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in Eq. (6) was first suggested in Ref. 1, where it was
also shown that 4p(T) obeys a simple power law

(T —Tz) ' '+, a result semiquantitatively explained by
Huber's theory.
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Other approximations made in Ref. 5 which led to

Eqs. (6) and (7) are the decoupling of the four-spin cor-

relation function into product of two pairs of correlation
functions and the assumption of the isotropy of the pair
correlation function. The validity of these assumptions
is discussed briefly in the text.
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The scheme of Kadanoff and Baym is shown to be useful for the rigorous derivation of Bloch
or Boltzmann equations for spin systems. The scheme is applied to a system of conduction
electrons in a metal interacting via an exchange interaction 8 with a low density of local spins.
The coupled Bloch equations appropriate to conduction-electron spin resonance are derived
rigorously to second order in J. The prominent features of the derived equations are that (i)
the disturbed magnetizations are shown to relax to the instantaneous local equilibrium mag-
netization with the result that correct static susceptibilities are obtained, (ii) the instantan-
eous magnetizations are not proportional to the effective magnetic fields causing the magneti-
zations to precess, and (iii) the equations are consistent with conservation of the total mag-
netization.

I. nba. oDUCTION

The principal purpose of this paper is to show
how the Bloch-like equations for paramagnetic
resonance in a dilute magnetic alloy may be derived
and to give that derivation to second order in the
interaction J between the spin of the conduction
electron and the electronic spin of a magnetic im-
purity. ' This enterprise turns out to be extraordi-
narily complicated and so we want at the first to
set out the principal results and some arguments
for them.

There are, roughly speaking, three sorts of
questions that concern us in deriving (or writing
down) Bloch equations: (i) what forces drive the
spins; (ii) what mechanisms cause the spin to re-
lax; and (iii) toward what "equilibrium" value do
the stains relax?

A. Conduction Electrons Alone

Let Us illustrate these concerns by writing a
characteristic Bloch equation for just the conduc-
tion-electron magnetization density M, ~ 3:

8M~ M8 -X~H
8t

~+yHXMs+g ~ Js

& J is zero. Traditionally the driving field for
the magnetization is written

H=H g+H e '"'(x —iy),
where Ho is the dc applied field (which causes the
spins to precess) and Hj is the amplitude of the ac
field (which can cause spin-flip transitions and in

any case change the instantaneous axis and frequen-
cy of precession of the magnetization). Here x, y,
and g are unit vectors in the three Cartesian direc-
tions. The instantaneous or local equilibrium value
of the magnetization is g,H, where X, is the Pauli
susceptibility and it is clearly toward this value
that the nonequilibrium magnetization M, will re-
lax. In this case the relaxation mechanism is one
in which spin angular momentum is carried off to
the lattice —hence the order of the subscripts
sl(s- f).

While the form of the right-hand side of (1.1)
seems obvious it is a common occurrence4 for the

X,H term to be dropped from the x and y components
of (1.1). We can readily see the effect of that error
on the susceptibility. First we observe that for
H, «Ho, the z component of (1.1) (with V ~ 7 still
zero) is essentially independent of time and

For the moment suppose that the gradient term
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Then defining

M, = (M,)„+i(M,), ,

a wave propagating into the sample

(z f) ~~ ((ks G-t ) (1.1O)

me have the equation

i(Q, -Q). M. =y.. iQ, + — a, , (1.5)(
1 . II
sl

where Qo= @HO. The first term on the right-hand
side of (l. 5) results from the identification (l. 3),
whereas the second would be missing if we made
the (erroneous) assumption that M, relaxes toward
zero (instead of y, H,). The ac value of the sus-
ceptibility

g, (Q) = i(f, /e.
is readily calculated:

i Qo+ 1/T„x.(o)-x, .(~ @ &&~ ) .

Note tha. t X,(Q= 0) = X, as it should. But for the in-
correct relaxation assumption the factor of 1/T,
would be missing in the numerator and a very in-
appropriate dc value would result. The necessity
for g,H in (l. 1) has been recognized by theorists'
who have been unable to derive it and has been ig-
nored by experimentalists who should have known

better.
Let us turn finally to the divergence term in

(1.1). Since the electrons (of spin —,') can move,
the magnetization density can change by the diver-
gence of the magnetization current (a, ctually a ten-
sor) J,. This is analogous to a similar term in
the continuity equation: Sp/Bt+ V ~ J=0. The analogy
can be extended further since the ordinary current
is proportional to the gradient of the density. In a
similar way one might expect that

B. Conduction Electrons and Localized Spins

When a number N of localized spins, whose
magnetic moment density is M„, are added to a
metal containing g conduction electrons, a number
of effects arise from the interaction

—(J/~y') M M„.
l. Driving Terms

(l.11)

the susceptibility has an additional factor D, k in

the numerator and denominator. At resonance
(Q= Qo) the damping of the wave (Imk) is zero, and

hence the transmission is enhanced. '
So far in this simple example we have supposed

that the conduction electrons were noninteracting.
Of course, that is not the case. The Fermi-liquid
theory permits a phenomenological way of including
the contribution of other electrons to the effective
magnetic field that any electron (or more properly
quasiparticle) sees. Since the magnetization M,
commutes with the exchange interaction in the phe-
nomenological theory (as well as with the Coulomb
interaction in the Hamiltonian), then M, precesses
about only the external field. However, the mag-
netization current J does not so commute and its
precession is entirely due to the exchange interac-
tion. This effect gives rise to spin waves which
have been experimentally observed in metals where
the exchange interaction is small. " In some
transition metals where the interaction is large
there appear to be a number of complications in-
cluding an anisotropic gyromagnetic ratio-so that
resonance effects have not yet been clearly ob-
served.

where D, is the spin diffusion constant. The yP
might be surprising at first but on reflection two
different considerations lead to it. First a magnet-
ic moment p (which any spin possesses) is acted
on by the force —p, VH (in addition to any gradient
in the magnetization density). Second in a static
nonuniform field H(x), the equilibrium situation
requires

First, although the total magnetization hI= M,
+ M~ commutes with (l. 11) the individual magneti-
zations do not. Accordingly (l. 11) supplies an
additional effective magnetic field which causes
I, and M„ to precess with different frequencies.
The effective magnetic field for the conduction
electrons H f f and for local spins H, ff ff to second
order in J is

V J,= -D,V (M, —yH) (1.9)
Hy(( g(g )

- H + ((x( + Ix2)Mg(gj (1.12)

to be zero which is clearly the case only if the
disturbance from local equilibrium M, —yQ drives
the diffusion term.

The presence of the X,H term in (1.9) has been
recognized for some time but only recently have
some of its experimental implications been dis-
cussed. The presence of the diffusionlike term
(l. 9) in (1.1) permits a new kind of experiment
conduction-electron spin resonance (CESR). For

a(= J/)'~ (1.13)

c(2= (J/~)'(p/y')»&s&/D (l.14)

Here p is the density of states at the Fermi surface
for a band of width D. Note that ua/(x,- (J/D) 1n k(3 T/D, and that this is the leading Kondo

logarithmic term. Throughout this work we assume
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Second, (l. 11) provides a new relaxation mech-
anism-namely, the conduction electrons and local
spins can exchange spin angular momentum. To
second order in the interaction the rate of loss of
magnetization from the conduction electron to the
local spine (s-d) is

1 2m(J=—
i

—
i
p¹S(S+1),

T~ if (n]
while the reverse rate, from the local spins to the
conduction electrons (d- s), is

These rates can be understood in terms of the
'Golden Rule" —namely, that a rate is proportional to
the product of the square of the matrix element
(8/n) and the number of final states. For (l. 15)
the number of final states is clearly proportional
to the number (N) of local spins. On the other
hand, for (1.16) the number of final states for the
scattered conduction electron is proportional to the
thermal spread (ksT) of those states (clearly this
is the case only when k~T is large compared to the
magnetic splitting p, 1T).

The Golden Rule is not, however, sufficient to
handle the spin weightings correctly. To get these
rates exactly right (even to lowest order in J) it is
necessary to subtract from the rate of electrons
scattered out of the initial spin state, the rate of
electrons scattered back in. When this is done one
obtains rates in exact agreement" with (l. 15) and

(l. 16). As we shall see in Sec. IV, this "scatter-
ing-back" term occurs naturally in our treatment,
and the neglect of such a term is one reason for
the difficulty that some other forrnal treatments
have had in obtaining (1.15) and (1.16).

One more observation, that initially appears
more profound, is that

Xeo «o
T+g Tg

where the Pauli susceptibility is

and the Curie susceptibility is

N pS(8+1)
Xpp p y YP

B

(l.17)

(l.18)

(1.19)

If one supposed that additional relaxation terms in

that the gyromagnetic ratio y is the same for the
conduction electrons as for the localized spins. It
will be clear, as we go on, however, that to first
order in J, our equations are valid even if the gyro-
magnetic ratios are different, if one replaces y
by y, or y& as appropriate.

2. Relaxation MecIIanisms

(1.1) due to the interaction (1.11)were of the form

In the absence of the interaction (1.11) the local
equilibrium of M, and M„ that should appear in the
relaxation and diffusion terms are clearly XH and

X„pH. But the presence of (1.11)produces a net-
tling complexity that does not become apparent
until second order in J. The obvious (but wrong)
guess could be that M, «& relaxes to X,~&»H, «,~&&

and that is correct to first order in J." But to
second order in J the appropriate quantity in the
relaxation of conduction-electron magnetization is

5M, . = M, —X~p(H+ agMg),

while for local spins the quantity is

&Mp=Mp —Xpp[H+ (n, +2n, )M,] .

(l. 21)

Note the absence of o.p in (l. 21) and its doubled
presence in (l. 22). One test of (1.21) and (1.22)
is that they give the correct static susceptibility.
For a dc field, 5M, = 5M„=O. Solving the resulting
equation we get

Xg= Xqp(1+ aiXpp) y

Xg = Xgp [1+(&g+ 2&a)X~p] ~

—M MgS +
T9d dS

then (l. 17) could be a sort of detailed-balance
"law" since in equilibrium M, .= X,pH and Mp = X~pR.

But, of course, as we have already discussed the
magnetizations do not relax to zero but to their
local equilibrium values. There is as far as we
know no a priori reason for (l. 17). The final ob-
servation to be made about relaxation mechanisms
arising from (l. 11) is that since this interaction
term commutes with the total magnetization M it
can not lead, by itself, to any relaxation of M.
Accordingly any relaxation terms due to (1.11) that
appear in the Bloch equation for M, must appear in
exactly the same form, but with the opposite sign,
in the equation for M„.

So far we have discussed relaxation mechanisms
due only to (1.11). As in our first example a spin-
orbit interaction that couples the conduction elec-
tron to the lattice provides for a relaxation of the
conduction-electron magnetization directly to the
lattice. " It might appear that the local spins would

not relax to the lattice but the experimental evi-
dence'~ to the contrary suggests a I/7„, on the order
of a few hundred Gauss. Its temperature and con-
centration dependence are not well documented.
No published mechanism has yet appeared, let
alone any calculations of its magnitude. %e will
offer no such calculation here, and commend the
problem to our colleagues.

3. Loca/ Equilibrium Nagnetization
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and hence

Xso= Xuo [1+2(&g+ o'o)X~o], (1.24)

which is correct to that order in perturbation
theory. Unfortunately (1.24) would also have re-
sulted if we had guessed that the same factor
(a~+ o.o) should occur in (1.21) and (l. 22). The
strongest argument for the asymmetry in the two
equations we know is that (1.21) is known' to be
correct to fourth order in perturbation theory and
we argue in Appendix D that it is true to all orders.
Furthermore our formalism also gives -D,V' 5Ms.
in the diffusion term.

The results of our discussion can be summarized
by writing down the Bloch-like equations for M
and Md'.

1 1
~M

1 0'2Xso
5M„

(1.aS)

—+yH, qq d&& Md

+ 6M+ 5M, .1+ &2Xso 1 1

dl set

These are essentially the equations of Hasegawa"
with the following exceptions: (i) His Ii,«, &~& were
only given to first order in Z; (ii) his equations re-
laxed toward zero M, and M~; (iii) the diffusion
term and 1/T~, were missing; and (iv) he allowed
for different gyromagnetic ratios for M, and Md.
We could do (iv) but it would complicate our anal-
ysis greatly. To linear order in J, however, the
extension is trivial.

Furthermore these are essentially the equations
we published previously' with the exceptions of (i)
an improved treatment of 5M, and 5M~ and (ii) the
absence of the hyperfine interaction. Again the
hyperfine interaction effects could be included but
at the cost of increasing complexity.¹teaddedin Proof. The results of our calcula-
tion based on the s-d exchange model [our Eq.
(2. 1)] are identical, to an equivalent order in per-
turbation theory, with those for the Anderson mod-
el [P. W. Anderson, Phys. Rev. 124, 41 (1961)].
The detailed demonstration, based on an applica-
tion of the Schrieffer-Vfolff unitary transformation
[Phys. Rev. 149, 491 (1966)], is given in a note
added to Appendix D. For example, Eq. (l. 21) is
an example of the "compensation theorem" —an
Anderson-model statement that the conduction-
electron magnetization is unchanged by the intro-
duction of an impurity state (under the assumption
of constant matrix elements and the neglect of po-

tential scattering). (Anderson's proof of this
"theorem" is readily extended to all orders in per-
turbation theory. ) The relevant point to realize
is that the definitions of 9, and M„ in the s-d ex-
change model [our Eq. (2. 1)]do not correspond
one for one to the definition of the "conduction-
electron spins" and "d-electron spins" in the An-
derson model. Bather one has at least approxi-
mately

MAnderson
s 1 so d~

MAnoerson M (1 + ot X )

when potential scattering is neglected. These re-
sults explain the apparent inconsistency between
our prediction of relaxa';ion toward local instan-
taneous equilibrium and the work of T. Sasada
and H. Hasegawa [Progr. Theoret. Phys. (Kyoto)
45, 1072 (1971)]which appeared after our manu-
script was written and which makes use of the An-
derson model. Indeed, the substitution of the
above relations into Eq. (4. 1) of Sasada and Hase-
gawa yields a set of equations with relaxation terms
of the same form as our results, Eqs. (1.25) and
(l. 26) (with oo and 1/T„set equal to zero; this is
shown in Appendix D). Thus, the results of Sasada
and Hasegawa contradict neither our results, nor
the recent results of M. B. Walker [Phys. Rev.
(to be published)] nor of S. E. Barnes and J. Zit-
kova [Phys. Rev. (to be published)], both of which
agree with ours in this respect.

C. Plan of Paper

The principal results of this paper are Eqs.
(l. 25) and (1.26) and the methods used to derive
them. Since we believe that this paper constitutes
the first derivation of these equations we are con-
strained to offer considerable detail of the method.
The basic difficulty in deriving a Bloch or Boltz-
mann equation is that one must avoid assuming the
form of the equation in its derivation for in so doing
important terms may be thrown away. This is not
too difficult when only a single unknown is involved.
But the presence of two unknowns (such as M, and
M, ) requires a formalism that can derive an equa-
tion for one unknown without assuming the solution
for the others. That is usually too difficult for
most Green's-function schemes and errors a,re
often made with the relaxation and driving terms.
In this paper we show explicitly that the method of
Kadanoff and Baym which does not have this de-
fect, can be cast in a form which is most useful in
deriving rigorous results in spin systems. The
basic procedures are set out in Sec. II, but the
major formal development is deferred to Appendix
A. This organizational pattern of placing the com-
putational details in Appendices is used throughout.
The rest of the organization of the paper will be
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presented at end of Sec. II after the formal scheme
has been described.

II. PRELIMINARIES

A. Hamiltonian and Approximations

Our aim is to derive a generalization of the Bloch
equations to apply to fI conduction electrons of ene r-
gy &~ and spin s =

& and to N localized moments of
spin S. Essentially we wish to derive Has egawa' s
phenom enolog ical equations '7 directly from the
H am il to nian

n n N N

Z~„—Zys, H+ZZ, —P y%, H -Z —s,
j=1 i ~1 g =1 &=1 n

(2. 1)

Equation (2. 1) already displays some of the basic
features of our notation, in that upper -case letters
generally refer to the localized spins and lower-
case letters refer to the conduction electrons . The
one prominent exception to this rule is that we shall
use the symbol M, . to refer to the conduction-elec-
tron magnetization density, while M„will denote the
corresponding localized spin quantity. Equation
(2. 1) also hints at a calculational technique we shall
use: By formally giving the localized spins a band
energy E~, we can straightforwardly apply al 1 the
standard Green' s -function diagrammatic techniques,
and then take the infinite -mass limit E~- 0 and
really localize the localized e lectrons 2'; in prac-
tice, of course, this limit will occur very early in
the ca, lculation. Another feature evident from (2. 1)
is that we assume the gyro ma gnetic ratios y for
each spin species are identical . To take them un-
equal vastly comp licates the details of the calcula-
tion, and will be deferred to a later work, where
the effects of the hyperf ine interaction will be in-
cluded22 from the beginning.

What we do here is to derive Hase gawa' s equa-
tions directly from the Hamiltonian (2. 1) with a
number of approximations mentioned here . The
first is that yH as we ll as the frequency of whatever
disturbs the system from equilibrium is much
smaller than k~ T. Thus we keep only the lowest
nonvanishing order of each of these quantitie s .
Furthermore, we assume that the deviations from
thermal equilibrium are sufficiently small that we
can use linear -response theory to describe them,
and that externally induced fields and magnetizations
vary spatially on a scale large compared w ith the
typical interpartic le spacing of the local spins . Thus
we assume that external pe rturbations are weak and
slowly varying in space and time; how these as-
sumptions are effected systematically will be shown
in detail later.

Our most restrictive approximation, however, is
that we shall assume that the coupling constant J
is sufficiently weak, that it can be treated by per-

pV o)
=- ~~ ~(u 0

-&p) = p

to be a constant independent of the energy p 0.

(2. 2)

B. Method of Calculation

A number of years ago Kadanoff and Baym de-
rived a set of transport equations, which provide
an ideal starting point for deriving Boltz mann -like
equations . One trouble with the theory as originally
formulated is that the exact equations [(8.2V) and

(8. 28) in Ref. 19] are so cumbersome that they take
12 printed lines to write, and would therefore ap-

pearr

use less in a practical calculation. By making
a gradient expansion, assuming quantities varied
slowly in space and time, Kadanoff and Baym de-
rived a rather elegant generalized Boltzmann equa-
tion which can and has been solved in practice.
Here, however, while we would be wi 1ling to make
the gradient expansion in the space and time vari-
ables by our earlier mentioned assumptions, the
spin variables must remain as discrete quantum-
mechanical matrices . Therefore we cannot use
Kadanof f and Baym 's generalized Boltz mann equa-
tion .

To obviate this difficulty, we us e a notation
which renders Kadanoff and Baym

's exact equations
as simple in form as their approximate ones . Then
we can do the gradient expansion in the space and
time variables, while leaving the spin matrices in-
tact. The derivation is carried out in Appendix A.
We summarize the results here .

The formalism is based on knowing the two pieces
of the self -energy Z& as a functional of the two

pieces of the Green's function G~ This knowledge
can be obtained to any desired degree of accuracy
by standard perturbation theory, which works for-
ma 1ly just as it would in equilibrium . Note that the
quantities here are to be considered a function of
two time variables, two spacial variables, and two

spin variables. Exactly as in equilibrium G and
0' are defined as

GnS(xls fit +2y f2) = « Pg(X2& f2)4 (x~ 4) &&

turbation theory. In particular, we will systemati-
cally and rigorously produce every term of order
J or lower on either side of Has egawa' s equations .
Of special inter est is, that in order J, Kondo -ef-
fect logarithmic terms appear for the first time .
These can be used to estimate whether, for exam-
p le, the Kondo effect will alter line shapes in any
important way, but should not be used quantitative ly,
even though they are exact to this order in J.

One further nonessential approximation, which
we make and which is fully consistent with the ne-
gle ct of the momentum dependence of J, is to take
the conduction-electron density of states (for a
single spin)
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G 8("i fii "2 f2)=((4 (Xi fi)qg(xa, &2))),
(2. 3)

—5(ti -f 2) Zi, Ei, e'~ ' *i *2'5~, (2. 9)

where n and P represent spin components and
((' ' ')) represents the statistical average appropri-
ate to a system that was in thermal equilibrium at
time t = —. Exactly as in equilibrium one defines
the spectral weight function A and the lifetime func-
tion Z' as

A=G +G

I'= Z'+ Z',
(2. 4a)

(2.4b)

and the real part of the Green's function G and the
real part of the self-energy Z as

G(f„ f,) = (1/2i) A(f„ f,) sgn(f, —f,),
Z(f„ fg = Z"'5(f, —f,)

(2. 5a)

( )
l(d A(co, f) (2. 6a)

~' d I'( , t)
2 77 Pp —(d

In terms of this notation, the generalized Kada-
noff-Baym (GKB) equation (see Ref. 24 and Appendix
A) is

(1/i)[(G + yf H —Z), G'] —(1/i) [Z', G]

+(1/2i)1'(ti, t2) sgn(ti -t2), (2. 5b)

where we have supressed the nonessential variables.
All parts of the self-energy diagonal in time (the
Hartree-like terms) are to be included in Z'". To
make closer contact with the equilibrium case, we
note that if one lets v = ti —t2,' f = ~ (f, + t2) and Fourier
transforms with respect to the difference variable
7, then (2.5) implies that

and 1 (as in yS H 1) is the unit matrix in space and

time, whose elements are 5(ti —ta) 5(x, —x2). We
thus have an exact set of equations which in princi-
ple predicts the exact behavior of a nonequilibrium
system. We, however, wish to consider only slow-
ly varying disturbances, and to make a gradual ex-
pansion of all quantities keeping all the largest
terms.

The general procedure now is to write all the
basic quantities in terms of sum and difference
variables of the space and time arguments

f = g(ti+ f2),
1S= t~ -t2,

—. [A, B]pi= —. [A, B]

1 8A 88 1 8A 8B

--,'fv, A, v„B)+,'(V„A, v, B)-+ (2. 11a)

Ir = xy —x 2 x = p ( xg + xp)

and Fourier transform with respect to the difference
variables, and write all quantities as a function of
the variables (p, po; x, f), where p is the Fourier-
transform variable corresponding to r and po is the
Fourier-transform variable corresponding to v.

Qf course, one cannot in general express the
Fourier transform (Ft) with respect to the difference
variables of a matrix commutator exactly in a use-
ful form, but since we are expanding in slowly vary-
ing quantities, we use the gradient expansion

(G,'+yS H 2+i& I')-(G+i&A) =1, (2.8)

which holds in equilibrium as well as nonequilibrium
(see Ref. 24 and Appendix A). Of course, we have
written the above equations with upper-case letters
representing the local spins, but analogous equations
exist for the conduction electrons as well. Note
that in the above formulas Go is (as usual) the in-
verse of the bare Green's function

[Go (fit f2& Xls X2) ]ag 1 5(fi —f2)5(xi Xa)5eg
1

=--:(F, G) —:O',A), (2. 7)

where [A, B] is the commutator and fA, B) is the
anticommutator. Matri, x multiplication is implied
not only in the space and spin variables, but also in
the time variables which are integrated along the
real axis from —~ to ~. The final equation which
makes (2.7) a closed system is just the ordinary
Dyson equation

—. (A, B)p, = f A, B}.
8A 8B 1 8A 8B
8p ' 8t 2 8t '

8P

-2 [Vi,A, V,B]+g [V„A, V~B]+ ~, (2. 11b)

where on the right-hand side of (2. 11) there is no
longer any matrix multiplication in space and time
variables, but only in spin variables; the space-
time variables p, po, x, t are set equal in both
members of a product. [The writing of (2. 11)pre-
sented a notational problem; the reader is warned
that the scalar product is implied between V„A and

V~B and similar terms. ] Henceforth we will gen-
erally suppress the variables x and t, although the
dependence on them is implied. In the later section
of this paper we will show how the GKB plus the
gradient expansion above can be reduced to Hase-
gawa's equations.
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xi, ti

I
I

I

xi ti

I

I

I

x~, tp

Since by definition

M, (x, t) = Tr2yÃ Z G'(p, p2,
' x, t),

P 200

we have

o"'(x, t)= —(J/ny')ys M~,(x, t),

(2. 14)

{e)
I

Xi 2ti x, , ti

I

I

x~, t2

which is independent of p and po. In an exactly
similar manner the diagram of Fig. 1(c) for the
localized spins may be evaluated as

(2. 16)

FIG. 1. First- and second-order (in J) self-energy
diagrams for conduction electrons (a) and (b), and for
localized spins (c) and (d). Single solid lines represent
the fully interacting propagator for the conduction electrons,
while double solid lines represent the localized spins.
Vertical dashed line represents the instantaneous inter-
action —(J/N)s S. Care must be taken to preserve the
matrix order, with lines entering a vertex multiplying the
vertex on the right and those leaving multiplying it on the
left. External lines are shown for clarity but are not in-
cluded in the definitions of the self-energies. See also the
discussion including Bef. 25 in Sec. II C.

We turn now to the second-order terms such as
Fig. 1(b), which is given by

(8/n) Tr2s Sg(xl, tl,' x2, t2)

x G(xl, t„x„ t,)s SG(x„ t„' x» tl), (2. 17)

where we have used the fact that the assumed in-
teraction (2. 1) is a contact interaction to do the
spacial integrals. Because there are no remaining
time integrals, (2. 17) is trivial to continue to real
time;

C. Expansion of Self-Energies

In order to have a closed set of equations, one
must know what the self-energy functions Z& are in
terms of 6&. To a given order of perturbation theo-
ry this is straightforward, because in the imagi-
nary-time domain, the self-energy Z has a well-
defined diagrammatic expansion in powers of the
Green's function G. One writes this down, and then
uses the techniques described in Appendix A to
continue the results to obtain the real-time physical
functions Z&. In our particular approximation of
neglecting terms of higher order than J, this ana-
lytic continuation is particularly easy to effect.

The diagrams for the self-energy of the conduction
electrons to order J2 is shown in Figs. 1(a) and

1(b); while those for the localized spins are shown
in Figs. 1(c) and 1(d). The rules for evaluating
such diagrams are standard and are derived, for
example, in Ref. 19.~' We must take special care
in our case to preserve the order of the spin oper-
ators. Figure 1(a) makes only a contribution to
o " [see (2. 5b)] and can be written immediately as

o (xl tl x2 t2) ( J/n) T12s ' SG (xl tl x2 t2)

"6(tl-t2)6(xi-X2) (2. 12)

Expressing this in terms of the sum and difference
variables (2. 10) and Fourier transforming with re
spect to the difference variables, yields

o'"(p, p„x, t)= —(Z/n) Tr2s f Q G'(p, p2,. x, t) .
(2. 13)

( Xls tl r X2& t2)

= (&/n) Tr2s' Sg&(xl, tl,' x2, t2)

xG&(xl, t» X2, t2)s ~ SG&(x2, t2, x» tl) . (2. 18)

In terms of sum and difference variables (2. 10) this
becomes

o&(r, 7'; x, t)

=(J/n)2Tr, s ~ Sg&(r, 7; x, t)

xG'(r, ~; x, t)s ~ SG&(-r, —v; x, t) . (2. 19)

Finally, upon Fourier transforming over the differ-
ence variables, we have

o & (p, P„x, t) = (J/n)2Tr, Z
k, ko q, qp

I

xs Sg&(P+k, P2+k2, x, t)G&(&I, &f„x, t)s S

xG&(q+k; q, +k, ; x, t) . (2. 20)

Note that because of the simplicity of this term
coupled with our assumption that J is a contact in-
teraction, there was no need to use the gradient ex-
pansion to accomplish the Fourier transformation;
in general, of course, this would not be true.

The expression for the diagram of Fig. 1(d) is
derived trivially from (2. 20) by interchanging up-
per- and l.ower-case letters:

Z&(p, p„x, t)=(J/n)'
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x Tr, Z Z s'SG&(p+k, Po+ko, x, t)
k, kO q, qo

xg&(q, qo,
' x, t)s Sg&(q+k; qo+ko; x, t) .

(2. 21)
D. Plan of Remaining Sections

We are now in a position to derive the Bloch
equations for M, . and M„. A brief example may help
to motivate the process. Consider, for example,
the time-derivative part of Go in (2. 9). Then as
shown in Appendix A [Eq. (A35)] (but in any case it
does not seem very surprising)

t

St
5(tg-t, )5(x, -x,), G (x„ t„xo, t,)

Ft

G'(p, Po, x, t) . (2. 22)

If we now use the prescription (2. 14) for calculating
M, (x, t) on (2. 22) we get 8~(x, t)/st which is one
term of the Bloch equation. Roughly speaking, the
prescription (2. 14) applied to (2.7)

priate to the RHS are discussed in Sec. IV along
with a calculation of the susceptibilities. The actual
evaluation of the relaxation terms (RHS) is deferred
to Sec. V. Finally we return to work out the driving
terms (or I HS of Bloch equation) in Sec. VI. In

Sec. VII, all the results are brought together to
display the complete Bloch equations for conduction
electrons and the local spins. The more tedious
details of the calculations are deferred to Appen-
dices B-F.

III. DECOMPOSITION OF g+ (G~ ) FOR LHS OF GKB AND
APPROPRIATE SELF-ENERGIES

Essential to an explicit evaluation of the GKB
equation (2. 7) in Sec. II are calculations of the rele-
vant imaginary parts of the self-energy to second
order in J. But that calculation requires a prescrip-
tion for expanding g& to first order in H and M, and
G& to first order in H and M~ in a precise way. Con-
sider the following choice for p.&:

g'(p Po)=2~~(Po-&s+ys H)

TroyS Q (6KB)F, , (2. 23) xf(P, +ys H)+ng'(p, P,) (S. 1)

together with the gradient expansion (2. 11)produces
the Bloch equation with the left-hand side (I HS) of
GKB giving rise to the driving terms and the right-
hand side (RHS) to the relaxation terms But., of
course, some organization of the algebra is neces-
sary. For example, consider the magnetic field
term of (2.7); for it the first term of (2. 1 la) in
(2. 23) yields

»oyS[ys H, G'(P, P,)l. (2. 24)

To readily obtain the expected result yH&& M„re-
quires an ability to decompose G' into that part
which is proportional to M„and that which is not.
Just how important such a decomposition will be on
LHS becomes clear when we consider a term such
as [Z, G']. The self-energy Z must be decomposed
into pieces proportional to S H, S Mo, and 5 M,
in order for the commutator to be taken. In Sec.
III, we display decompositions for the Green's func-
tions and the self-energies appropriate to the LHS
of the Bloch equation; see also Table I.

But a decomposition that is appropriate for the
driving terms is certainly not for the relaxation
terms or RHS of the Bloch equation. There we want
to be able to separate out a piece of G proportional
to 5M„and further show that the remainder makes
no contribution to the relaxation terms; in other
words that the RHS contains only terms proportional
to 5M, or to 5M~. If that is the case, then, as we
showed in Sec. I, the correct dc susceptibilities
follow automatically. The decompositions appro-

M, = Tr,ys Q g (p, Po) .
P, PO

(3.4)

Hence by (3. 1)

M, = Tr,ys E 2w5(Po —c~+ys H) f(Po+ye H)
P~io

g (p, Po) = 2v6(Po -e, + ys ~ H) [1 - f(Po+ ys H)]

-ng'(P, Po),

where the Fermi factor f(Po) = (eo~ +1) '. Since we
will work to only first order in II, there is no con-
fusion about the relative order of the 5 function and
the Fermi factor (if we were working to higher order
in the magnetic field, symmetrized products would
be required).

First we observe that

g(P, Po)+g'(P, Po)=2ve(Po-s, +ys H), (3.S)

which is the correct form for the electron spectral
weight function in a magnetic field to zero order in
J. We should, of course, consider spectral weight
function to finite order in J and in the presence of
nonequilibrium local spin magnetization M„, and we
discuss this point when the LHS of the GKB equation
is derived in Sec. VI. It is clear, however, that
(3. 1) and (3. 2) are adequate for the calculation of
the self-energies to order J .

Next, we show that the conduction-electron mag-
netization is uniquely determined by ng&(P, Po). By
definition
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+».ys ~ W'(p, Pa) (3.&)
P HAPP

The first term in (S.5) is identically zero and con-
nection between M, and Ag' established. This fol-
lows from variable transformation pa+ ys ~ H to po
which leaves the integrand proportional to s and
hence zero after the spin trace is taken. It is use-
ful in performing the spin trace to exhibit the ex-
plicit spin dependence of bg' —namely,

W'(p, Pc)=m(p, Ps) s,
where clearly gp m(P, P(}) is that sPin Projection of
the distribution function appropriate to the magneti-
zation. Using the spin traces in Table IV, we have

M, =y(2s+1)-,'s(s+1) Z m(p, p,) . (3.7)
Pt PO

We should remark that the choice (3.1) is not the
obvious one, since in equilibrium the obvious factor
to be multiplying the () function would be just f(p(})
[not f(Ps+ye H)]. We can rearrange (3„1)to dis-
cuss this possible decomposition:

g (p, pp) =2sp(pp &p+ys'H)f(p(}).(»()(p. -e,)[f(p. y. H) -f(p,)] ~'),
(3.a)

where in the second 6 function we have omitted the
addend of ys H since the square bracket is already
of first order in the magnetic field. Now the first
term in the curly brackets when used in calculat-
ing M, by (3.4) clearly gives

Tr,ys(ys H)p dp(}
8f

0

= —(2s + 1) —,
' s(s+ l)pyaH = —X„H, (S.9)

x E(p, +y5 If)+~G'(p, p,), (S.iia)

G'(p, p,) =2}(()(p,-Z, +yf a)

X [1-F(p(}+yf H)] —&G (p, )Io(}) I (S. lib)

~G'(p, p,)=M(p, p,) 8. (S.12)

We have also recorded these equations in Table I
for future reference. The Boltzmann factor E()II(})

may be written in a number of ways. The most
general is

E(P ) sA (PP-Io}

nonequilibrium part of the ma, gnetization. In a
Bloch equation it is a quantity such as this which
relaxes to zero with some characteristic relaxation
time. Accordingly a decomposition such as (S.8)
will be useful when we are discussing the RHS-or
relaxation terms —of the 6KB„as we do in Sec. IV.
But here we are interested in the LHS which has
terms such as ()M, /()f involving the total magnetiza-
tion, hence the decomposition (S.1), (3.2), and

(3. 6) is appropriate for the conduction electrons.
Finally there is a very important reason, if not

readily apparent at this stage, for choosing the
decomposition of g& we did. This choice as we shall
show in Sec. VI will cause certain terms in the GKB
equation to be automatically zero. As there are a
great many terms anyway (15 when last we counted)
this is no small benefit.

We turn now to the local spins. Clearly a dis-
cussion similar to that for conduction electrons will

go through with very few changes. In particular,
we write

G (p, pa)=2s5(}I}(} Ep+yS-5)

where

(S. io)
To zero order in J',

E(p,) =vs-"o/(2S+ i)Z, &-"p,
is the Pauli susceptibility for noninteracting con-
duction electrons. Since ~' corresponds to the

total magnetization, clearly the term in the curly
brackets corresponds to M, —

X,,oH, that is, to the

TABLE I. Left-hand side decomposition for G~ (g &),
The equivalent equations (3.1), (3.2), (3.6), and (3.7)
for conduction electrons are gotten from the ones listed
by replacing every captial G, E, 8, E, and M with g, e,
s, f, and m, respectively, and 18'& with Mo.

G (P~ po)=2II(}(po So+VS'H) F(p-o+VS'H)+KG~(p. po} (2 lls)

& (P pp) = 2' 6(pp —&p+Qs' H) [1 E(pp+fi5' 8)] AG (p pp}

m'(p, pp)=fr(p, p, ) s

Mo=y(28+1) —'s(s+ &) Q M(pi po) (3.xs)
PoPp

(28+1)Z E(0) =N, (S.iS)

which is often used in calculations in Appendix B.
We observe that the factor of E(ps) in (S.11b) is
negligible compared to unity.

From the definition of the loca, l spin magnetization

M, =TrsyS 5~ G'(p, P,),
PoPO

it follows from (3.10) and (3.12) that

(S.1P)

where N is the number of local spins. Hence

Trs Z 2mb(pa Ep) E(p(})= T-rs Z F(Ep) =N .
(S.14)

Note that in the infinite-mass limit, the last equality
becomes
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TABLE II. Lifetimes and self-energies for conduction
electrons.

pp(po) =2s(J/n) N p S(S+1) s(s+1) g» gQp —s»)

H@p) =ps ' H 'ypQp)

)n, (Po) =2s(J/n)'{(2S+I)-' S(S+1) Q M(q, qo) s)
Os Cp

{-' 6 {p + q —& ) [I-f(& )]+-' l(p —q — ) f( )) (nl4)

(a3)

@ ). (1)~g Y(~)
p N~ p

0'~ = —0!g
'yS ' Q, G f {sf/n'y )

g'op (pp) =2n(J/n) {(2S+1)oS(S+I) g M(q, qp) s)
e, ap

x P» —.,'. g (po
—

qo
—s») f(s») (824)

oop (pp)=V/n) N p S(S+1) [s(s+1)-l] $» m(k, po) s (826)

pand in powers of H, &g, and &g and keep all
terms of zero or first order in any of these quanti-
ties. The tedious details are relegated to Appendix
B for the conduction electrons and Appendix C for
the local spina. The results are exhibited in Tables
II and III, respectively.

We will not repeat the results here but comment
briefly on them. First, y„,(ps) = 0, that is, it is
possible to define a self-energy for the conduction
electrons which is independent of the total magneti-
zation of the conduction electrons (including their
magnetization in a static uniform field). This is,
of course, entirely consistent with the decomposi-
tion. In an analogous way I'op (po) = 0.

The second interesting result is that

lo(Po)+WH(Po)=)'p(Po+) s H) (3. 22)

I'o(Po)+I'H(f o) = I'p(i o+» H) (3. 23)

Ms =Trsyl !~~ AG (p, pq),
P»PO

(3.1V)

M„=y(2S+1)—,'S(S+1) Q M(p, fp ) .
PpPP

(3.18)

Finally we calculate the magnetization of local
spina in a. static magnetic field. Another way of
viewing (3.8) is to say that in e(luilibrium the curly
bracket is identical zero. Applying this to local
spina, we would say that

(nG')„„„=» H2v('(P, )'
ePo

(3.19)

wher e ()E/()po = PE( p,) and we have already gone
to the infinite-mass limit. Clearly the equilibrium
magnetization of the local spina in a static magnetic
field is

to first order in the magnetic field. That this is the
case will allow considerable simplification in the
LHS. At first this result seems obvious as some
sort of Ward identity, but on closer inspection in-
volves expanding each internal Green's -function line
to first order in H (with complicated spin traces
resulting) and not just those for conduction electrons
(say). Furthermore, the decomposition of g& (and
G~) clearly plays a crucial role. So it is not clear
how to prove the results to all orders in H or J for
that matter. Another peculiarity of the results
(3. 22) and (3.23) is that they depend on the g value
for the conduction electrons and the local spin being
the same. This is in general not the ease and hence
extra terms will appear on the I HS of the Bloch
equations. In this paper such terms will not appear

Tr, »(ya H)Z, Pr(0) =)(„If,
where

)(so = Ny S(S + I)/3)ps T

(3.20)

(3. 21)

TABLE III. Lifetimes and self-energies for local spins.

T'p(pp) = 27]'(J/n) (2s + 1) 3 s (s + 1) S(S+1)

xg f(o„)[I—f(o,)] hQ +& —P,) (C4)

is the Curie susceptibility for N nonintera. cting
spina.

It may strike the reader that this formalism is
not very efficient if 21 equations are required to
derive the Pauli and Curie susceptibilities. How-
ever, our aim is considerably more ambitious. In
this section (together with Appendices 8 and C) we
will derive the equilibrium and nonequilibrium self-
energies to order J and that task requires only
another 50 equations or so.

The procedure for the calculating y and 0 for the
conduction electrons and j. and 5» for the local
spina is straightforward. The previously discussed
decompositions for g& and {t"~, in Table I, are in-
serted into the equations for g& and Z& to second
order in J given in Sec. II. We systematically ex-

a
pg(pp) = pS H Fp(pp)

Vo (cs)

rs (pp) = —2s(J/n) {(2s+1) o s(s+1) g™&,qo) 'S}
$ Cs(IP

Pk {-,'rQo qo+ok) f(ok) "o &—5o+qp» ' f k)]) (Cll)

~~„(pp) =0

r(p& )Q + ((d)

oo Pp

n j = (J/ny') p 0. 2
= V/n)'(p/y')»kaX'/D

2„' ((o) =2nN/(2S+I) (J/n)' {(2s+I) -" s(s+I) Z m(q qo)
' S)

Os (fp

x p»{sp Qo qp+o»)[l f(o»)] +» 6 97p +qp pk) f(sk )

~,',„(p,) =2.V/. ): (2.+» —.'.("~) tS(S ~) -~~

x Z 5I$+k~ Po+)Po) ~ S+ f( )[1-fP( I+g)] &(Pko' oo-el+I) (C21)
A, ]o,'p a
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since we assume always that y, = y„= y.
In the Appendices B and C we calculate only the

second -order contribution to o' and Z . There are,
of course, first-order terms which are calculated
in Sec. VI, and given in Tables II and III. For the
record, we exhibit the sum of first- and second-
order terms at pp = 0,

o'~, (0) = —(n, + np) ys M„,

o~„= —n([1+ (pZ/n) In(kp TjD)]y™~
(s. 24)

(s. as)

We turn now to a discussion of a different decom-
position of g& (and G&) which was alluded to in Sec.
III [(3~ 8)] and will be appropriate for treating the
RHS, i.e. , the relaxation terms, of the GKB equa-
tion. Consider the following choice for g& for the
conduction electrons:

g (P po) =a(P po)f(po)+ ~g (P po) (4. 1)

g'(P Pp) =a(P Po)[1 -f(PO)] - ~g'(P, Pp) ~ (4. 2)

Here a(p, po) is the complete nonequilibrium spec-
tral weight function including all contributions to
y(pp) and o(po) to second order in J and any linear
field dependence. Since g +g~=a, and y(po) is in-
dependent of M„we observe that a is also.

Further a (p, pp) must satisfy the following sum
rules:

Z a(p, po) = 1
Pp

Tr, Z a(p, po)f(p, ) =n,
P, Pp

(4. 3)

(4.4)

where n is the total number of conduction electrons .
Both of the above equations are, of course, ess en-
tially definitions but it is reassuring to know that
when the calculated y(po)'s and o(po)'s are included
in a(p, pp), (4. 3) and (4.4) are satisfied. The de-
tails of this calculation are in Appendix D.

Even if a(p, po) were just ap5(pp-cp+ys H) it
would not be the case that 5g was proportional to
M, alone, but instead to M, -g,pH as we showed in
(3.8). Including the effect of interactions we should
expect that the quasie qui librium magnetization to
which M, . relaxes includes some contribution from
the local spins . The calculation of the contr ibution
proceeds by the expansion of a(p, po) to first order
in M~ (and second order in J ):

a(p, po) =ap(p pp+ys ~ H)

for the conduction electrons . The second term in
the square bracket is the so-called Kondo logarith-
mic term. For the local spine Zz, (0) would have a
similar form, except s M~ is replaced by ™,.

IV. DECOMPOSITION OF g~ (G+ ) FOR RHS OF GKS AND
SUSCEPTIBILITIES TO ORDER J2

+ 2™((po—e, —io') '[(x„,(po) +-,' i', (po)]),
(4. 8)

where

ap(p, pp+ys'H) =2Im[pp+ys H —Ep o'o(p+ys'H)

.'-i -y,(p, +ys H)] '-(4. 8)

to the calculation

Tr ys & a(p Po)f(Po) ~ (4.7)
IyPp

Here a,(p, p,) is the equilibrium spectral weight
function in zero magnetic field (hence Q~ is zero)
calculated in this case to second order in J. The
term from ao(p, po+ys H) gives [see (D19)] reas-
suringly X,pH, that is, the static Pauli susceptibility
is unaffected to order J'. The term from the M,
Part of a(P, Po) ™~~su~Prising: The JP contri-
butions all cancel leaving only the first-order con-
tributions to o„. The result (Dls) is consistent
with work of Yosida and Okiji" who confirmed that
to fourth order in J the magnetization of the conduc-
tion electrons due to the local spins equals
&& ys ~ M„. We think this result is true to all orders
in J and give a proof in Appendix D. In summary,
then

Tr,ys Z 5g (p, pp) ™,—g,o(H+ n&M„) . (4.8)
P, Pp

When this decomposition is used in the RHS of the
GKB, we will find that the instantaneous or local
equilibrium magnetization to which M, relaxes is
indeed y.,p(H+ n, Q~). While this is correct, it is
not the result we reported earlier'7 where the fact
that H+ (n, + no)M„ is the field in which M pro-
cesses lead us to believe it to be appropriate for
calculating the local equilibrium magnetization.
It is not. However, the physics (in our minds if
not so clearly in our earlier letter) remains the
same: (i) On the LHS M, . Precesses in the effective
field given by H+ (ni+ np)M„(ii) on the RHS M, .

relaxes to local equilibrium magnetization given
by g,p(H+n, M„). We have shown that both results
are correct to order 8 and in fact we believe (ii)
to all orders.

There is finally one further thing about the de-
composition choice (4. 1) and (4. 2) which will be-
come clear in Sec. V and which plays a terribly
important role in the derivation of the RHS terms.
It will turn out that we will be able to show that the
RHS is proportional to either 5g or 5G~ (the equiv-
alent quantity for the local spine) and nothing
else —a fact which considerably simplifies our
analysis and understanding of the RHS. It should
be noted that the different decomposition chosen
for the LHS is also uniquely suited to the algebraic
re quire ment of that side.
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We turn now to a discussion of the appropriate
decomposition of G~ for use on the RHS of GKB.
The obvious choice is

M, = X,p(H+ nlM~),

M&= X&p[H+(Pl, +2agM, ] .
(4. 16)

G'(p, p,)=A(p, p,)E(p,) 5G'(p, p,), (4.9)

G'(p, p )=A(p, p )[I -E(po)] —5G'(p, po)

(4. 10)

Here A(p, pp) is the complete nonequilibrium
spectral weight function for the local spins and in-
cludes a, ll contribution to I'(p, ) and Z(p, ) to second
order in J and any linear field dependence. But
I'(pp) is independent of M~, and hence so in

Of course, A(p, pp) must satisfy the sum rules

ZA(p, pp)=1,
Po

(4. 11)

i.e. , that the Curie susceptibility is unaffected to
order J . In this case the result follows trivially
from (4. 12) since by a change of variables and ex-
pansion in H, (4. 13) becomes

Trpy5(yf H) Q Ap(p, pp) (4. 14)

and 8E/8pp = —pE.
The more interesting part of the calculation is

the dependence of 5G on M~. In contradistinction
to the ease for the conduction electrons, the J
contributions do not vanish and one finds that

Trg j'5 Z 5G (p, pp)
P~Pp

= M —X„p[H+ (el+ 2 up) M ] ~ (4.15)

This result [second term in (4. 15)] for the local
equilibrium magnetization to which M„relaxes,
while different from our early letter, is the correct
one. It is also consistent with the susceptibility
calculation of Yosida and Qkiji. '

We close this section by calculating the static
susceptibility. In thermal equilibrium (4.6) and
(4. 15) will be zero. Therefore

Trp Z A(p, pp)E(p, ) =N . (4. 12)
P, PO

In Appendix D, it is shown just how the actual forms
of I'(pp) and Z(pp) are consistent with these (de-
fined) constraints. Much more interesting is the
evaluation of 5G~(p, pp) since it will tell us what
magnetization the local spins relax to. The cal-
culation is straightforward and detailed in Appendix
D. In analogy with the case for the conduction
electrons we find that

Trpyf Z Ap(P, Pp+yf'H)E(Pp) =XqpH, (4.13)
P~PO

Solution of (4. 16) for the total magnetization yields
M=M, +M„=yH with

„„,„(I+~& X.p)[I+(cl+ 2~p)X.p]
&l(o'l+ 2+a)xup X,p

(4. 1V)

There are several types of terms which occur
on the right-hand side of the GKB (2. 7)

p b~ g' ]'+ 2 f.& ~ ~ ) ~ (5. 1)

and these will be considered in this section. First
there are the terms in the conduction-electron
equation which arise from the direct spin-flip in-
teraction with the localized spins, and which give
rise to the angular-momentum-conserving scatter-
ing rates I/T, ~ and I/T~;, these are considered in
Sec. VB. In Sec. VC we derive the analogous
terms for the local spins. Next we consider the
effect of mechanisms which remove spin angular
momentum from the system, and hence drive the
system toward thermal equilibrium, which for the
conduction electrons, say, gives rise to the so-
called 1/T~ relaxation term. We do this without

specifying in detail what the specific mechanism
for this relaxation is to be, by considering as a
prototype a model where the conduction electrons
interact with a number of randomly oriented and
positioned spins, which could represent, for exam-
ple, the spin-orbit interaction of the conduction
electrons with localized impurities, or alternatively
the spin-orbit interaction with phonons, since the
structure of the perturbation theory would be the
same in either case. A similar model is used for
the direct relaxation of the localized spins where
the details are less clear. The main assumption
is that these spin-flip mechanisms are sufficiently
weak so as not to have to be included in the various
self-energies, but rather can be treated as a weak
Born-approximation effect on only the right-hand
side of the GKB. We will show that these mecha-
nisms tend to cause the electrons to relax toward
an instantaneous mean magnetization value.

The general scheme will be to use the decompo-
sitions of g& and G& discussed in Sec. IV. For the
moment we suppress the arguments of the functions
in order to present the logic of the procedure more
clearly. We write following (4. 1) and (4. 2) and

where (4. 1V) should not be construed to be accurate
to higher order than J Inks T/D. Note that in the
single-impurity limit (4. 17) reduces to that cal-
culated by Yosida and Qkiji, and that the Curie
constant agrees with the normal mean-field result.

V. RIGHT-HAND SIDE OR RELAXATION TERMS OF GKB

A. Introduction
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(4. 9) a,nd (4.10):

g'= af+ 5g', g'= a(1 -f) —5g'

and

G =AE+ 5G G'=A.
(5. 2)

(5.3)
which should be compared with (5.2). The sub-
script qe stands for quasiequilibrium, and serves
to emphasize that although (5.3) looks like the
equilibrium form for the various Green's function,
the spectral weight functions in (5.3) are meant to
retain their full nonequilibrium values. Likewise,
we define

y=y, .+ &y, E'= E'~, + 5E'
)

(5.4)

where here the quasiequilibrium quantities are to
be calculated assuming that their internal Green's
functions are replaced by the quasiequilibrium
values. If these quasiequilibrium values are now
substituted in (5. 1), one obtains

--'b... af)+ .'(o,'„a) . - (5.5)

This vanishes because, just as in full thermal
equilibrium, o„satisfies

These will be used to linearize the right-hand side.
We keep terms of only the lowest nonvanishing
order in the field and magnetizations. Provided
that all fields are weak in comparison with kz T/y,
which is our assumption throughout, this is a per-
fectly consistent procedure. It amounts to neglect-
ing the effect of the magnetic field on the scattering
rates themselves. This means automatically, of
course, that the transverse relaxation time T2 is
the same as the relaxation time T& for the compo-
nent of magnetization in the dc field direction.

The reason for making the particular decomposi-
tion (5. 2) is that the "unperturbed part" of it, that
is, the part not proportional to 5g or 5G, causes
the right-hand side of the GKB to vanish identically.
To see this, we introduce the notation

only in the combina, tion (4. 16), M, -X„[H+(n,
+ 2nD)M, ]. It is thus clear toward what local mag-
netizations the magnetizations will relax.

We emphasize that the proportionality of the
right-hand side of the GKB to 5g and 5G, and to
no other field or-magnetization-dependent quanti-
ties is true in general, and not dependent on a par-
ticular order of perturbation theory. Thus it will
be consistent to keep all the powers of J implied
by (4.8) and (4. 15) even when they appear in a term
that is already of order J~, and in fact this reten-
tion is necessary to get the static susceptibility and
linewidth correct to order J . Said another way,
the right-hand side of the GKB mill always be of the
form

(1/T, ) 5G' —(1/T, )5g', (5.7)

irrespective of the order in J to which the rates
1/T, and I/TD are calculated.

S. Conduction-Electron Terms

-yg'+ o'a . (5.8)

Second, once (5.8) is expanded in 5G' and 5g, one

may set the field and both magnetizations equal to
zero in all other quantities; for example, yq+5g

-y()&g; &o a-5o ao, etc. The subscript "0"re-
fers, as always, to the zero-field quantities.

In the conduction electron, Eq. (5. 8) becomes

-y05g +5O'a0-5ya0 f
y05g + o5 ~0+ o 5G~sD ~0o&sof (5 9)

where we have symbolically split 5o' and 5y into
the pieces proportional to 5g and 5G, as indicated
by the notation. (Note that 5y has no piece propor-
tional to 5g~. ) For example, if we introduce the
definitions

Here we consider specifically the terms on the
right-hand side of the conduction-electron equation
which result from the Js 0 interaction with the local
spins. First me point out two facts that will be use-
ful throughout Sec. V. The first of these is that to
linear order in the field and magnetizations, one
may assume that [y, g~ ]= [o~, a] = 0 so that (5.1)
may be written

os='Ref ~ (5.6) 5g = 5m's, 5G =5M' 5, (5.10)

which may be seen by inserting (5.3) into (2. 20).
(See start of Appendix B.) Of course, similar
relations hold for the local spin functions.

Since 5y, 5o, 5I', and 5Z are by construction
proportional to Og and 5G, it is quite clear that
the right-hand side (5.1) will be proportional to
M, and M~ only in combinations implied by the de-
compositions (5. 2), that is, M, will occur only in
the combination (4. 9); M, -g~(H+ o.',M~) and M~

then to order J, o«& is equal to o& with m re-
placed by 6m, o6&& is equal to o& with M replaced
by 5M, and y6~& is equal to yz with M replaced by
5M; these quantities can be read out of Tables II
and III. Note that the last line of (5.9) is arranged
so that the first two terms give the ( —M, /T~)-type
term in the Bloch equation and the last two terms
give the (M~/T„, )-type term. To obtain these terms
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in the Bloch equation one substitutes in (5.9) from
Table II, sums over p and po, multiplies by Zs
and takes the trace over s. Actually, we will not
sum completely over p immediately, and hence
derive a Boltzmann-like equation for the momentum
decomposition of M~. Specifically we will integrate
over a~ but not solid angle:

IO

(5. 11)

Specifically it is the last integral over momentum
direction which will not be done. This decomposi-
tion is possible because 5m varies from its equi-
librium value only in a small region near the Fermi

,
surface.

Writing out the first two terms in the last line of
(5. 9) using (B4) and (B26) we get

N(Z/n) &S(s+1)s(s+1)Q~ ( —2w)5(po —s„)s 5m(p, po)

+N(Z/n)' ,' S(s+1)[-s(s+ 1)—1]

[M, —X,o(H+ o,gMg)], (5.13)

where

1/T,„=2m(J/n) pN ', S(S+1) . - (5. 14)

The first term in (5.13) vanishes when summed
over p. It therefore contributes to the relaxation
of the magnetization current, but not to the re laxa-
tion of the magnetization itself. The remaining
term is a spin-flip term which contributes to the
Bloch equation.

Similarly, writing out the last two terms in
(5.9) using (B24) and (B14), respectively, we get

2

2m~ — [(2S+1)-,'S(S+1) Q 5M(q, qo) s]
kn 0 ~ Op

05(&0- qo - ea) f(sa) 2«(PO —~P)
"k

V '
[(2S+i) -,' S(S+1) Z 5M( q q,) s ]

&n OgCp

&&+ (-.5(Po -qo —e;,;)f(~;.g)

'5(PO+qo -&".I)[I -f(s",.")]]

&& Q~. s 5m(p', po)2w5(po cp)

(5. i2)
Since the integral over e~ is sufficient to prove (D9)
and (D13), the summation over po, e~, and tra, ce
over s yields

+I
s(s+1) [m(p) -m(p')]

T~ I 4m

&&2«(p, -e,)f(p,) . (5. i5)

Qn integrating over e~, po, and taking the trace
over ys, we find that (5.15) becomes

(I/T~~) (Md —
X~o [H+ (up+ 2a2)M, ]j' (5. io)

where

X.o 1 n
7T p o

&us &so T~ n
(5. 17)

To obtain these results, we have had to assume
that 5M(q, q, ) is sharply peaked at q, =0, a fact
which is discussed in Sec. VII. Combining (5. 13)
and (5.16) gives

s(s+ 1) l [m(p) —m (p ')]
gd 4v

[M, —X,o(H+ a)M~)]
sd

+ (Mg Xgo[H+ (Qg+ 2QO)M&]] (5, 18)

Here we consider specifically the terms on the
right -hand side of the localized -spin equation which
result from the —Js f interaction with the conduc-
tion electrons. Generally the derivation is analo-
gous to that in Sec. V B. Again we expand about
the quasiequilibrium quantities (5. 2)-(5.4), since
as in (5.5) the quasiequilibrium piece of the right-
hand side vanishes. The implication of (5.8) still
holds and the analog of (5. 9) (the right-hand side
of the GKB) is
-I' 5G +5Z A -6I'A E

= —I' 5G&+Z& A +Z& A —I' &A F . (5. 20)

The quantities in (5. 20) can essentially be read
out of Tables II and III, replacing m(p, po) by
5m(p, po) and M(p, po) by 5M(p, po). The first
two terms in (5. 20) give

for the total right-side contribution of the local
spins to the Boltzmann equation for the conduction
electrons. To obtain this contribution to the con-
duction-electron Bloch equation, one only has to
average over the direction of the momentum and
note that

A

M, =l —m(p) (5. 19)

so that the first term in (5 ~ 18) disappears.
Qne might legitimately ask what sense it makes

to keep terms up to fourth order in J, say, for
example, the ~, term in the curly brackets of
(5 ~ 18), while on the other hand 1/T~, is calculated
onlyto order J . This question was discussed in the
last paragraph prior to Sec. V B.

C. Localized-Spin Terms
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—2w(J/n) (2s+1) o s(s+ l)S(S+1)2 f(eo)[1 —f(»~)]

x ~(po+~a &e) f' 5M(pp po)

+ 2w(J/n) (2s+1)o s(s+1)[S($+1)—1]

x Z S'5M(p+k po+ko)
k, k0

xZ f(e,)[1- f(e-„,;)]5(k, —e, - e-„,;)2w5( p,) .
(5. 21)

If we sum over p and p0 and take the trace over
yS, using the fact that 5M(p, po) is proportional to
5(po), we see using (D27) that (5. 21) becomes
simply

—(1/T )[M —X o(H+(a +2agM, )]. (5. 22)

+ o5(po+qo-»&) f(»&)] 2w5(po)

+2w(J/n)'[(2s+1)-', s(s+1) Zg 5M(q, q,) S]
e, a0

"&&-'5(po —qo+»a)f(» )

Similarly, the last two terms in (5. 20) may be
written from Table III as

2w[N/(2S+ 1)](J'/n)[(2s+1) os (s+ 1) Z 5M (q, qo ) ~ S]
Oo00

x& 45(po qo+-»o)[1 -f(eo)]

D. Direct Relaxation Terms

As mentioned in Sec. VA, there exists in real
materials a number of collision mechanisms by
which the spin angular momentum of the conduc-
tion-electron-localized-spin system can be
changed, and hence by which the system is driven
toward thermal equilibrium. %'ithout commiting
ourselves to what the actual mechanism is in any
given system, we take as a prototype a collection
of p randomly positioned and oriented angular mo-
mentum vectors L, each interacting with the con-
duction electrons with the interaction

XK s. (5. 27)

Our basic assumption is that X is very small in
comparison with other interaction energies in the
problem, so that any self-energies arising from
(5. 27) may be neglected; its only effect then will
be to act as an additional scattering term on the
right-hand side of the conduction-electron equation.
In particul. ar, there will be a contribution to o~,

0', and y due to their interaction, which we call
o, o, and y, respectively. We calculate o in
Born approximation as

0'~(P& Po) = [vX (2L + 1)J Tz'r ZpK
' s g (Pq Po)L' s ~

(5.28)

The extra contribution to the conduction-electron
equation [see (5.8)J is

-yg +aa . (5. 29)

+ o5(po+qo —so)[l —f(so)] J 2w5(po)E(po) (5 ~ 23)

Summing over p and p0 and taking the trace over
yf gives, using (D27),

(1/T~}[M~-X~(H+ arM~)] . (5. 24)

—(1/T, )[M —X (5+(a,+ 2ao}M,)]

+ (1/T~)[M, .-X, (H+oagM~)] . (5.25)

Note that if we wished (5. 25) could be written,
using (5.14) and (5.17), in the form

Combining this with (5.22), we see that the com-
plete right-hand side of the local-spin Bloch equa-
tion due to ( —Js ~ f)-type scattering with the con-
duction electrons is

Again it follows from inspection that-the quasi-
equilibrium forms (5.2)-(5.4) cause (5. 29) to van-
ish, so that the linearized form of (5.29) is

—yo5g'+ 5o'go = (vX'/2L+ 1)

x T r& [ L's o(q po)L' s5m(p po) s

+ L. s 5m(q, po) s K sao(p, po}] = vX oL (I +1)

x Q, [-s(s+1)2w5(po- e,)5m(p, po) ~ s

+(s(s+1) -1}5m(q, p, ) ~ s 2w5(po —s~)] . (5.30)

Integrating over E~ and p0, multiplying by ys, and

taking the trace over s gives

s(s+ 1)
~

dp [~( ) ~( ()]
„I 4.

—(1/T„)„,M„+(1/T„)„,M, , (5. 28)
where

—(1/T, g)[M, —X,o(H+ a~Mg) J, (5.31)

where, referring to Appendix D, one sees that
(1/T~~), » and (1/ ~T)„, are in the ratio of the true
interacting s and d susceptibilities as required by
detailed balance, rather than of the bare suscep-
tibilities of (5.17).

1/T, = 2w v , i. (L+ 1)Xop . — (5.32)

As before the first term goes away if we integrate
over the direction of p to form the Bloch equation.
The main thing to be noted about (5.31), however,
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m(p) = Tr,ys fpde~Z &g'(p, po)
Pp

(6. I)

m(p) =y(2s+ I) —,'s(s+I) f pd&~Zm(P, Po) .
Pp

(a2)
The reason for this is that we shall discover terms
of the form

v, V[m(p) s], (6. 2)

which correspond to a gradient of the magnetization
current. If we had summed over the direction of
the momentum then this term would have been an
unknown. Instead, one can solve the Boltzmann
equation, insert the solution for the magnetization
current. When then the sum over momentum di-
rection is taken a term of the form D,V M~ will be
produced, where D, is a diffusion constant. Such
subtleties are unnecessary for the left-hand side
for local spins where we derive an equation directly
for

M~= Tr,yf Z &G (p, po) .
PyPp

We can, of course, anticipate some of the results
of our calculations. For the conduction electrons,
the time derivative of magnetization is nearly
balanced (on resonance) by its precession in an ef-
fective magnetic field which is the sum of the ap-
plied field and that due to the magnetization of the
local syins. One expects these standard Bloch
terms (&M, /&t —M, &&K,«,), slightly modified by
some very small terms of order J~, plus the di-

is that it gives relaxation of M, towards its instan-
taneous equilibrium value of X,o(H+ o.',M~).

As a number of others have done, one might also
imagine a mechanism by which the localized spins
relax directly to the lattice. If such a mechanism
can be described by a model of the same type that
we have used for the conduction electrons, then it
is clear from the arguments given above that an
additional term of the type

—(I/T„)(M -y [H+(a, +2a)M, ]) (5. 33)

should be added to the Bloch equation for the local-
ized spins. The important point is the relaxation
towards local equilibrium, which, as we have seen,
arises from rather more general considerations
than a specific spin-flip mechanism.

VI, LEFT-HAND SIDE OF 6KB

In this section we shall derive the"driving term"
part of the equations which are essentially the
Bloch-like equations of Hasagewa for conduction-
electron and local-spin magnetization. However,
we shall first derive a Boltzmann equation for the
conduction electrons by which we mean an equation
for

vergence of magnetization current. The surprising
terms are those of order 8 ln T /D(sM~/&8+ yH
&& M~) which turn out to be essential to conserve
angular momentum to order J as is shown in Sec.
VII.

For the local spins the effective precession field
IT„, ~ is the applied one plus that due to the conduc-
tion electrons. In this case the standard driving
terms (sM„/&f+ ylT „«&&M~) are modified by a
correction term of order J'2lnT/D. There are also
terms like (sM, /&t+yH&& M, ) but they are multiplied
by a very small coefficient times J . Accordingly,
when the conduction- and local-spin equations are
added, all the correction terms vanish and

results which is required by the conservation of
total angular momentum.

A. Conduction Electrons

z(P, Po)=(uo-ep+» H) ',
g'(p, p,)=2v6(p, -e,+ps. H)y(p, +ps 5)

(6.4)

+ bg'(p, p,), (6.5a)

The appropriate part of GKB equation for the
conduction electrons is

(I/i)(go'+rs H-o, g')v~ -(&/i)b' gL~
(6.3)

where only terms of order J in 0 or o are kept.
The obvious procedure at this stage is to use the

gradient expansion of the Fourier transform of
(6.3) given in Appendix A. There are two problems
connected with a straightforward application of this
procedure. First, a criterion is needed to decide
which terms to keep in the gradient expansion.
And that criterion arises fram a consideration of
the normal Bloch terms: BM, /st+ yRxM, . M„
M~, 5, and the frequency of the applied field (all
expressed in units of magnetic field) are of com-
parable size. Hence both parts of the Bloch terms
are of second order in such small quantities. What
we shall do is to keep all terms of second order in
any of the small quantities: s/aT, H, M, , M„and
V. Terms of higher order in these small quantities
will be neglected.

The second problem associated with a simple-
minded application of the gradient expansion to
(6.3) is that even to second order a very large
number of terms is generated. However, the use
of the decomposition discussed in Sec. III causes
many of these terms to be immediately eliminated.
To understand the scheme let us write down an ap-
propriate decomposition of the Fourier-transformed
components:
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g (P Po) ™(PPo)'s

&(P Po) = &o(Po+'ys ' @)+&@(Pp)

~'(P} Po) =yo(Po+ys H)f(Po+ys H)

(e. 5b)

(6.6) -(I/i)[~o, &g']r~ -(I/i)bs, } g] s }

—(1/i)[a„,, &g']v~,

(6.11)

(e. 12)

Vqsq' V„f(Po+ys ' R)2ve(Pp —op+ye 0~ ), (6. 10b)

+&M (Pp)+&M, (PO) ~ (6 'I)

All the self-energies are calculated to order J
and are those given in Table II and calculated in
Appendix B. It should be noted that g(P, P,) is only
correct to zero order in J which is, however, suf-
ficient since in (6.3) it appears with e~ which is of
order J . A more subtle point concerns what we
should write for g (p, Po) [see (3.2)] if it were
needed in the calculation of the LHS. Since g'+g'
must equal the nonequilibrium spectral weight to
order Jo it is clear that the choice (3. 1) and (3.2)
is inconsistent with this requirement. Vile can
treat (3.1)-i.e. , (6.5a) —as exact and then must
redefine g [Eq. (3. 2)] to satisfy the requirement
to whatever order in J is desired. However, this
latter step shall not be necessary since g is not
needed in the calculation of the LHS.

We observe that the Dyson equation (A24) guar-
antees that

(1/i)[gp + ye ' H —0'p(Pp+ye ' 5) ~ 27je(Pp —tp+ys ' 5)]

-(I/i)[yp(Pp+ys a) g(P, P, +ys H)]=0.
(6. 8)

Furthermore all the gradient expansions associated
with this term are zero since the Dyson equation
was satisfied before the Fourier transforming oc-
cured. A major simplification would occur if a
Fermi factor f(P p+ ys ' H) would be inserted next
to the 5 function in the first commutator of (6.8)
and next to g(P, Pp+ys H) in the second commuta-
tor so that the resulting expression were zero in-
cluding the associated gradient expansions. Un-
fortunately the kinetic-energy term in go' plays a
special role. The result is that

(I/i)[(gp'+ys H -op), (g'-~')„
—(I/i)[(o'- &4, —cM,), g]Ft

V f(Po+» ~62p'5(Po &p+ys ' H) ~

(e.9)
A proof of this, involvviiig a discussion of terms
arising from the gradient expansion of terms such
as g[gp', f JF„, is deferred until near the end of
this subsection. Then by combination of (6.9) and
(6.3) the following terms remain to be calculated:

(1/i)[g ', &g'], +(I/i)[ys 0, &g'], , (6. 10a)

-(I/i)[cs„, g'-&g'JF~ —(I/i)[vs„, g]vt . (6 13)

We shall show that Eqs. (6.10)-(6.13) have the
following correspondence to parts of the Bloch
equation:

(6. 10a,)- ' +y(AxM )+V J, ,et

(6.11)- small (essentially zero)
renormalization of (6. 10),

(6.12)- (c(,+ c(p) yM~ x M, ,

(6, 13}-u~(„.0 +y(oxM~}) .2 so

(6.14a)

(6.14b)

(6.14c)

(6. 14d)

Some of these pieces are simple to calculate;
others are deferred to Apyendix E. In general the
prescription is

Trays
~

pdepZ (I/i)[gp } &g Jp(,
&o

= —m(p)+P 'v„m(p) . (6.16)
Bt m

Equation (6 ~ 10b) will also contribute to the gradient
term (6.16). In particular we see that

Tr,ys, pde~V„(ys ~ IT) V~e~ dP, 5(Pp wp)
Bf

Po

= -v~ V„(y,pR) . (6. 17)

The application of the gradient expansion (ASl)
to second term of (6.10) along with the substitution

+g =m's
q

and appropriate spin sums leads to

(6.18)

yHx [y(2s+ l)o s(s+ I) pde~Z m(pi Po)]
~o

IL(e 8—Tr,ys
~

pds, Z 2~
—ys H, s m(p Po)'s&~'

sPo

(6.19)

where the term involving SH/SPo has been obviously

Tr,ys 1 pdc~Z [any piece from (6.10)-(6.13)] .
&o

(6. 15)

To obtain (6.14) a further integral over momentum
direction (P) is necessary. Consider, for example,
the first term of (6. 10). Then from (ASS) we see
that
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omitted. We see that the second term of (6. 19) is
of third order in small quantities and is hence ne-
glected. In summary then the application of the
prescription (6.15)-(6.10) produces the expected
driving terms of the Boltzmann equation:

p +yIIxm(p)+~, v„[m(p) -X,OH], (6.20)

which clearly when summed over the momentum-
direction variable is (6.14a).

What then are all the other terms' We expect
that the effective field seen by the conduction elec-
trons includes that due to the magnetization of the
local spins. Such terms arise from (6.12). To
first order in J,

( eM„
n~ y,o

~

~ + yH x M~ (6.24)
Bt

On the other hand, the second term of (6. 13) is
negligible [see (E4)].

Now we turn to a discussion of those terms in

the gradient expansion involving momentum and

spatial derivatives. It might appear that (6. 11)
would, through the gradient expansion, provide cor-
rection terms for the gradient of the magnetization
current, (v~ ~ V) m(P), but since oo is independent
of momentum (see Appendix 8) the first term does
not contribute. The second term is proportional to

f pde, Q (Vx[m(k, p,) ~ s], V,e,/(p, -sp)'],
k, g

o~,'(p, ) = Tr, Z [ —(J/n) s S G'(q, qo)]
CyCp

= —(~/xy')ys ~ M„,

so that the prescription (6. 15),

Tr,ys f pd~, Z i[o„"'(po), &g'(p, po)]
Po

= + o., M, x ym(p),

(6. 21)

(6. 22)

(6. as)
which is clearly the same kind of term as we found

in (E4) modifying s M,/st, and negligible for the
same reason.

On the other hand (6. 13) clearly appears to be
the source of terms proportional to (v~ ~ V„)M,.
It turns out that the only nonzero one arises from
the first-order contribution to o„,

0'~„=—+i y s ~ M„,(1)

produces a term which increases the effective
magnetic field by e&M„. Likewise the second-order
term in o„(po), as shown in Appendix E, produces

in the first commutator of (6. 13). Specifically we
have

Tr, ys f pds Q ( ——,')(V„(- o.',ys ~ M„), V 5(p -e )
Po

u,yM, x m(p),

so that finally the precessional term is

y[H+(~, + u, )M, ]x m(p) .

(Ela)

(6. 23)

x avf(p, ) = —v~ ~ V„(X„n,M,), (6. 26)

which upon combination with (6. 20) gives a gradient
term of the form

It is clear that any additional terms in the gradient
expansion for (6. 12) would be of higher order in
small quantities.

The terms arising from (6. 11) can be disposed
of quickly. Expanding oo to first order in the field
we see that the first term of (6. 11) has a piece
proportional to ff x m(P). However, the constant
of proportionality is shown in Appendix E [see
the discussion near (E2)] to be zero. In a similar
fashion all of (6. 11) is found to be zero.

The terms in (6. 13) are the most unusual part of
our analysis for the LHS of 6KB. They would, of
course, be missed in any treatment which was not
able to handle simultaneously nonequilibrium mag-
netizations of both the conduction electrons and the
local spine as would the terms (o.', + o2)M~ x yM, .
The first term in (6. 13) produces two pieces: a
M„&H precessional term from the linear expan-
sion in the field of g' —&g' and a 8M~/St term from
the gradient expansion. The evaluation, carried
out in Appendix E, gives

v~ ~ V„[m(p) —y,o(H+ &,M~)] .

As we show in Appendix E, there is no term pro-
portional to v~ ~ V„(y,on~ M~) nor should there be.
The reason for this, as discussed in Sec. IV, is
that the conduction-electron magnetization M, re-
laxes to y,o(H+ o., M~) and hence it should be the
difference between these quantities that drives the
diffus ion.

The divergence of the magnetization current,
which is clearly second order in small quantities,
becomes upon solution of the Boltzmann equation,
as we shall see in Sec. VII, D,V3M, which at first
appears to be of third order in small quantities.
It is not, of course, but it is perhaps useful to ex-
amine some third-order small quantities and see
how small they are compared to D,VRM, . Since
the field will be nonuniform inside the sample, the
second term of (6. 10), (I/i) [y s ~ H, 4g ] will be
a source of such a term. Application of the gradi-
ent expansion gives
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yV„H ~ v~ y 2s+1 —,'s s+1 m p, poX Qf

(e. 2v)

which is of order (vt, ))'.„H/5,) y H/D, where &, is
the characteristic diffusion length for the magneti-
zation. Another terra arising from (6. 12) of the
form

g VP(, , qo)
-''~ g g f"

,,„,po-ep-s,

dient expansion, to a term of the form (vt, ~ V„)H.
Fortunately the coefficient of such a term contains
the integral f ck~(Pp —e~)

o which is zero by (Dll).
In conclusion of this subsection, we collect all

the terms, (6. 20) and (6. 23)-(6.25) on the LHS
of the Boltzmann equation arising in connection
with conduction electrons:

+ y [H+ (t).')+ zo) M~] xQ(p)

+ v ~ V„[11l(p}—)i, (H+ o)) M )]
x vt s g'(P, po) (6. 28)

8+p

is of order (v~y„H/6, ) ))«) nor H/D. Finally we
note that

&M~
+Qp)f p + yHxM~

~et )

B. Local Spins

(6. 33)

D~V M (6. 29)

is of the order (v~)i„H/5, )(v~v/5, ), since D, -vo~v.
For typical experimental conditions" the last
factor is of order unity. Thus the terms arising
from (6. 29), (6.2V), and (6. 28)

D,V M, : V/I ~ M, : V„M„:M, (e. so)

are in the ratio

1:yH/D: o.py„(rH/D). (e. 31)

Since yH/D-10~ and n yp«, -(N/n)(p/k Tp)(pJ/ )n

1nksT/D is less than unity, we can neglect such
terms in comparison with D,V ~M, .

Finally we must turn to a proof of (6. 9) which
led to such simplifications in evaluating the LHS
of the GKB equation. First, we observe that the
kinetic-energy part of g, ' [see (2. 9)] clearly by
application of (2. 11) gives the right-hand side of
(6. 9). Hence we must prove that the remainder
of (6. 9) is zero. Keeping in mind (6. 8) we see
that the time-frequency gradient expansion as-
sociated with the following three terms is the only
possible nonzero entity:

(1/i) 2ve(po-s~+yk 8)

x([(Po+rs 5), f(Po+rs ~ H)l,

-[oo(po+rs H), f(Po+rs &)]]

—(lli)rp(Pp+rs H)

(6. s2)

x[f(po+rs H), g(P, Pp+ys H)].

An explicit gradient expansion would show that
(6. 32) is zero, or even easier (6.32) can be shown
to be independent of H (and hence there is no 8H/
sf term) when the sum over po isgerformed by a,

variable transformation po+ y s ~ H -po. By either
route (6. 9) is proved. The observant reader might
remark that the p dependence of g(p, po+ ys ~ H) in
the last term of (6. 32) might give rise, via a gra-

G~(po) = 2v 5(po+ y S ~ H) F(pp+ y S ~ H)

+ &G'(po), (6. 36a)

~G'(po) = M(p, P,) ~ S,

z(p, )=z, (p, +ys H)+z„, (p,),

Z (Po}=I o(Po+yS' H) F(Po+yS H)

(6. 36b)

(e. sv)

+ Z„',(Po)+ Z)), (Po) (6.38)

where we have suppressed the useless momentum
variable p. All the self-energies are those given
in Table III and calculated in Appendix C. Note
that the discussion following (6. V) is equally ap-
propriate here.

Starting from the Dyson equation, we could show

as in Sec. VIA (only here we are not bothered by
momentum derivatives in the gradient expansion)
that

(1/i)[(Go'+ y5 ~ H —Zo), (G —&G }]F,

—(1/i)[(z' - z', z'.,), Glr, = o. — (6.39) .

Then by combination of (6.38) and (6. 39) the follow-

ing terms remain to be calculated:

Much of the treatment of the left-hand side of
the equation for the local spins is very similar
to that of Sec. VIA. We wil. l proceed in a routine
fashion pointing out the interesting differences
along the way. The appropriate part of the GKB
equation is

(1/i} [(Go +yS ~ H —Z), G ]r,—(1/i) [Z, G]r, ,
(6. 34)

where only terms of order J~ in Z or Z' are kept.
The appropriate decomposition is

G(p,)=(p,+rs H)-', (6. 36)
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(1/i}[Go', AG ]rt+ (1/i}[yS ~ H, &G ]vt, (6.40) y[Ã+ (a)+ ao}M,]x M„. (6.49)

(6.41)

(6.42)

(6.43)
Furthermore, as in Sec. VIA, there is a ready

correspondence of the Eqs. (6.40)-(6.43) to pieces
of the left-hand side of the Bloch equation:

(6.40)- +yHxM~, (6.44a)

~Md(6.41)-- ao y, o
~ + yH x M~ {6.44b}

(6. 42) - (a, + ao) y M, x M~,

(6.43}- a negligible term involving

(6.44c)

x (yH && M,) ~ (6.44d)

M~= TroyS Q bG (p, po)
PoPp

=y(2s+1) —,'s(s+1) p M(p, po),
PoPp

we recover from (6.40)

Each of the above terms follows straightforwardly
from the prescription

Tro y 5 p [ any piece from (6.40)-(6.43)],
'(6. 45)

although most of the tedious details are relegated
to Appendix F. Remembering that

There are correction terms to 8M„/&f+yA
x Mo with a coefficient proportional to J ln(AT/D}
which arise from (6.41). From each term of

(6.41) such a correction arises, the first with a
weighting of —s(s+ 1) and of the second [s(a+ 1)
-1), so that the terms nearly cancel, as shown in

Appendix F, leaving

&Md—aox, o +yeux M„8t (6. 50)

Finally we observe that (6.43) leads, as shown
in Appendix F, to a term proportional (&M,/&f
+

yeux

M,) with a negligible coefficient.
In summary of this subsection, we collect all

the terms on the left-hand side of the Bloch equa-
tion for the local spins:

' + y 5 &&
M~) (1 —

aors„)

+ y(a, + ao) M, x M, .
(6.51)

VII. SYNTHESIS

In this section we combine the results of Secs.
V,and VI. We have the following objectives in do-
ing this: (i) to f ind the connection between the mag-
netization current and the magnetization —i. e. ,
J,= —gM, —y,o(ff+ a, Mo )]—by solving the Boltz-
mann equation for rn(p); (ii) to demonstrate that
the~Bloch' equations are consistentwith the concepts
concerning angular momentum; and (iii) to evalu-
ate the importance of various correction terms to
the Hasegawa equations.

We reproduce the results (6.33), (5.18), and

(5. 31) of Secs. V and VI for the left- and right-
hand sides of the Boltzmann equation for m(P):

&Md
+yH x llew. (6.46) P +y[iT+(a, + a,)M„]xm(p)

The enhancement of the magnetic field in (6.46)
by that due to the conduction electrons comes from
(6.42). To first order in 4

+ v~ ~ '0„[m(p) —y,o(E7+ a, M~)]

8Mo
+ ao y,o

o + ylT x Mo)$0

= —a~ yB ~ M„
so that the prescription

(6.47)
t' 1 s(s+ 1) s(s+1) ~" dP

4v

+ [M ysoOT+ a, Mu)]
$d $l

»sy~ + —;[ ~'u, '(Po) &G'(p Po)] = a& yM, "Mg.
PoP0

(F14)

so that finally the precessional term is

(6.4s)
Likewise the second-order term Z„&P &, as shown
in Appendix F, produces

@~AM, x M„,

+ (M, -q«[a+(a, +2a,)M,]], (7. 1}

where in the first term of the right-hand side we
have added a relaxation time r due to ordinary po-
tential scattering (from the spin-independent scat-
tering of any impurities present) and electron-pho-
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5 =H, s+ ,'(x- iy—)H, s-'"', (7.2)

where Hp is the dc applied field and H, («Hp) is
the amplitude of the ac field; this is a conventional
choice for spin-resonance experiments. Here
x, y, and s are unit vectors in the three Cartesian
directions. Then the second term of the LHS gives
rise to

m, (P) H, —[m„(P)+ im„(P)] Hp . (V. 3)

A more convenient form for our proof would have
been the equation of the form of (V. 3) before the
integrals over e~ and po were performed. Then
we mould have had

m, (P, Pp) H, —[m„(P,Pp) + im„(P, P)] Hp,

where clearly m, (p, pp) arises essentially from dc
magnetic field and hence as we showed in (3.8) is
equal to

(7.4)

non s cattering.
Before considering the divergence of the mag-

netization current, let us spend a moment with the
second term on the left-hand side of (V. 1). We will
use it to show that m (p, pp) is proportional to
5(pp ep) Bf(p,)/Bpp. To be specific suppose

J,= -D, V [X,—~8+ o., M)],
where the diffusion constant D, is given by the
familiar expression

D, = 3vz2

(v. 8)

(v. 8)

Using (7.8) and summing (V. 1) over the momentum
direction p, we have the Bloch-like equation:

I,
"

' + y[ g + (o.', + o,,) M „]x M,

-D, V'[M, —X (if+ ~, M,)]

teMd
+ &pX.ol 8

'+yH "Md
Bt

a drift velocity of even 1 cm/sec is enormous J,
is overestimated by M, . On the other hand 8/Bt
-yII which is about 10' sec ' for a few kilogauss.
This is to be compared with vs'/5„where 5, is the
characteristic spatial variation of the magnetiza-
tion and of the order of 10-' cm for a typical ex-
periment. Thus the ratio BJ+st: v~~~M, is 10'p:
10' and the first term is completely negligible as
is the second. Accordingly, we have from (V. 7)

8f'
Tr, ys(y% ~ H}2w5(pp-s~) ~ .

C

(v. 5)
+

I [M, —x.poII+ &iMd)]
Tdd Tdl 3

m(p, pp) ~ 5(pp —e~)—
p

(V. 6}

used in many parts of our calculation is proved.
Clearly the same argument can be repeated for
the local spina to show that M(p, pp) is propor-
tional to 5(pp).

We return to (V. 1) which upon multiplying by
v~ and doing the integral over the direction of
momentum p, we find is

Since the first term of (7.4) is the inhomogeneous
term in the "Boltzmann equation, " it sets the
scale for the nonequilibrium parts of the magneti-
zation m„(p, pp) and m„(p, pp). Hence we see that
they are ProPortional to 5(Pp-e~) Bf/BPp. Thus
our assumption

+ (M, - X„,[$+(n, +2m, ) M,]) . (V. lo)
d8

This equation is to solved in conjunction with
the equation for M„which results from combining
(6. 51) with (5. 25) and (5. 33)

I' &Md' +yeux M, (1 —&px p)+y(&i+ &2)Md Md
l, Bt

+ {Md- ~p[A+ (aq+2o.'p) M, ])1 1
2'e

[M, —g,p (5+ ag Md)] . (V. 11)
ed

The correction term on the left-hand side of both
(7. 10) and (7. 11) involves

o.' X, = —,'(pZ/n)' ln(k T/D), (v. 12)
+ y[5+ (n, + np) M ] x,J,

+ —3v s ~ [M, —y p (ff + o.', Md)]

~t' »(s+.1) s(s+1) — J
~~r 7

which for Mn in Cu is of the order of-0.02at1'K.
If this term mere really effective, it might produce
measurable shifts in the resonance frequency. As

we shaB show such a conclusion is not warrented
to order 8 . For simplicity in writing we intro-
duce the notation

where v„ is the transport relaxation time whose
definition is obvious. Here v~ is the magnitude of
the Fermi velocity and the factor of —,

' comes from
the angular average. The first term of (V. 7) is
negligible by the following estimate. First since

5M, = M, —y,p g + &g Md),

5Md = Md —~p[H+ (ay+ 2+p) M,],

(V. 13a)

(7. 13b}
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DM& &=™'l+ a~M
gt Y g(d) (7. 14)

APPENDIX A: DERIVATION OF GENERALIZED
KADONOFF-BAYM EQUATION

Then adding (V. 10) and (V. 11) we have the simple
equation

D(M, +Mg, 6
6M, 6M'

(V. iS)
This equation is an expression of the conservation
of total (spin) angular momentum. For our original
Hamiltonian (2. 1) all terms in (V. 15) are zero but
the first which reflects the time development of
the total magnetization in an external field. In
that case M, +M„would be a constant. In the real
system, the mobility of the conduction electrons
allows their magnetization to diffuse away. Fur-
ther the presence of the "lattice" provides a sink
for the spin angular momentum of the conduction
electrons and the local spins.

If we solve (7. 11) for DM~/Dt and substitute into
(V. 10) and keep only corrections of order J'3 (re-
membering that I/T, ~ and I/T~, are proportional
to J but 1/T„and I/T„are not) we discover that

' —D, V 5M, +y(n, + ng) M~&& M,

0

~r ~d ) II, dt

(V. 16)
which is the equation we would have originally ex-
pected except for the small addition to the relaxa-
tion of the local spine. Since I/T~, of a few hun-
dred Gauss is typical, this correction, based on a
crude estimate of e~y, o, could produce changes of
a few Gauss-an effect hardly worth considering
when compared with the theoretical (and experi-
mental) uncertainties associated with T~,. Finally
we can combine (7. 16) and (7. 15) to get the Hase-
gawa equation for the local spins

DMd~ +y(n&+ nq) M, &&M~
Dt

dl ds ' ed

which again is the expected equation. The full form
of (7. 16) and (V. 17) is given by making the sub-
stitutions (V. 13a) and (7. 13b) and (7. 14).
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g„„(f,t') =-(&&(f) 0„(f) && '(f) & (f') g(t')& '(t')
& (Ala)

g,' „(f, f') -=(& (f') P'„ (t')~-'(t')& (f) 4„(t) &
-'

(t)&,

where
(Aib)

A number of years ago, Kadanoff and Baym~e

(KB) derived a set of Green's-function equations
[Eqs. (8. 2V) and (8. 28) of Ref. 19], which pro-
vide an exact description of nonequilibrium pro-
cesses. Unfortunately, these equations were so
complicated (taking nearly two printed pages to
write) that they seemed hopeless. Neglecting spin,
however, KB were able to simplify the form of
these equations by assuming that all external dis-
turbances varied slowly in space and time, and
then making a gradient expansion in these slowly
varying quantities. In this way they were able to
derive much simpler equations which resembled
the ordinary Boltzmann equation, and which were
still exact to lowest order in these slowly varying
quantities. It would seem that a generalization of
their method would be ideally suited to our problem
of spin transport. However, the spin matrices
themselves must be treated exactly and quantum
mechanically; it would clearly be inappropriate
to attempt a gradient expansion in the distance
away from the diagonal in an S= —,

' spin matrix as
KB did for space and time. Furthermore, we
eventually (although not in this paper) would like
to treat the case 0 -yII&4~T, where the gradient
expansion in time breaks down. Thus it would
seem as if one has to use the more complicated
equations. However, there exists a notation~4 that
renders the exact quantum-mechanical equations
as simple in form as the Kadanoff-and Baym's
Boltzmann equations; these equations we will call
the generalized Kadanoff-Baym equations (GKB).

Since the KB equations are so lengthy, it will
actually be easier to begin the derivation from
first principles than to reproduce them here. One
eventually wants to calculate zeal-time correla-
tions such as [note well that our definition of g&,
o&, etc. , differs slightly from that of KB in that
to obtain our "greater than" quantities, one should
multiply the quantities of KB by i and to obtain our
"lesser than" quantities one should multiply those
of KB by —i. This distinction holds only before
Fourier transforming with respect to the differ-
ence-time variable. After such Fourier transfor-
mation, our definition is the same as KB. This
happens because the KB g&(g, p, ) is not the Fourier
transform of their g&(v, 7 }but differs by a factor
of +i.)
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v(t) = T exp[- i f a, (t) dt]. (Alc)

Here H, is the Hamiltonian representing any ex-
ternal field driving the system from equilibrium
(it vanishes by assumption at t = —~), and all op-
erators are taken to propagate in the interaction
representation according to the terms remaining
in the Hamiltonian without H&, similarly, the
notation &

~ ~ ~ ) represents a thermal average as-
suming the system is in equilibrium with H& =0 at
t= —~. Here the symbol. T denotes that the terms
in the expansion of (Alc) are to be ordered accord-
ing to their arguments with the earliest times to
the right. Finally, gt and g„are creation and
destruction operators for particles whose proper-
ties are labeledby the subscripts p., and v, which
denote space, spin, and which type of particle is
being referred to. Wherever possible we will not
write these labels, in which case matrix multipli-
cation will be implied, if appropriate.

Equations (A1) are inconvenient because the stan-
dard diagramatic perturbation expansions do not
give these functions but rather an imaginary- or
complex-time Green's function, defined for fer-
mions by

g.„«,t') = —i&TSar„(t) y„'(t') & sg [rm(t'- t)l/&TS&,

(A2a)
where

S=Texp[-i f Hq(F) dF]. (A2b)

g(t, t')=g, (t, t')+ f, g, (t, t)V(F) g(F, t')dF

+ f '0 e dF f dt 'go(t, F) o(F, F') g(t, t'),

(AS)

plus a similar equation with the order of all the

factors reversed. The quantity go (t, t ) is the
Green's function for the one-body part of the Ham-
iltonian with the external field turned off, and o
is the self-energy which possesses a well-defined
perturbation expansion in powers of the Green's
function g. The quantity U is defined by

Here t and t are both on the line between to and

to —iP and the operator T now orders all factors
with those with time arguments closest to to ap-
pearing to the right. The introduction of the real
time to is a device introduced by KB to recover
(Al) from a knowledge of (A2): Specifically, it
follows from straightforward algebra that [except
for the factor —i sgn(t —t )] the "greater than" and
"iesser than" pieces of (A2a) are equal to (Ala) and

(Alb), respectively, in the limit of to- —~.
The Green's function satisfies the Dyson equa-

tion

The Kadanoff-Baym transport equations are
simply Eq. (AS) written in terms of the realphys-
ical response functions g& of (Al) and the cor-
responding self-energy function e&. These equa-
tions are derived by separating out the various
analytic pieces in (AS) and then letting to- —~.
To accompl. ish this simply, we prove a theorem
for evaluating integrals of the form

D(t, t') =- f"-"dF A(t, F)B(F,t').

Consider D~ (t, t ) which is given by

-iD'(t, t')= f' dt( i)A'-(t, F)(i)B'(F, t')

(A5)

+ f„dF(- i) A'(t, F)(-i)B'(F, t')

+ f ' dF(i)A&(t, F)(-i)B'(F, t'). (As)

On taking the limit to to- —~, we see that

D (t, t ) = i f dt A (t, t)[B (F, t )+ B (F, t )] 8(t —F)

—i f dF[A' (t, F)+ A.
' (t, F)] 8 (t —F)B' (F, t') .

(A'7)

The above suggests defining retarded and advanced
functions

A„(t, t') =-i[A'(t, t')-+ A'(t, t') ] 8(t- t'), (Asa)

A, (t, t') -=+ i [A (t, t ) + A' (t, t') ] 8 (t
' - t), (A8b)

and similarly for B or any other function. Then
(AV) becomes

D =A B,+A„B (AQ)

where now matrix multiplication is also implied for
the time integrals which extend from —~ to ~.
Similarly, one can prove an analogous relation for
D&, so that

D& =A& B,+A„B& .
Finally, an integral involving three functions

(Alp)

Z(t t')= f ' dF f ' ' dt'A(t, F)B(F,F')C(F', t')

(A11)
becomes

E& =A+„C +A+& C, +A& B,C, . (A12)

QB)„=A „B„(AB),= A.,B,. (Als)

It is then, of course, straightforward to generalize

Equation (A12) is readily followed from the repeated
use of (Alp) plus the easily verified identities
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(A12) by induction to a product of n functions.
We are now in a position to use the above theo-

rems on Eqs. (AS) which we write symbolically as

8'= Eo+ So&A'+ 8"o ~ ~

X=A+I ~So+8'oZo ~

or alternatively as

(go'- U) g= I+ ag g(go'- U) = I+ ag.

(A14)

(A15)

Since go' does not have a unique inverse, Eqs.
(A15) provideless information than (A14) and must
be supplied with an initial condition in order to
determine g.

We first apply theorem (A10) to both sides of
(A15) yielding

(go —U)g' = a.g'+ a'g. (A16a)

U) =Z~a +g& a& ~

This can be written in a simple form if one makes
the definitions

a=g +g = —t(g, -g„),
(A1V)

y = o + a& = —t((r, —o„),

)+g$ Uga +go aa ga t (A20)

mhere the definitions of g „go„, and go, are the
obvious ones. Upon adding the two equations,
(A20) and using the last equalities in each line of

(A1V), we obtain

ga g~=(goo- go~) U(gs

+ go„[a, (g. -g,)+ (a. —a,)g. ]

+(g..—g.„) Ug. +(g..-g.,) a~. ,

ga =go, +go, (Uaa) gs (A2Sa)

which upon making cancellations can be rearranged
as

-g, + g„+go, (U+ a,)g, = -g„+go„+go„(U+a„)g„.

(A22)
Because of the definition of retarded and advanced
quantities (A8) plus the theorem (A13}, it is clear
tha, t depending on the time arguments, either the
left- or the right-hand side of (A22) is zero by
definition. Therefore, we must have

g, =go, +go, (U+a.)g. . (A23b)

g= o(g. +g,), o= ,'(a, +o—'„). (A18}

=- lb g& }+l( a&, a}

= ——,'(o~&, g~& }+—,
' {o~&,g~&}, (A19)

where the square brackets denote commutators
and the curly brackets denote anticommutators.
These equations are what we will call the general-
ized Kadanoff-Baym equations (GKB); note that
they are analogous to Eqs. (9.25) of Ref. 19, ex-
cept that these equations are exact; no assump-
tion of slowly varying disturbances has been made.

Generally, it will be necessary only to consider
one of the equations [(A19)], say, for the one for g&

because as we will show, there exists a usual type
of Dyson equation for g, and g„so that g' can be
determined by (AlV) if g& is known„To determine
these Dyson equations, we use the theorem (A12)
on (A14), obtaining

g& =go+go„Ug&+go, (o„g& + «g, )

In this nonequil. ibrium case, g and —,'g play the same
role as the real and imaginary parts of the Green's
function does in the equilibrium case; cr and ~2have
a similar relation to the self-energy. Now if we
subtract (A16b) from (A16a) and use (A1V) and
(A18) we obtain

(I/t) [(go'- U- a), g&1, —(I/t)[«, g]

C(t„ t,) = f dt'A. (t„t') B(t', t,) . (A25)

We illustrate the gradient expansion in the time
variables, but the results can be immediately ex-
tended to include the space variables as well. It
is convenient to introduce sum and difference vari-
ables

t = —,(tg+ to) 7' = t, —to, (A26)

and, with a slight change in notation, to write C
in terms of these variables; that is C(t„ to) - C(7, t),
and similarly for A and B. Since we assume the
Hamiltonian for the system without external field is
independent of time, then with no external field the

Thus the retarded and advanced Green's functions
satisfy Dyson's equations as in equilibrium. From
their solution one can obtain g and a for use in (A19).

As a, consistency check, note that the addition of
the two equations, (A19) yields

[(go'- U- a), a]- [y,g]=0
It is a straighforward matter to show that (A23}

identically satisfies (A24).
The equations of KB may be obtained from (A19)

by replacing the commutators by Poisson brackets
and the anticommutators by simple products, thus
making a simple gradient expansion in slowly vary-
ing quantities. In our case, however, we want to
expand in space and time but not in spin. Consider
a quantity C defined by
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+ f dt', (t, - t'; t) ,'(t'- t,) B(—t'—t„ t)

Finally we Fourier transform with respect to the
difference variables:

C(Po, t) -=f dr e'+'C(v, t) =[AB]i„-
so that (A28) becomes

(A29)

various quantities would be independent of t (A, B,
and C are takento be Green's functions, self-ener-
gies or the like). Similarly, if the external field
is slowly varying, one expects these quantities to
be a weak function of t, and for, say, 8A/8t to be
small, and 8Ao/8t or 8oA/8to to be even smaller.
By neglecting terms of the latter type in a gradient
expansion, we are making an expansion in the 5
times the frequency of the external disturbance,
divided by an appropriate characteristic energy
of the system itself. It is usually not obvious
a priori what this energy is, but as an intuitive
guide, one expects it to be the smallest spacing
bebveen energy levels unless kaT is bigger than
this, in which case we expect it to be k~T. Since
we consider only the case where hyH«k~T and T
much larger than the Kondo temperature, we ex-
pect our results to be valid whenever AA «A~ T.

Writing (A25) in terms of sum and difference
variables gives

C(~, t) = f dt'A[t, —t'; t+ ,' (t'- t,) ]-

X B[t'—tp, t- (ot, t')], (A-27)

which on expansion becomes

C(r, t)= f dt'A(t, -t';t)B(t'-t„t)

1 8F 1
(p P '«)+ —.

2e 8t ' " ' 2s

x (- Vp&~} ~ V E(p, po,
' x, t)+ ~ ~ ~, (A32)

so that

1 q 1 q 1
[go s +]Ft

~
[ go ]Ft t [+go jrt

=~
—„+(~, e) ~, S(p, p„x, t)+(8

(ASS)
thus generating a pair of the important drift terms
of the Bol.tzmann equation. In turns out that the
time-derivative part of (ASS) is exact, and does not
depend on the gradient expansion. To show this,
one calculates the commutator directly; in the
space-time picture the time part of go i«(8/8'}
5(t, —to). We want the quantity

—. f dt t;; 8(t, -t, )S'(F, t,)-Z(t„F)8

1

—[V„A(p, p„x, t) . V, B(p, p„x, t)1
2

—v, A( p, p„x, t) ~„B(p,p„x, t) j+ ~ ~ ~,
(A31)

where x = 2 (x, + xo) and p in the Fourier-transform
variable corresponding to the difference variable
r = xg —xg.

%e conclude this Appendix by working out an

example of the gradient expansion of great impor-
tance, that is the expansion for the inverse of the
bare Green's function go' acting on an arbitrary
function E. Note that go'(p, po'x t) =po ep so
that according to (A31)

[go ~ &]Ft - (po - eP) +(»Po'x

C(PO t) = [AB] =A(Po, t) B(Pot)

»(Po~t) 8B(po t)
2i 8t 8P()

8A(p„t) 8B(P„t)~

8Po
(ASO)

8Z(t, , t,) 8Z(t„ t,)
8'

Qn writing this in terms of sum and difference
variables, (A34) becomes

F[t, —to, o(t&+ to)]+ F [ti —to,' 2 (t&+ ta) j

(A34)

This is readily generalized to include the expan-
sion in space:

C(p, p„x, t) -=[AB]„

=A(p. po'x t}B(P po'x t)

1 (8A(p, p„x, t) 8B(P Po'»t)

8A (p, po,' x, t) 8B(p, po,
' x, t}

8F 1 8F
(&, t)+

2 8t (&, t)
8T

8F 1 8F 8F——(r, t)+ — (&, t) = —(&, t),8~ ' 2 8t ' 8t
(A35}

which on Fourier transformation becomes just the

first term of (A33). We also mention without proof
that the second term in (ASS) is also exact for the
case e~ ~ p~, but not in general, .



3214 D. C. I ANGRE TH AND J. %. %'I I KINS

APPENDIX B: LIFETIMES FOR CONDUCTION ELECTRONS

In this Appendix we shall derive the various life-
times for the conduction electrons given in Table
II, namely, yo(Po), ys(Po), y„(Po), o„(Po), and o„
x(p, ). The approximations discussed in Sec. II
apply.

To begin we reproduce the E(I.(2. 20) for o& (p, po):

(r' (p po) =I Trs & Z s ' Sg (p+k po+&o)
)( n k, Q q&qp

x G (q, qo) s ~ 8 G' ((I+%, qo+ Po) (2. 20a)

(p po)=( )
q~ Z E q qq (p+~, q+ q)q

ko Ap q, qp

x G ((l, qo) s ~ SG ((I+kqqo+ho) (2 20b)

A systematic utilization of the decompositions
for G& (g&) listed in Table I and discussed in Sec.
III leads to the desired results. For convenience
we also list the explicit decomposition for g&:

g'(pqpo)=»~(po-e&+ys ~ ~)f(po+s &)

+ m(p, p,) ~ s, (Bla)

g (» Po) = 2v~(Po Eo+ ys 'R)

x [ I, —f (p, + y s .gj )] m (p p,) .-
(Blb)

Ms = y(2s+ 1) —,'s(s+ 1) g m(p, po) . (B2)
PoPQ

The calculation proceeds by explicit expansion to
first order in R, M, or Mo.

First, we wish to show that y(p, po) =o (p, po)
+ o (p, po) is independent of M, . To do this we may
set 0 and M„ to zero and observe that the remain-
ing parts of t" and t"' are ~ functions. Hence,
since in both (2. 20a) and (2. 20b) above there is now
a common factor of (2w)o f)(qo) 5(qo+ ko) E, we may
add the two equations, utilizing the relation g +g'
= 2w&(po+ ko —e&„- ) to give

J 2

y(p, p.)= -„T,(-'&)' Z Z (2.)'
a'~0 ~o«

x f)(po+ &o ss I) &(qo) &(qo+ ko) E(0)

which is clearly independent of M,. Hence

yu, (P, Po) = 0

The calculation may now be continued to give the
5- and M, -independentpartofy(p, p, )—viz. , y, (p, p, ).
Since Z,o 2v5(qo) =1 and (28+ 1) Z~E(0) =N, we have,
performing the spin sum

y()(p()) = 2'(J/n) '—,'S(S+ I) s(s+ I)go &(po - so) ~

(B4)

In writing (B4) we have changed the index of the en-
ergy from p+4 to 0 under the 4 sum. Hence inthis
model yo is independent of the momentum p which
variable has hence been removed. By similar
transformations we can show that all the lifetimes
are independent of momentum.

The calculation of the field dependent part of the

y—namely, ys(po) —is considerably more compli-
cated. %e shall expand successively the first,
second, and third Green's functions in o and com-
bine it with a similar expansion of 0 to find a piece
of y„which is proportional to (s/spo) 5(po —e~, ),).
The expansion of g and g& in o and cr', respec-

tively, is clearly of that form:

I'~ Tr, s Sy s. Ifs.
n

Q (2m)o 5(qo) 5(qo+ ko) E(0)
lt, AQ qo qp

(&(po+ &o —e ) ([I-f (po+ &o)]+f (po+ &o))).
8

(»)
The pieces arising from G and G in o and o,

respectively, can be written

J 2

Tr, s ~ 5ys ~ Tl s ~ S g P (2o)'
n kokp ((fo Qp

t'"
I &(Po+&o-eo) [1-f(Po+&o)]&(qo+~o)

8
xE(q()+ 0o) ———[ &(qo) )

8QQ

+ q(qo+ qo-qa)q(qo+ qo) q(qo+ qo) ( q(qo&(qo)) )8qp

(B6)
First, we integrate by parts and write the result-
ing derivatives as —(S/S&o) [5(qo+ Qo) E(qo+ &o)].
Then a second integration by parts on the derivative
with respect to kp allows the term inside the sum
of (B6) to be written

-f(p, +n, e,) f(q,) ~(q, +-n,) E(0).
8PQ

Finally, the pieces arising from 6 and 6 in
o~ and 0&, respectively, lead to

Tr, (s S)'ys 5 P P (2~)'
n. ~o~p Oo OQ

&&~ f (po+ Oo eo) [1-f (po+ &o-)] f'(qo)
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x
2S 1 Trs (s ~ S ys ~ Tls S+s 52S+1

x [ys ~ 5, s ~ S]). (89)

The formulas in Table IV yield for the spin trace
(2S+ 1) —', S(S+ 1)s (s+ 1) y s ~ 8 and hence

8
y (po)=ys & yo(po)

8Po
(810)

The first order in magnetic field we may write that

x [ 5(qo+ kp) &(qo+ kp)]
8ko

8
+ 59,+so c)-f(P, +00) &(qn) &(so) 8q

&(qo+&o'1) .
0

(88)
In this case clearly integration by parts yields the
negative of (87). Adding the relevant parts of
(85)-(88) we have, doing the integrals over q, qo,
and kp,

( g 2

ys (p, po) =»I — ~ 5(po-ea)
a spo

y, (po)=
l

— » Z Z (2 )'
2

a,~o a, ep

(5(p, k, -s&„-)[l-f(p,.k. )]

x«5(qo) (s S)'M(q+k, qo+ko). S

+ 5(po+ kp eg f )f (pp+ kp)

x 5(qo+ko) s ~ 5 M(tl, qp) ~ S s ~ S]. (812)

At this stage we introduce a variable transforma-
tion which we shall use repeatedly

(j qo) (tl " qo ko)

(813)

(%, ko) - (-k, —ko).

This transformation carried out inside the sum
over all the relevant variable allows the first
term of (812) inside the sum to be written

5(pp kp s j) [1 f (pp+ kp)] 5(q, + ko)

yo(pp)+ys(pp) =yp(pp+ys %. (811) x (s ~ 8)' M(tl, q,) ~ 5.
It is interesting to speculate that this result may
be true to higher order in 8/n, but we know of no

proof of this. Equally fascinating is the fact that
the lifetime for the local spin has a similar prop-
erty (see Appendix C).

The calculation of the M„-dependent part of y-
namely, y„(po)—ultilizes for the first time in this
Appendix the nonequilibrium part of the decomposi-
tion of t &, that part of g& having already been
shown to give no contribution to y(po). Clearly only
the nonequilibrium part of G is required, since
the piece of G~ would be multiplied by the E(0)
from 6 and hence give a contribution proportional
to N. The ¹ndependent part of y„(po) is given

TABLE IV. Spin commutators and traces. ~

SxS=q S

[A' S, B ' S]= z S ' (A x g)"

[S, S]=-z Sx 1

Trg A S 8 S=(2S+1) —, S(S+1) A ~ 8
Trz s S C S s'S=~(2S+1) ~ S(S+1) C s

Trzs S s.S C S=-2(2$+1) ~S(S+1) C ~ s

Trg s S s' C s'S=(2S+1) —S(S+1) [s(s+1)—1] C's
~Similar formulas hold if S is replaced by s, or, where

appropriate, interchanged with s.
Zhe vectors X and B are assumed to commute with S,

but not necessarily with each other.
'1 is a unit diagonal tensor. .

The vector C is assumed to commute with s and S.

—.
' 5(p, —q, -s.)f(e.)]. (814)

We observe that the sum over k yields, for a con-
stant density of state,

p (iof (po —qo) +f (po+ qp)1 p ]' . (815)

As we have seen or. will see (depending on the
orders in which the paper is being read) in Sec.
VI of the LHS of 6KB M(tl, qo) is proportional to

5(qo —Z,) -5(qp). Then (815) is independent of qo

and the curly brackets in (814) are equal to
M„~ I/y. Accordingly, an instructive form of

(814) is

yes(pp) =2~(~/~)'(P/y')ys Mulf(po) —p].
(816)

The appropriate self-energy is given by the
equation

d& yes(+)
"s(PP)

„I 2v Pp-~ ' (81V)

Since we have already assumed a constant density

In this case the switch k -—k is superfluous 'and

may be reversed. Then the two terms of (812)
may be combined, the integral over kp performed,
and the spin sums executed to yield

J' 2

y„„(Po)=2m — [(2S+1) -', S(S+1) Q M(j, qo) ~ s]
0 ~ CQ

x Z {— 5(po+ qo
—s ) [1-f (e )]
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of states the only consistent approximation for
that part of the integral in (81V) involving the as-
sumed constant factor of —,

'
p in (816) is to take it

to be zero. We shall do this repeatedly and when
we do the tag phrase "as always" shall alert the
reader to what is going on. For reference we
write the following "identity" (by assumption):

o„' (P,) = (J/n) N —'S(S+1)[s(s+1)-1]

x g, m(p+k, P,) %. (826)

Finally we note that

~,' (P,) = 2'(Z/n)' —,
' S(S+ 1) s(s+ 1)

constde —a (Bls) or hence that

"~.6(Po - &a)f(Po) (827)

Now we consider the integral involving f (Po).
Again for reference we write

d~ p(~)—
(a) —Pp

-kgT
d& k~T+Pp—p ln

40 —Pp D

(819)

where D is an energy the order of the bandwidth.
Another form which arises is

i d&o p(&o)
1 — (td

td —Po

d
T'

os T

k~T —Pp= p ln s o . (820)
D

Using (819) in (81V) we have

o„„(P,) = —[(&/n)'(p/y') ln(k, r —P,)/D] ys. M, .
(821)

This leads us to introduce the symbol

&o = (8/n) o
(P/y o) 1nks T/D & 0. (822)

Thus the second-order logarithmic contribution to
o„(P,P,) at the Fermi surface is

Upon assuming M(q, qo) ~ 6(qo), we get

&s,(Po) = [2&0/~)' (p/y') -'f (Po)]ys M (826)

We turn to os (po). Since G'(q, qo)G~(k+q, ko+qo)
= (2m)'E(0) 5(qo) &(ko) and g'(p+k, po+ k,) =m(p+k,
Po + ko) ~ s, the calculation of the spin sums quickly
yields

orat

' (0) = —ao ys M~ . (822)

This completes the calculation of the various con-
tributions to y and we turn to o' (P o).

The calculation of o~s (po) is trivial since the ¹n-
dependent part comes from the substitution of
G (q+ kp qo+ ko) 5( qo+ ko)~ G (q qo) M(q qo) S
and g~ (P+ k, Po+ ko) = 5(Po+ ko —eo, o)f (Po+ ko) and
it is given by

t' J't~
o'„,(P,)=2m (-

~

[(2S+1) —,'S(S+1) g M(q, qo) s]
(n) Ct Qp

~o o 6(PO qo ek)f (Po —qo) (824)

&'o(Po) = yo (Po)f (Po), (82s)

which is a general equilibrium property. Further-
more if we turned on a static magnetic field, it
fol.lows that, as an explicit calculation would show,

eg'(Po+ ko) SG'(qo)
Bt p qp

plus similar terms involving derivatives on g G

and on G~G' plus higher-order derivatives. But
it is easy to see that each of the new terms has
one piece like &G~ (Po)/&t which is of second order
in small quantities-in this case, ~ AH. When the
self-energies are combined in calculating any part
of GKB the resulting term will be of third-order in
small quantities and hence by the approximation
discussed in Sec. II can be neglected. Accordingly
only the first term of the Fourier transform of
any self-energy or lifetime expression needs to
be retained.

APPENDIX C: LIFETIME FOR LOCAL SPINS

In this Appendix we shall calculate the various
lifetimes for the local spins given in Table III,
»mely, 1o(Po) 1"s(Po), &s,(Po) & (P s)anions (Po).
Much of the work is similar to that in Appendix B.

To begin we reproduce Eq. (2. 21) for Z& (p, po):

Z'(p, po)= — Tr, p g s 5 G'(p+k, po+ko)
k, kp q, qp

&o'(Po+ ys 8 = yo (P + ys ~)f (Po+ ys @).
(829)

One further point requires discussion. When
the equations for a (p, Po) and a~ (p, Po) were derived
in Sec. IIC, certain subtleties involved in taking
the Fourier transform were neglected. In Appendix

A, the identity for the Fourier transform of two
Green's functions was derived (AS1). A similar
equation for the Fourier transform of the product
of three Green's functions can be routinely derived
and we list just the temporal part of it below for
the specific case of a':

[(1/t)g (ft f2) G (fl f2) G (f2 t)f]Ft
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and

xg (j,qo)i ~g (0+k qo+ko)

2
Z (P,Po)= — Tr, Q Q s ~ S G (P+k, Po+ko)n k~kp qo qp

xg'(q, q,) s ~ Sg (q+%, qo+ko).

x 5(p +e —f )= p'p, /(1 —e~"), (C5)

which equals kT at pp = 0.
To cal, cul.ate the field-dependent part of the l.ife-

time, I'„(po), we expand each Green's function in
Z~ to linear order in Tf T. he resulting expression

x [ —M(p+Tc, po+ ko) ~ 5+M (p-%, po —ko) ~ 5]

& (2 )'f')(qo-e, ) [1-f(qo)]

x ~(q, + k, —~,;,)f (q, + k,) . (Cl)

Since, as shown in Sec. VIII, M(q, qo) ~ 6(qo), the
first square bracket in (Cl) is identically zero and
we have the result

r„,(p, p,) =o. (c2)

For all other terms we see that Z' is of order
N and hence the N-independent part of 1 is given
by Z~. Setting M, and 5 to zero, we have that

J 2

Io(P, Po) = — Tr, (s ~ S)o g P (2s)'5(Po+k, )
k, kp qy qp

&«(po —&,) [1-f(qo)] ~(ko+ qo - e)..)f (qo+ ko) ~

(C3)
The integral. s over qp and kp and the spin sum are
easily performed to give

As in Appendix 8 the calculation proceeds by an
explicit expansion to first order in f, M„or M,
of the decomposition of G~ l.isted in Table I and of
g& given by (Bla), (Blb), and (B2).

First, we wish to show that I'(P, Po) =Z (P, Po)
+ Z'(p, po) is independent of M, . To do this we
set 8 and M, (i.e. , hg') to zero. Applying the
variable transformation (B13) to Z~ we see that
its g g is equal tog g in Z'. Adding Z~ and Z'
we have

I'„(p,p,)=Z Tr, g Q s ~ 8
k ykp qoqp

x P g% Sy5 f s 8 5(Po+ko)
kp "'0 Qp~Q

x f)(qo e,)-&(qo+ ko -e)„g)[1-f(qo)]f (ko+ qo)

+ s ~ 8 y'5 ~ 5 s ~ 8 5(Po+ ko)

f&(qo —&,)[I-f (qo)]j
aqp

x a(qo+ ko —e ',g)f (ko+ qo)

+ (s ~ 5)o ys ~ 5 5(Po+ ko) 6(qo —e,)[1-f (qo)1

8x [&(qo+ ko e), ;)f-(qo+ ko))
0

(c6)

8
x s 5(po+ej+g 6z)

Pp

x Tr, (s ~ 8 yS 5 s ~ 8+s ~ 8[y'I ~ Tf, 'I ~ 5]'j

(CV)

The spin trace gives (2s+ 1) -', s(s+ 1)8(8+ 1) y 5 ~ Tl

and hence we see that

has three terms each of which is proportional to
(&/&po) 5(po+ ko). The first is obviously so. The
second requires two integration by parts, first
to (&/Sko) [5(qo+ ko —e f,~) f (qo+ ko)] and then to the
desired form. The third requires only the second
integration by parts and hence has a minus sign.
Combining the three terms we have, performing
the integral, s over qp and kp

J 2
I's(po) = » — & [1 -f (&.)]f(&),~)5

I'o (Po) = 2w (J'/n)o(2s+ 1) —,'s(s+ 1)S(S+ 1)

x P [1-f (e,)]f(s,) 6(Po+ e,-e,), (C4)

I's (Po) = yS ~ ~ I'o(Po).
e~p

To first order in the magnetic field we observe
that

(ce)

kgq

I'o(Po) + I"s (Po) = I'o(Po+ yh ' ~). (c9)
where the variabl. e transformation k+ q to l has
occurred. The momentum dependence I'p has been
eliminated since there is none-a result consistent
with the infinite-mass limit and true for all I' and
Z~ For the record the sum over k and q for a
constant density of state is

The M, -dependent part of I' is calculated by in-
serting the nonequilibrium parts of g from (Bl):

( J 2
I's (Po)= I

— Tr, Q Q (2v)o5(Po+ko)
ky)lo gsco

p' f««'[1-f (e')]f(e) x f-s ~ S m(Z, q,) ~ s s ~ S 5( qo+-koppie)f(qo+ko)
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+ -,' 5(Po+ qo e,)-[I -f (e,)]]. (C11)

We observe that the sum over k, for a constant den-
sity of states is

P[rf(qo Po) of(Po+qo)+ 2] ~ (c12)

If the qo dependence of (C12) could be neglected,
the first curly brackets in (Cll) would by (B2) be
equal to r5 ~ M,/ra. That this is essentially the
case follows from Sec. VII where m(j, qp) is shown
to be proportional to 5(qo —a',) Sf (qp)/Sqp. Hence
(C10) is well approximated by

I"~,(Pp) =+»(~/n)'(P/r') [f(Po) —1]» M~.

(c13)
As in Appendix B we can calculate Z„(Po). In par-
ticular we see that

Z~ (0) = —nprS ~ M„, (C14)

which is analogous to the result (B23).
The calculations for Z~ and Z~ proceed routine-

S
ly. Upon substitution

J 3
Z', (Po) = — », Z Z (2o)' ~(P +ko)&(0)

k, kp a, ap

x {s ~ 8 m (q, qo) ~ s s ~ 8 6(q, + ko —e„,) [1—f (qo+ ko)]

—(s ~ 8) m(q+k qo+ko)' s &(qo & )f(qo)].

(C15)
which differs from (C10) by a change in signs, the
interchange of f and 1 f, and the pr-esence of E(0).
Hence Z„' is proportional to the number of local
spins while I'„ is not. The evaluation of (C15)
proceeds routinely to give

Z~ (Po) = 2m[N/(2S+ 1)](J'/n) {(2S+1) —,'s(s+ 1)

x Q m(g qo) ~ 8)
a& ap

x Z ~ {l 5(Po - qo+ &a) [I -f«a)]

+ —,
' ~(po+qo-e, )f(,)f. (C16)

Under the same approximation that leads to (C13)
we see that (C16) reduces to

+ (s. 8)P m(j+k, qo+ko) ~ s 5(qp e,)[1—f(qp)]j
(clo)

The variable transformation (B13) is applied to
the second term of (C10), the spin sum performed
to yield

I'„, (Po) = —2p (J/n)'{(2s+1) —,
' s(s+1)

x P m(g, qo) ~ g]
a, ao

x P {o 5(Po —qo+ e «)f (ex)

z'„(p,) = zr—r„(-p,)/(2s+1),
which follows exactly from (Cll) and (C16).

Finally upon the obvious substitutions

(C18)

g Tr, M(p+ I, P + k ) ~ 8 (5 ~ S)P
.ky kp ao ap

x (2p)p 5(qp —&,)f (qp) 5(qp+ kp e$ g )

x [1 f (ko+ q—o) ], (C19)

which reduces to

Z„' (P ) = 2w(J'/n) (2s + 1) —', s (s + 1) [S(S+1) —1j

M (p+%, P+ ko) ~ 5
kong

x p f (e,) [1-f (e -„.g)j 5(ko+ e, —e I,g ) ~

a (C20)
This equation may look slightly forbidding, but
when one remembers that M(q, qo) has no momen-
tum dependence in the infinite-mass limit we see
that

z„' (p,) = [s(s+ 1) -1]

xp M(p, P +k ) ~ 0 [I' (k)/S(s+1)], (C21)

a relation which plays an important role in calcu-
lating the right-hand side of GKB. We observe
that, as it must in equilibrium,

Z(~) (Po+ rb ~ H) = I'o (Po+ rS ~ Rl) E(Po+ r5 ~ 5) .
(c22)

Finally we observe, as we saw at the end of
Appendix C, that any terms beyond the first in
the gradient expansion of the Fourier transform
of I' or Z may be neglected.

APPENDIX D

Throughout the reduction of the right-hand side
of the GBK we use the decompositions

z'(p Po) =&(p Po)f(Po)+ ~g'(p, Po)

G' (p, Pp) =~(p, Po) +(Po)+ «' (p, Pp),

(Dl)

(D2)

which define ~g and 6G, respectively. As al-
ways the notation a(p, po) [or A(p, po)] refers to
the complete nonequilibrium spectral weight func-
tion; therefore a has pieces proportional to s ~ H

and s ~ M„and A has pieces proportional to S ~ H

and 5 ~ 2,. Since by definition

Z' (Po) =[&/(2S+1)]2 (~/n)'(P/r')f(Po)rS

(CIV)

that is, that
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M, =y Tr, s g g'(p, p),
PsPp

Ms=r»sS Z G'(p, Po),
Polyp

it is clear that 5g'(56') is not proportional to
M, (M„) alone. Here we derive expressions for
6g~ and 5G~ analogous to (Ds) and (D4).

Consider the conduction-electron case first.
%e wish to cal.culate

Tr, ys g 5g'(p, po) =M, —Tr, ys
P o.Pp

sity of states, which means that yo(p, ) an«o(po)
are independent of p, a variable that we henceforth
suppress for clarity. Since g~- f pde~, it is clear
that the second term in (D10) is proportional to
f de~ I/(po —ss}s and hence vanishes upon integra-
tion. The reason for this is that source of the in-
tegral is (DB). Hence

J«, (po —e,)-'=He fdic, (po e,—io'-)~=0 (D11)

since the contour of integration never passes
through the pole. The first term in (D10) becomes
after integration over pp

PoPp
a(p, p )f (p ) (D5) fp «pl &'(&p)f '(&&)+ &(&&)f"(&I)]

to lowest order in 1T, M„and M, and to order Jo.
The spectral weight function a is given by

a(p, p,)=21m po-i0' e~+-ys ~ Tf-o(Po) -
o iy(Po}

'1 ~

(De)

note that 0 and y have pieces proportional to M„
but that o and y are still related by the dispersion
relation

(T(P)= —c ys ~ M + ~
d~ r(~)
2S Pp- +4

Specifically,

y(Po} =yo(Po}+ rs(Po)+ rv (Po)

=ro(Po+rs H)+y~ (Po)

Therefore, to order J and to linear fiel.ds and
magnetizations, we may write (D6) as

a(p, Po) = ao(P, Po+ r s Tf)

+ Im (Po sp- i0') '[&N-, (po)+ o i', (po)],
(DB)

whel e ao(p po+ y s ~ Tl) is the equilibrium, zero
field, value of the spectral weight function but
with its energy value augmented by ys ~ ff. To
order 5,
Tr. r& & ao(P Po+» Tf')f (Po)

PoPp

= Tr, ys yi ~ Tf Q ao(p, po)-~ — =y,oK&sf(po)

p, p,
' ''

&spo

(D9)
The last equality in (DQ) is obviously true only for
Z = 0; to prove it to order J~, we wish to show that
the additional. term

&
~

-»5'(Po-&p)&o(po}+ ' -'
s f'(P }o

PePo l (Po-&p)

(D10)

vanishes. As always we assume a constant den-

iI p dip [0'(ep)f (6p) ]= 0.
dip

Therefore the last equality of (D9) follows as
stated.

To evaluate (D5) we also need the integral over
the last terms in (DS), that is,

r». s Z -2v5(po-e&)aN„(po)+(p' ',s f(po)

(D12)

The same arguments used on (D10) apply here„so
that (D12) becomes

Tr,ys p «, [o„,(s,)f (e,)] = —p&„,(- ~)

= &s X.p Mu

where the third equality follows from g)7). Fin-
ally, therefore, we have to order J~, by substitu-
tion of (D18) and (D9) back into (D5)

Tr, ys P 5~'(P, P,)=M, -X„(TI+n, M,). (DI4)
0 oPp

Note added in Proof. The connection of this
result and other of our results to the Anderson
model are given following Eq. (D34}.

Thus 5g' expresses the deviation of the magneti-
zation from an instantaneous local, magnetization
value given by (D14). It is also clear from its de-
finition that 5g vanishes in thermal equilibrium,
so that a static susceptibil, ity calculation may be
done by combining (D14) with its localized spin
counterpart to be derived later.

It turns out that (D14) expression can be evaluated
to all orders in J, provided that we continue our
earl. ier assumption that the density of states is con-
stant, so that the self-energies are independent
of e~. To establish this result we expand (D5) to
lowest order in the fields and magnetizations.
Specif ically we let y = yp+ 5y, where 5y = y„,+ y„„+yH
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(this definition of 5y and the 5o is unique to this Ap-
pendix, and should not be confused with the defini-
tion used elsewhere, e.g. , in Sec. VI) and sim-
ilarly for 0. We include y~ in the 5y above to al-
low for the possibility that it does not vanish to
all orders. Then the last term in (D5) becomes

-Z ~ pd. , T.,ys
PQ

s -ys ff+5o'+ —,
' i &y

Ss, Po-s, -eo'-ao(Po)- —,iy (oP )o

which equals

—Q P df p Trays — — fao(&p~P()) [-ys ~ g+ 5o(Po}]P S 8~ Q PP Q

g, (s„p,) 5y(p.))X(p,), (DI6}

where in aQ and gQ we have stressed by our notation
the fact that the momentum dependence is solely
dependent on zP. We take the ~P integral over a
finite interval -e &eP&& at first, and then take the
limit as e -~. Before taking this limit (D16) be-
comes

—Z p T .y-{[.(,p,) —..(-.,p.)][-y-'~.5.(p.)]
PQ

P ) -go(- .P )]5y(Po)]f(Po) (DIV}

Since s(,Po) = +( Po) =g( Po) =g( NPO) =0 it
might seem at first that (DIV) vanishes in the im-
plied limit. More careful inspection shows, how-
ever, that if aQ or gQ is multiplied by a constant or
nonvanishing factor as pQ-+ ~, then the integral
over pQ will be infinite, yieMing an indeterminate
form. In fact there are two terms like this: one
is -ys ~ 7t' which is clearly independent of po, and
the other is e"'= —Q, ys ~ M„which according to
(DV) is that part of o which does not vanish at po

Note that there is never any trouble at po
=+ ~ because f (po) vanishes there. Equation (DlV),
therefore, becomes

— lim Q p Tr, ys (so( -&, po) (ys .@+a~ ys .Ms}f (p }.
PQ

(D18)
Since no(-s, po) is, as a function of po, peaked in
the vicinity of po= —s, it will suffice to put f (po)-f (- ~) =1, in the limit. Then the integral. over
pQ may be carried out using the sum rule

Z so(p& po)
PQ

which follows from the definition of aQ. Therefore
(D18) becomes

—(oTr. y's s lII+ a, M,) = —1|„(5+~, M,). (D19)

Finally, substitution in (D5) yields (D14) which is

The bracketed quantity above is by definition the
number of localized spins;

~=», Z A(p, po)F(p, ), (D23)

so that (D22) and hence (D21) is equal to the bare
Curie susceptibility times H, as indicated in the
last equality ab~ve. It is interesting to note that
the chemical potential p implied by (D23) is given
by p, = go+ Z(0), where po is what the chemical po-
tential would have been if 4= 0 (assuming the same
number of local spine ln either case). To prove
this to order J's, one expands (D23)

»g Z ( &~&(uo) - »& (('0) &o(('o)+ s &(Po)
C y.(p.)

PsPQ PQ

= Tr, g 2~5(P,)[F(O)+Z,(0)E'(0)]

0 0 ~Qg 24
pi so p 0

Now using (C4) and (C5) it is easy to see that
s-'('o I'o(po) = I',(-p,}, so that the dispersion rela-
tion (2. 6b) implies that

Z&(0) g o(po) -()po

P sPQ

Therefore, the last bracketed term in (D24) van-
ishes and

X= p 2~5(p,)F(Z(0)}Tr, g s-""""'.
P sPQ

(D26)

Therefore, the chemical potential shift is precisely
Z(0), as promised. One might also notice that the
sum rule Z~A(p, po) = 1 can be easily verified by

now shown to be true to all orders in Z.
We now turn to evaluating the right-hand side of

the local-spin-electron expression

»syS & 5G'(P Po)=Ms-y»s & ~(P,Po)F(Po).
PsPQ P~PQ

(D20)

Again A. (p, po) may be expanded as in (DS). The
first term to be evaluated is

Tr, ys PA, (P, P, +yS A) F(P,), (D21)

where Ao(p, po+ yS ~ IT) is the equilibrium, zero-
fieM spectral weight function, but with its energy
variable po replaced by po+y5 ~ A. To lowest order
in the field (D21) equals

—Trs yS ~ IT Q A(p, p()) E (p())
PsPQ

=6»s» y& @[&~(p, po)&(po)]=XaoII.
PsPQ



THEORY OF SPIN RESONANCE IN DILUTE MAGNE TIC. . .

using the same method to evaluate the right-hand
side of (D23) but with E(PO) replaced by unity (and
without summing over p).

Returning to the evaluation of (D20), we note that
as in the conduction-electron case we must also
evaluate

Tr, yS Q [-2m6'(Po) z„,(p,)+I'„(po)/po]E(po)
PtPp

yg g [-z'~ (po) (1 e- o)/po]E(0)
0 aPo

+ Tr, ys Q (- J3) Z„(0)E(0) . (D27)S'

To evaluate this we use (C11)and make the usual
assumption that the only essential qo dependence of
Z, m, (q, qo) is proportional to f (qo), as discussed
in Sec. VII and used in Appendix C. Then F~ be-
comes

&„(Po)= —2 v(J/n)' M, S

p fdqo fde. [-f (qo)lf '6(Po-qo+e-)f(e )

+ 2 6(&0+ qo- &a) [1-f(& a) j j . (D28)

The use of this form in the first term of (D27)
yields

».yS Z -&(Po) (1-e '0)/POE(0)
P ~P{)

= (~,M, /p) (Z/n)' (p/y') f dqo f de, (D29)

(qo-s~) [-f'(..)) (-.'(1 —.-""-"')

+ -'(1-e""-"')[l-f(.,)jj. (D30)

Using the three facts: (i) —f '(qo) = pf (qo) [1—f (q )] ~

(ii) & "f(~)=1 —f(~); and (iii) e~"[1—f ((o)]=f((cr),
(D30) yields

[f(q.) -f (e.)][1—2f (q.)j
dqo dep

( )g

sf(e,) 1-2f(q.)=~M, —
p — dq' d

(D31)

where in the last line we have used (819).
We must now calculate the last term of (D27).

For this we use (D28) plus the local-spin analog
of the dispersion relation (D7) to obtain

Z(0)= —o, ys M,

(J~ q~ ~1 1+', d
~

—,~ yS-
En qo

&&[1 —2f (&&)] [ -f '(qo)]

= —(&g+ &p) yS ~ M . (D32)

Finally, substitution of (Dsl) and (D32) into (D27)
yields

(&g+ 2(xp) +0M~, (Dss)

which is the desired rel.ation.
Note added in Proof. Here we show the connec-

tion between the s and d magnetization in the An-
derson model and the s-d exchange model used in
this paper, Eq. (2. 1). The Anderson Hamiltonian
[Phys. Hev. 124, 41 (1961)] is

H =2 f
~ ci~ c~ +2 f g Nq

+ 2 E UN, N, +Z V(c-„d,+ d, c-„,}, (D35)

where g„- and d~ are the appropriate creation op-
erators for the s and d electrons, respectively, and

N, = d~ d, . In the s-d mixing term we have taken
the potential V to be a real constant. %e consider
only the case of a single extra d orbital which im-
plies 8= ~ in the s-d exchange model analogue.

The connection between the Anderson model and

the s-d exchange model

H=E &y c) c) —Z (el'(, /n) Z c) cl,) s~) Sg

(D36)

has been most definitively discussed by SchrieQer
and Wolff [Phys. Rev. 149, 491 (1966)]; for the case
of several impurity orbitals, see B. Muhlschlegel
[Z. Physik 208, 94 (1968)j. They showed that under

a unitary transformation

e (H") e =H+ Z W1-„., cf~, c-„,,+const, (D37)
H'g

where

cy d —d cy
&- —e~ —UNd

(D38)

In writing 8 we have deviated slightly from Schrief-
fer and WoUf by keeping N, an operator in the de-
nominator of (D38) instead of forcing it to take on
the values of zero and unity. This shall prove quite
useful where we are taking expectation values to
calculate the magnetization. In general, we sha1. 1

require the exchange interaction 7-„~. and the poten-
tial 5"-„"„., only for &-„= e-„. and in the case of the po-
tential summed over spin, that is,

and substitution of this and (D22) back into (D20)
yields

Tr~yS g 6G'(p, po)
o

=M, —~0[Ti+ (o., + 2n~)M, ], (D34)
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Z(o)=-2V
i c —c„—U

Using (D48) and the identifications (D46) and

(D47), and the assumption that the density of states
is a constant [which eliminates the N, term in the
numerator of (D44)], we find that

V'(t)=-, V —-+ ——
)

1 1

& —&~ —U
(D4o) B w(0)

M =M —egg oM~+ —- -=- M
8&

(D49)

We observe that J(a) is negative for electron en-
ergies lying between the "occupied" and "unoccu-
pj.ed" orbjtals, q&& q& q&+ U.

Since the total magnetization (more accurately,
the total spin) commutes with every term of H" and
hence with 8, it will clearly be unaffected by the
Schrieffer-Wolff unitary transformation. That is
not the case for the magnetization of conduction
electrons or impurity spins, separately. We write
the conduction electron magnetization in the An-
derson model as

M", =&&(~, -&,))",

Bw(0)
Mo =Mq(1+ nay, o) — M, (D5o)

follows immediately from (D49) and the fact noted
earlier that the total magnetization is conserved
under the Schrieffer-Wolff transformation, i. e.,

The first term on the right-hand side is followed

by integration by parts and the identification o p j'(0)
= o.,y, o; see (1.13) and (1.18). Equation (D49)
differs from the result quoted in the note added in
proof to Sec. I only by the term BW(0)/Bo, which

arises from potential scattering. Finally, we ob-
serve that

Sg ~~g, Cg Cp

We can calculate (D41) by the obvious identity

(n, )"=(e ~e n, e ~(. )"=(e n, e ), (D43)

where the final expression is evaluated in the s-d
exchange model. To second order in V we find
that

&,)"-&,)=-Z V' —"' . (D44)

In the numerator of (D44) we observe that

M. =X.oH (D51)

provided that V and the density of states are con-
stant. Similarly, we have shown (D14) to all or-
ders in J in thermal equilibrium, that

M,"+leaf", =M, +9, .

We now discuss the so-called "compensation"
theorem which applies in thermal equilibrium.
Originally proved by Anderson in the Hartree-
Fock approximation, but straightforwardly proved
to all orders, the result essentially states that

(n-„)=f (~-„)+A.-„Bf(e-„)/Ba-„, 1Vf, = y, o (H + n q M~) . (D52)

If we insert (D52) into (D49) and neglect the poten-
tial scattering term, it is clear that (D52) is the
s-d model analogue of the compensation theorem.
A word of warning, however: Although (D51) and
(D52) are both exact, (D49), the bridge between
them, is not. This apparent anomaly is resolved
by noting that (D51) assumes V is independent of
k while (D52) assumes that 8 is independent of e;
examination of (D39) shows that the two assump-
tions are incompatible. We mention also that if
potential scattering had been included in our deri-
vation of (D14) and hence (D52) to lowest order in

W, a term (BW/B&)Q, would have been obtained, in
complete consistency to that order with (D49).

Finally, we must make the connection between
our Bloch equations (1.25) and (1.26) and those of
Sasada and Hasegawa [Progr. Theoret. Phys.
(Kyoto) 45, 1072 (1971), Eq. (4. 1)] for the case
no= 0 and I/T« = 0. Noting that (i) the magnetic
field terms in the cross relaxation add to zero,
(ii) 5M, +y, o 5= M„and (iii) (1+ c(, y, o) (BMo+y~oH)

= Ma (1 o.&y~oyso) nial(~os", we see that (1.25)
minus o.q X,o times (1.26) combines to give

where the + and —refer to up and down sp|ns, re-
spectively. Further,

(D46)

Similarly,

y(N, —N, ) =go . (D47)

The denominator of (D44) plays a very important
role in the calculation. For example, to leading
order in M~,

f(c) V (( a
—

. a) (V—N), ,
1

(D48)

I 1 I
+ V (( )g+( )g V„V(s)-
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where

I ~A 1 ~A
Ms+ T~ Md

sd ds

1 1 2(1+ ax X,o)
sd sd

X.P 1 2(l-~ix. oX~o) .
ds Xd0 sd

dM ' =M", Xy(i'i+ n, Q", ) — (M", -X„A)
dt s$

(D53)

(D54)

(D55)

In the first term we have used the fact that op is a
function of po+ ys ~ Ii and in the second the gradient
expansion (A33). The two terms can be written

+ y x+ p 2s+1 —s s+1 '

p d&P m popo
Bt P

d& y, (p, (o)

27( (po —&)

which is identical zero by (Dll) since yo js pro-
portional to a (assumed) constant density of states.

The second term in (6. 11) can be treated sim-
il.arly to give zero

As we observed, the bridge between the two mod-
els, (D49), with potential scattering set equal to
zero, is only good to first order in J. According-
ly, the parentheses in (D54) and (D55) are accurate
only to that order. Then the ratio of the two re-
laxation times is

Trs ys
) p «p + ——. [&fg, g]Ft

~Q

8
Tl~'g pdkp Q . 0'~ (popo)y ys' 0

4 Pp PQ

yA
g Xgo (1 2 )

X —Xso

Tsd Xsp Xsp
(D56)

+ Tr, ys p Ck~Z 2 St &,(P, po)

(E3)
by (1.24). But in the Anderson model, X —X, o is
the susceptibility of the d orbital, while X, p is the
s susceptibility even in the interacting system.
Hence (D56) is the result of Sasada and Hasegawa.
[The following identification of terms in their Eq.
(4. 10) may be useful: X,-X,o, X~-X —X,o,

Toe(( &g((~ Ts((() T((N~ +& 1+&&Xso~ ~If
n.n- (2r„)-', x(0)-p.]

APPENDIX E: TERMS IN LEFT-HAND SIDE OF GKB FOR
CONDUCTION ELECTRONS

In this appendix terms arising from (6. 11)-
(6. 13) will be evaluated. First, we will discuss
the results of applying the time-frequency gradient
expansion but at the end of the Appendix the posi-
tion-momentum expansion shall also be applied.
The first term of (6. 11) leads to

is proportional via (826) to

y~ &&+ — + m(k, Po) P ckp )ox
k Pp Pp P

which by (Dll) is zero.
The first term in (6. 13) can be written

Tr, ys p Ck, Q ——. [(r„„,g —ng ]
~I Pp

1=T, N'
P

l

x o, , ys I'i, (5(Po k.)f(Po»-

(E4)

Tr.yl & ——. [oo, &g'].t
P)PQ

= Tr, ys ', p dk, Q ——. + ys ~ if ', m(p, p()) ~ ss
~

P
~ 8p

—Tr, ys P — ', —rn(p, p,) ~ sI . (El)

1+Tr, ys P Ck, P 2
~I Pp

I

~0 P

We integrate by parts and use (814) for y„~ to get

J 2 1 8 1
2v — (2s+ I) —s(s+ I) —+ y5 && (y(2S+ I) —S(S+ 1) Z M(q, qo) ]

n 8t 3

! dP, &, ( - -' ~(Po+ qo - k )[1-f (k )]+ -' ~(Po - qo - k )f (k ) ] (E6)
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The integral over Po gives, after use of (ko —ko
+ qo) = (8/Sko)(ko —ko s qo)

' and integration by
parts,

1 I

—&f(k ) 1= —
~ p«g +-

~Ss
l s Ss, ss+q, —s, s, —q, -s, ) '

At this point we note that we can neglect the qp de-
pendence since M(j, qo) is proportional to 5(qo).
Hence we have

(
J 1 s

(2s+1) —s(s+1) —+ yff x iM,n 3 at ]

Sf ko)
I

f (k.)
( )

a Sko ) ko-ko

Since these two integrals give po lnksT/D accord-
ing to (819), we find that

Tr, ss '

p qss Z (- —, ) [ s's„q'-aq']
Pp

BM~
+ygf x M, . (E8)

Bt

The last term in (6. 13) is

»qym
[

p«p +I — [ou sajFto ( Ng Ft

1= Tr, ys p«oP
Pp

o~„(P Po) ys'~
ePQ

+ Tr, ys p «, Q+ —
~

—o„,(P, Po) s

(E9)
Using (825) we obtain

—-(as s 1) - s (s + 1'I q
l

—s xO x)1 1 , ~a
2 3 ( 8$

x (y(2S+ 1) —,
' S(S+ 1) P M (q, qo) J

ao ap

f( ) (E10)
o (ko+qo

which by (Dll) is zero.
Finally we consider (6. 12):

Tr, ys p «o + ——. [o'u, ng jF,
p

= Tr, ys~ —.
~

y(2S+1) —,'S(S+1) Q M(q, qo) ~ s,
~

p«o gym(P, Po) ~ s8
ao ap Pp

where (814) has been used. Since M(j, qo) is pro-
portional to 5(qo) we can neglect qo in the k sum,
which according to (818) and(819)is pin(ksT+Po)/
D). Neglecting this weak Po dependence, we see
that (Ell) is

no yM, x m(P).

Vfe turn now to the implications of the position-
momentum gradient expansion for (6. 11)-(6.13).
As has already been observed in the text [follow-
ing (6. 22)] the expansion for (6. 11) is zero. The
contribution from (6. 12) is small; see (6. 28) and
(6.30). As for (6. 13) the first-order part of a~
gives rise to a term (6. 26) but as we shall show
the second-order parts of o„„and o„' give nothing.
The first commutator of (6. 13) has tie gradient
expansion

» ys fP «o Zoo (- o) (~ &z„&p 5(Po —ko))»f (Po) ~

From the expression (814) for y„(po) we see that
V„o„can be written, using the fact that M(q, qo)
is proportional to 5(qo), in the form

V„MoA(Po),

where A(Po) goes to zero like )Po I
' for large Po.

Hence the integrals over e~ and Pp reduce to

f p «» f dP '(oP kop) f(P )A(oP ), o

which is identically zero in the approximation that
we neglect the energy dependence of the density of
states. The gradient expansion applied to the
second commutator of (6. 13) leads to a term pro-
Portional to f «o(Po -k~)~ which is zero via (Dll).

APPENDIX F: TERMS IN LEFT-HAND SIDE OF 6KB FOR
.LOCAL SPINS

In this appendix terms arising from (6.41)-
(6.43) will be evaluated. The first term in (6.42)
leads to
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Trgyl Q ——. [Z„no']F,1

9~9p Z

~rx

= Trg y5 Q ——. yS ~ 8, M(p, po} . 5
PyPD ~ PP

—Trr, yS Z r
',

ST M(S, Sr} ~ SI ~ (Pl)
P,Pp ~0

In the first term we have used the fact that Zp is
a function of pa+ y5 ~ 8 and in the second the grad-
ient expansion (A31). The two terms can be writ-
ten, with (C1V) and the dispersion relation (2.6b)

(ys "+ )y—(ss+r)-', s(syr) Z M(p, p,)ISf& P sPD

J 2
+ — (2s+ 1) —,

' s (s + 1)S(S+ 1)

„~f«.) [1-f(e.)]
(pp —s + sp}

Again we observe that (po —e,+s,) ~= (s/se, )(po
—e,+ s,) ', so that integration by parts gives the
integral

—&f (&),)Z (po- &,+ e),) ',
k e~ 0 a k

which e(lual. s, via (B19},—p~ ln(k~T -po)/D, the

po dependence of which is suppressed by M(p, po)'s
proportionality to 5(po). The curly bracket in

(F2) is then equal to M„and (F2) reduces to

x + f(s,) [1-f(s~,)] g 2v5(ko+s, -s;,(i)

(F6)
where the minus sign comes from sG/spo. For
convenience in understanding the subsequent alge-
bra the summation signs have been reorganized
prior to doing the obvious variable switches (p
+ k, p, + ko) - (p, po) and k+ (1-k. The sum over ko,
including the factor of (po —ko)~ now leads to the
sum

Z f(&,) [1-f«))l (po —&)+s,) '= —p' ln
kya

k 0 k a

(F6)

Tr, yf P --. [ Z„,(C'-~C'}].,

the pp dependence of which can neglect due to
M(po)'s proportionality to 6(po). The curly bracket
in (F5) is then M~ and (FS) reduces to

+[S(Syr)-1)arr„~~ +y))xMr) ~ (Py})) s(}
~ Sf

When (F3}and (FV} are added, we see that (6.41)
yields just

—age„+yA &M„~,
8M~

(F8)

which is identical with (E8) but has the opposite
sign and hence will cancel it when the conduction
electrons and local spin Bloch equations are added.

E(luation (6.43) is more readily, if tediously,
evaluated. For example, the first term of (6.40)
is

—S(s+ 1) a, ~0
~

' + yS x M,
(~M

(F3) 1 8=Tr yS Q ——. Z, y5 ~ 5 2wt)(p)E(p )
P Pp aPD

The second term in (6.41) can be treated similar-
ly:

Tr~yh Q ——. [Z„'„G]p,
P 9p

1'
&

~ ~ 8Q
= Tr g y5 Q ——. Z~ . yS ~ Hi P.P

y Tr, y)( Z —;

I
"„",;; I

. (PS)
Py90

+ TrryS Z S,—S r(S )Pr(P )Ir, (PrS)

which, upon substitution of (C16) and integration by
parts, becomes

yA &&+ —(y(2s+ 1) —ss(s+1) p m(q, qo) )
eg

dp, 6(p,) p F(p,) (2S+ 1) —,'S(S+ 1)

Substitution of (C17) leads to —,
' [1 —f (~,)] 2f (C s}

y &+ — y 2S+1 3S S+1

x Z M(p k, p..~.)]

J 2
x — (2sy l) s s(s+ 1) [S(S+1) —1]

n

The 5 function on pp reduces the sum of k to a sin-
gle term Z, (s, —qo)~ which is zero by (018).

Likewise the second term of (6.43}can be shown
to zero. The algebra starts with

»~y& Z ——. [z~,, &lrt
9 ePD
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= Tr, yS g ——. Z'„(po), y5. P— 1.= -TrsyS ——. [(y(2s+ 1) —,'s(s+ 1)

»'. (&.),6G(u.)

But by the identity (C18) Z„', (po) = —N1'„,( po-)/
(28+1),

Z (P) =- — ~ ( P, (F12
P, Po Po (2S+ 1) Po Po

which we have just shown in zero in (F10).
Finally we consider (8.42):

x Z m(q, q,). sQ, Z yM(p, po) sl
Co Op

of (ea) o [1-f(ea)]t

&o-qo+ea so+ qo-e,

(F18)

The proportionality of m(tl, qo} to Bf(qo}/bqo and
M(p, Po) to ()(Po) reduce the k sum to g~f (s~)/s~
= p ln(ksT/D) by (819). Hence (F18) is

Tr, yS g ——. [Z„,~G'j„
&gyM &Mg. (F14)
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~We thus give the details of the derivation of the equa-
tions which we published previously: D. C. Langreth,
D. L. Cowan, and J. W. Wilkins, Solid State Commun.
6, 131 (1968); except that we correct a slight error in
the second-order terms. Also, to simplify the analysis
here, we neglect the hyperfine interaction.

~We apologize in advance for the fact that some appro-
priate references have surely been omitted. We hoped
that enough principal ones have been included that the
reader can find his way around the literature.

3The basic form of this equation is due to M. Y. Azbel,
V. I. Gerasimenko, and I. M. Lifshitz, Zh. Eksperim.
i Teor. Fiz. ~32 1212 (1957) fSov. Phys. JETP 5, 986
(1957)]. It may be derived by specializing the results of
Ref. 1. Since then it has been derived under certain as-
sumptions by P. Fulde and A. Luther, Phys. Rev. 175,
337 (1968); W. F. Brinkman and S. Enge1.sberg, Phys.
Rev. Letters 21, 1187 (1968). The equation has been
written in this precise form by W. F. Brinkman,
S. Engelsberg, and M. B. Walker, Phys. Rev. B 3,
30 (1971).

4See, for example, C. P. Slichter, Principles of Mag-
netic Resonance (Harper and Row, New York, 1963), p.
29 (see also p. 157); C. Kittel, Introduction to Solid
State Physics (Wiley, New York, 1971), pp. 583-585;
G. Pake, Paramagnetic Resonance (Benjamin, New
York, 1962), pp. 117-118; N. Bloembergen, Nuclear
Magnetic Resonance (Martenus ¹ijhoff, The Hague,

, 1948), Eq. (2. 61) also reissued by (Benjamin, New
York, 1961). However, some have, of course, caught
the term such as A. Redfield, Phys. Rev. 98 (1955),
see the second paragraph on p. 1793; A. Abraham, The
Principles of Nuclear Magnetism (Oxford U. P. , London,
1961), p. 53, and implicitly Azbel, Gerasimenko, and
Lifshitz, Ref. 3. Recently it has been realized by
others —see Refs. 3, 15, and 20.

The kinds of difficulties encountered are illustrated in
the work of B. Giovannini, M. Peter, and S. Koide, Phys.
Rev. 149, 251 (1966); Spencer and Orbach, ibid. 179,

'683 (1939); 179, 690 (1969); but see also Ref. 3.
6H. C. Torrey, Phys. Rev. 104, 563 (1956).
~M. B. Walker, Phys. Letters 32A, 230 (1970);

Phys. Rev. B 3, 30 (1971); and J. H. Pifer and R. T.
Longo, Phys. Rev. B 4, 3797 (1971).

SFor a comprehensive review of experimental and theo-
retical aspects of CESR see M. M. Walsh, in Solid State
Physics, edited by J. F. Cochran and R. R. Haering
(Gordon and Breach, New York, 1968), Vol. I, p. 127.

9S. Schultz and G. Dunifer, Phys. Rev. Letters 18,
283 (1967).

~OP. M. Platzman and P. A. Wolff, Phys. Rev. Letters
18, 280 (1967).

P. Nozieres, in Polarization, Matiere et Rayonne-
ment, volume julibaire a l'honneur A. Kastler (Presses
Universitaires de France, Paris, 1969).

J. Korringa, physics 16, 601 (1960) (1/T~); A. Over-
hauser, Phys. Rev. 89, 689 (1953) (1/T,z); see also
Ref. 17, Eqs. (4.14) and (4. 15).

~3J. R. Asik, M. A. Ball, and C. P. Slichter, Phys.
Rev. 181, 645 (1969); 181, 662 (1969); R. J. Elliott,
iba. 96, 266 0.954).

4S. Schultz, M. R. Shanabarger, and P. M. Platzman,
Phys. Rev. Letters 19, 749 (1967); P. Monod and S.
Schultz, Phys. Rev. 173, 645 (1968).

'The correct expressions to linear order in the "ion-
electron exchange constant" were phenomenologically
written downby H. Cottet, P. Donfe, J. Dupraz, B.
Giovannini, and M. Peter, Z. Angewandte, Z. Phys. ~24

249 (1968), which appeared about the same time as our
letter (Ref. 17) announcing our first-principles derivation
of this result to linear order in J. To second order in J,
however, our results had a slight error.

K. Yosida and A. Okiji, Progr. Theoret. Phys. (Kyoto)
~34 505 (1965).

'H. Hasegawa, Progr. Theoret. Phys. (Kyoto) 21, 483
(1959).

In addition to Ref. 4, the reader might also consult
the following authors: P. A. Fedders, Phys. Rev. 158,
288 (1967); H. J. Spencer and S. Doniach, Phys. Rev.
Letters 18, 994 (1967); M. B. Walker, Phys. Rev. 176,
432 (1968); Phys. Rev.. B 1, 3690 (1970).

L. P. Kadanoff and G. Baym, Quantum Statistical
Mechanics (Benjamin, New York, 1962), pp. 100-101.
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2 This method was used several years ago to derive the
equations of Ref. 1. More recently the methods of Kada-
noff and Baym have been invoked in an attempt to derive
the relaxation rates to infinite order in J: (a) W. Brenig,
W. Gotze, and P. Wolf le, Phys. Letters 30A, 448 (1969);
(b) P. Wolf le, W. Brenig, and W. Gotze, Z. Physik 235,
59 (1970); (c) W. Brenig, W. Gotze, and P. Wolf le, Phys.
Rev. 8 ~2 4533 (1970); (d) P. Wolf le (unpublished). Un-
fortunately these authors do not give the details of their
derivation. Their equations do not contain torque terms
and hence cannot be used to describe spin resonance even
to zeroth order in J, although they add them, apparently
phenomenologically later. Secondly, although purporting
to deal with the Kondo effect, they completely miss the
leading order Kondo logarithmic term. We therefore will
not discuss this work further.

2~We find this technique more convenient in the present
calculations than the pseudofermion representation of
A. A. Abrikosov, Physics 2, 5 (1965). This technique
was apparently first used independently by P. A. Fedders
(Ref. 18) and about the same time by us in the derivation
announced in Ref. 1. It was later used by Brenig and

Gotze [Z. Physik 217, 188 (1968)] and again in Ref. 20.
D. C. Langreth and J. W. Wilkins, Phys. Rev. (to

be published).
Henceforth in this paper we choose units such that

I=1.
It has just been pointed out to us that a similar nota-

tion was used by V. Keldysh, Zh. Eksperim. i Teor.
Fiz. 47, 1515 (1964) [Sov. Phys. JETP ~20 1018 (1965)].
In fact one form of the generalized Kadanoff-Baym equa-
tions is given there. Very recently, equations similar
to those used here and in Ref. 1 have been applied to the
interacting Fermi Liquid [P. WolQe, Z. Physik 232, 38
(1970)~.

'See the Appendix in Ref. 19. A few distinctions and
clarifications are in order. First, we are calculating the
self-energy and not the Green's function, and hence the
initial and final Green's functions are omitted along with
two time integrals. Second, the vertices are ordered in
the way they appear in Fig. 1 in which the earlier time
is on the right (while the reverse is true in Ref. 19).
Lines entering (leaving) a vertex multiply it on the right
(left).
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Comelated Electron Paramagnetic Resonance and Optical Study of
CdF2. Er +. I. C2„Local-Site Symmetry

T. C. Ensign and N. E. Byer
Research Institute for Advanced Studies,

Martin Marietta Corporation, 1450 South RolBng Road, Baltimore, Maryland 21227
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A correlated E PR and optical study has been performed on CdF~.. {Er, 0) (U=—unintention-

ally compensated) and CdF2. (Er+, M') (M'=Li', Na', Ag', or K") crystals with the following
objectives: (i) generating a high concentration of a specific (i.e. , C2„) Er site through the
addition of monovalent cations and characterizing this site by EPR; (ii) unambiguously deter-
mining selected optical properties of Er ' in C2~ symmetry; and (iii) determining the crystal
field splitting ofthe It~gt ground site of Er 'for Ct„symmetry. The orthorhombic (C&g sym-

metry, produced at the erbium site when M' ions are introduced for charge compensation, has
been identified through the angular dependence of the Er ' EPR spectrum (at 4.2 K). Moreover,
the EPR results revealthat the C» (Er ', M') site accounts for nearly all (& 98%) of the noncubic
sites recorded for. (Ers', M') specimens. This result has permitted an unambiguous determina-
tion of the emission, excitation, absorption, lifetime, and efficiency properties of Er in C»
symmetry. These characteristics have been found to be similar for each of the M' ions listed,
but different from those obtained from (Er ', U) crystals. In particular for (Er ', Na') the
green ( S3~2 I~5~2) quantum yield is observed to increase from 2. 3 to 19.7%, whereas the
red (Ee~& I&5~&) quantum yield decreases from 26 to 2. 9%. The large variation in these ra-
diative-quantum yields is analyzed in terms of multiphonon decay processes ( Ssg2 F9~2),
which are seen to be sensitive to Er3'-site symmetry, but relatively insensitive to the exact
nature of the compensating species. The crystal field splitting of the I&5~2 ground state of Er
in C2„symmetry is in good agreement with that expected from the cubic-field approximation of
Lea, Leask, and Wolf, with crystal field parameters, A4 (r ) = —245 cm and A6 (r ) =40 cm
The noncubic portion of the total orthorhombic field may be accounted for in terms of an axial
distortion along the Era'-M' direction, as verified by the excellent agreement obtained between
the EPR g values and the optical splitting of the I'8 state of the I~5f2 multiplet.

I. INTRODUCTION

The optical spectra of Er3' in crystals exhibiting
the fluorite structure, space group 0'„(Em3m},

very often exhibit complex structure. Electron-
paramagnetic-resonance (EPR) studies of these
crystals have shovrn that this structure arises be-
cause the Er3' may reside in a variety of noncubic


