, with no unknown parameters, the
observed behavior of the average hyperfine fields
in EeSi and EeA1 (0-15 at.Pp) alloys.

II. AVERAGE MOMENT

2k+ R„co(eke R„)—sin(2k+ R„)
t n (2kcR)4 (2)

Actually, in what follows we do not care what the
detailed behavior of E„(R„)is, just that it falls off
rather rapidly. We have a similar function &p, to
describe the spin polarization of the 4s conduction
electrons surrounding an Fe atom. However its
form has been measured and me mill use these val-
ues.as given in Ref. 8.

First let us evaluate the average moment S~(x) in
an alloy with a concentration x of Si or Al atoms.
We can show that no matter what the fraction f of
itinerant electrons the moment behavior in the alloy
follows simple dilution. If all the d electrons were

We will consider only Si and Al solute atoms
since we know they develop no moment and fit nicely
into the Fe lattice without any overlap polarization.
[As discussed in Ref. 8(b), Al may have a very
slight amount of overlap or volume misfit polariza-
tion so that only Si is really the ideal case. ] Iron
is known to have about one 4s conduction electron
per atom. ' As we alloy with Si or Al one of their
outer s electrons is presumed to go into the con-
duction band while the other outer electrons stay
near the solute atom shielding the excess charge.

As discussed in the Introduction me assume that
the moment is aligned by only the spin-density
RKKY-like function describing the itinerant d's.
Thus surrounding an Fe atom we have a spin po-
larization of the itinerant d's of the well-known
RKKY form given by

Zo &~&= (~ I
~&+S&B&g )

where b p„(R) and J~(0) are the fractional polariza-
tion and exchange integral of the itinerant d's, n is
the number, E~ is the Fermi energyof the itinerant
d's, and S is the spin of the magnetic ion (S = 1 in
a pure Fe lattice). E(R) is the usual oscillatory
function and since we will only evaluate it at lattice
points:

itinerant (the amount of polarization due to s elec-
trons is very small and will be neglected') then in
pure Fe each shell would produce a contribution to
the polarization or moment proportional to Ng~,
where N, is the number of sites in the jth shell. So
the total moment would be proportional to P&N&E~& .
Taking SF,= 1 we thus obtain the average moment
for an alloy by summing over the contribution from
each shell. This is given by

Ni N

S,(x)= Z Z [Zm, E,'ll p(m, N, x)]:
m„=o J=1 a=i

n

x(QN, E', ) ', (3)
):=1

where m, is the number of Fe atoms in the jth shell
and p( m„N, , x) is just the probability of finding
m„Fe atoms in the 0th shell which contains N~ sites.
It is the usual binomial probability given by

p(m, N, x) = I(1-x) (x)N ™

Using the relations

Z p(m, N, x)=1,
mo

Z mP(m, N, x) = N(1 —x)
mo

repeatedly, Etl. (3) simply becomes

S,(x)=(l-x) .

(5)

(6)

III. AVERAGE HYPERFINE FIELD

Since Si and Al solute atoms develop no moment
and have essentially no volume overlap, the hyper-
fine field at an Fe atom in these alloys, being due to
s electrons only, contains only two terms:

On the other hand if nearly all the d electrons
were localized they mould be aligned by the small
fraction of itinerant d's but there would only be a
fraction 1-x of them so that again the average mo-
ment would be (1 —x) S r, . If there were any fraction
f of itinerant electrons the localized fraction would

give rise to a moment (1-f)(1—x) SF, and from Eg.
(6) the itinerant fraction would give rise to a mo-
ment of f(1 —x) Sr, so that again the total moment
would be (1 —x)SF,. Thus as is wellknownanaverage
moment measurement is incapable of giving any in-
formation as to the distinction between localized and
nonlocalized d electrons. We will see below that
the hyperfine-field measurements are of a different
nature, such that they can actually distinguish be-
tween localized and itinerant d electrons. The mea-
sured average moments 1 for FeSi and FeA1 alloys
are shown along with the dashed line (1 —x) in Figs.
1 and 2. We see that these alloys follom simple di-
lution very well.
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FIG. 1. Variation of average moxnent
and average hyperfine field of EeSi
alloys as a function of at. % Si. The
dashed curve is the moment expected
for simple dilution. The solid curve
is the variation of the average hyperfine
field expected from indirect-exchange
interactions.
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II=H, +H~,

The first term is due to the core polarization of the
inner s electrons by the d electrons, and the second
is due to the polarization of the 4s conduction elec-
trons. This latter term can be further split into
two terms; a self-polarization field H, due to the
polarization by the atom itself and a field due to the
polarization by all the surrounding neighbors H~ .
Ih pure Fe

a,"=Ex ~a"
)=i

where we sum over n neighboring shells and N& is
the number of sites in the jth shell. The &H&' have
been measured in Refs. V and 8 and are listed in
Table I. Thus the field at an atom in pure Fe is
given by

n

&=i
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FIG. 2. Variation of average
moment and average hyperfine
field of EgAl alloys as a function
of at. % Al. The dashed curve is
the moment expected for simple
dilution. The solid curve is the
variation of the average hyperfine
field expected from indirect-ex-
change interactions.
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TABLE I. Hyperfine-field contributions from the
various neighbor shell in pure Fe.

Shell j Ng

8
6

12
24

8
6

ddZg I/HF~

+0.08
+0.018
-0.016
-0.004
-0.002
-0.004

H (x)= E ''' Z [Zm LH 'lIP( ,m, N, )]x
m1=0 m =0 j=1n

0=1
(12)

In an alloy with a fraction x of Si or Al atoms the
hyperfine field at the ith Fe atom is

H, (x) = H,', (x) +H,'(x) +Ho, (x)

It is at this point that we clearly have to decide
whether the moment is localized or itinerant. If it
is essentially all localized then all the Fe atoms
have H,', =H„' and H,'=H, ' no matter what the con-
centration x is. That is these terms do not average
over the alloy but depend only on the lattice cell con-
taining the Fe atom. If it were all nonlocalized
then we would have

H,', (x) = S(x)H„'= (1 —x)H„', H,'(x) = (1 —x)HF'

As we shall see the two different assumptions lead
to very different results for the average hyperfine
field. So the simple operational definition of lo-
cality or nonlocality just becomes the following: If
the core and self-polarization effects come from
only the lattice cell containing the atom the moment
is called localized; if they come from neighboring
shells as well the moment is to that extent nonlocal-
ized.

As discussed above the correct assumption which
leads to Fe being ferromagnetic is that nearly all
of the moment has localized character with an up-
per limit of nonlocal d-like character of 0. 1 p~.
Thus

H((x) = H„'+H, '+Hc)(x) (io)

We can eliminate H„' and H, ' (although they were
evaluated in Ref. 8) by using the pure Fe hyperfine
field in Eq. (9). We thus get

n

H, (x) =Hp, —Z Nq hH)'+Hot(x)
/=1

Since me want the average hyperfine field me take
the average of Eq. (11)by finding the average of
Hc&(x). This is obtained by summing the bH&(x)

(since all moments have the same value as in pure
Fe) over all possible occupational configurations.
Let us first assume that bH~(x) = 4H& '. Then we
obtain

AH/(m) = (4/m')&Hy ' (17)

where q = In4/InN& and m is the number of Fe atoms
in the jth shell. This function is shown plotted in
Fig. 3 for N& =8, 6, and 12 as would occur in the
first three neighbor shells. It reproduces the
measured behavior of the N2 shell (see Fig. 7 of
Ref. 8) very well. We see that for one Fe atom

Again using Eqs. (S) repeatedly this simply re-
duces to

n

H„(x) = (1-x) Z N, ~H," .
)=1

Thus we finally obtain, for the average hyperfine
field,

H)(x) g N~bH~'
(14)

HFe ga1 HFe

The values of &H& '/HF, have been measured~'~ and
are given in Table I. The signs are opposite to
those in Ref. 7 because there they were given rela-
tive to the direction of the Fe moment; since HF,
is negative &H,/Hr, is positive. Using these values
and going out to n = 6 (we assume the shifts are small
and tend to cancel each other beyond the 6th shell),
we find

N&H'Z =+ 0.42 (i6)
HFe

We thus obtain

H, (x)/Hp, ——1 —0.42x .
Thus the average field should not fall as fast as the
average moment; it only decreases by the fraction
of the total internal field that is due to the sum of
the conduction-electron contribution due to the
neighbors. Thus substituting in an Si or Al atom
for Fe decreases the moment by one full Fe mo-
ment mhile it only decreases the hyperfine field by
0. 42 of the total hyperfine field. Equation (16) is
shown as the dot-dashed curve in Figs. 1 and 2. We
see that this curve is somewhat above the measured
average hyperfine field. This is to be expected
since in deriving Eq. (12) we assumed that there
were no saturation effects, i.e. , that two Fe atoms
missing from a given shell had twice the effect of one
missing Fe atom. We know that this is not so and
that indeed me have rather strong magnetic-shield-
ing effects. If a shell is full all the Fe atoms tend
to shield the effects of the others and the change in
hyperfine field upon removing the first Fe atom is
smaller than that of removing the second, etc. This
shielding or saturation effect has been measured in
Ref. 8, and some measured saturation data are showr.

in Fig. 7 of Ref. 8. The effect is complex in that
we have both intershell and intrashell shielding.
However the intrashell behavior for all shells seems
quite similar and can be represented quite well by
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amount. Thus the agreement between this "local-
ized-moment" indirect-coupling model and the mea-
sured average hyperfine fields is very good.

I et us see what result would have been obtained
if we had assumed all the moment was nonlocalized.
Then the hyperfine field at the ith Fe atom would be

H, (x) = (1 —x) (H, ~y + H, ') +Hc, (x)

where now H&(x) will be given by (neglecting satura-
tion effects)

Ng N~ n

Hc, (x) = S(x) Z ' ' ' Q [m, &H, ' H p(m„N, , x)] .
m g=0

Using Eqs. (5) repeatedly this becomes

FIG. 3. Hyperfine-field shift due to removing one Fe
atom from a shell containing m Fe atoms, as measured
in Ref. 8.

Hc )(x)= (1 —x) Z Ny b H)
'

5~1

The average field H, (x) is thus

(21)

left in a shell (m. = 1) the field shift is four times
that for a full shell and decreases smoothly to ~H, '
for a full shell. We now estimate the saturation
effects as follows. We know from Eq. (14) that the
hyperfine field decreases by the sum of the shifts
due to the missing Fe atoms. Vfe now take this sum
including the saturation effects. Thus the hyper-
fine-field decrease becomes

n.Hr(x) =Z,Q, (N, —m„)P(m, , N„x) &H, (m, )

(18)
Letting bj(m, ) be the added hyperfine-field shift
over that in pure Fe due to removing one Fe atom
from the jth shell containing m, Fe atoms, it is
given by

H, (x)
( ) g Nq nHq'

Hp, Hp, )
(22)

(23)

Thus the average hyperfine field is depressed from
the simple dilution behavior by the sum of the fields
from the missing Fe atoms. As is clearly seen
from Figs. 1 and 2 this is not the ca~e and indeed
the d electrons causing the moment must be over-
whelmingly localized (in the sense described above).
We can also easily derive the formula for the
average hyperfine field for any fraction f of itiner-
ant electrons. It is (without saturation effects)

~j(m„) = [4/(m, )' —1]~H,".

Using the relation

Z (N-m)P(m, N, x)=Nx,

we get a hyperfine field decrease of

nHr(x) =xK) N) hH~'

(19) Thus if H, (x) and the &H, are measured we can ob-
tain an estimate of f. Taking into account the intra-
shell saturation only we could interpret the dif-
ference between the calculated solid curves of Figs.
1 and 2 as due to itinerant d electrons and obtain
an independent estimate off. (Actually this is again
an upper limit since as mentioned above some of
the deviation could be due to intershell saturation
effects. ) Doing this, using the values listed in

/~+5"„(N, —m, )p(m, , N, , x) bj(m, ) . (20)

We can readily evaluate the second term on a com-
puter, and we obtain the values listed in the second
column of Table II. The third column gives the
total hyperfine-field decrease, Eq. (20), and these
values are shown by the solid curves in Figs. 1 and
2. We see that the intrashell saturation correction
brings the calculated curve quite close to the mea-
sured average hyperfine-field values. However we
have not taken into account intershell saturations
which were also observed to exist, see Ref. 8. This
would further lower the calculated curve a slight

0.02
0.04
0.06
0.08
0.10
0.15

~8«
0.001
0.003
0.005
0.008
0.011
0.021

0.010
0.020
0.030
0.042
0.053
0.084

TABLE II. Variation of intrashell saturation effects,
~,«[the second term of Eq. (20)] and the total hyper-
fine field ~q decrease with solute concentration x.
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Table II, we get an upper limit for the fraction of
itinerancy in the d electrons of 0. 04.

Let us discuss briefly the expected behavior of
other solute atoms. Solute atoms that either de-
velop a moment or have volume overlap effects will
distort the spin-density polarization functions of the
s and d electrons, and we would thus not expect
their moments to follow simple dilution or their
average hyperfine fields to follow Eq. (11). The
degree of distortion is difficult to predict but we can
turn the problem around and get a sense of the dis-
tortion from the degree the average moment does
not follow simple dilution. As expected from the
above criteria and discussed in Ref. 8 most elements
would not be expected to and do not show simple di-
lution. An interesting controversial case~2 is Mn

which does follow simple dilution fairly well (to 4%)
and starts out decreasing as Eq. (20) (to - 4%) but
then deviates. This does not necessarily indicate

that the Mn atom develops very little moment in di-
].ute EeMn alloys.

IV. CONCLUSIONS

The decrease of the average hyperfine field in di-
lute Si and Al alloys of Fe can be attributed to the
1.oss of the 4s-like conduction-electron hyperfine-
field contribution of the missing Fe neighbors. Since
the Fe hyperfine field is only partially due to the 4s
conduction-electron contribution of the neighbors,
the average hyperfine field falls less rapidly than the
moment in these alloys. A model for Fe is pro-
posed where the Fe moment is essentially local-
ized, and these moments are ferromagnetically
aligned by a slight amount (& 0. 04 per d electron)
of d-like itinerant electrons. The 4s-like conduc-
tion electrons tend to align Fe antiferromagnetical-
ly. The hyperfine-field measurements appear to be
able to distinguish betw een local and nonlocal moments.
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