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A theory is presented for the anomalies in the electron-paramagnetic-resonance (EPR}
linewidth and zero-field relaxation time of antiferromagnets. The analysis applies to the
paramagnetic state immediately above the Neel point in systems where the dominant spin-
spin interaction is the isotropic exchange coupling. It is assumed that the dipolar coupling is
the principal source of anisotropy. The EPR linewidth and the relaxation rates for fluctuations
in the total magnetization are separated into critical and noncritical parts; the latter are
approximated by their values in the high-temperature limit. The anomalous increases in the
linewidths and the relaxation rates are shown to arise from processes in which a fluctuation
in the total magnetization decays into two fluctuations of the staggered magnetization via the
dipolar coupling. The predictions of the theory are compared with linewidth measurements
in RbMnF3, MnF2, MnO, and MnS.

I. INTRODUCTION II. ZERO-FIELD RELAXATION

In a recent paper (hereafter referred to as I)
the author discussed spin-spin relaxation in ferro-
magnets in the vicinity of the Curie point. Particu-
lar attention was paid to the role played by the di-
polar interaction and its influence on the decay of
the fluctuations in the total magnetization. In this
paper the analysis begun in I is extended to cover
relaxation effects in antiferromagnets. The ob-
jective is to study the decay rates for the fluctua-
tions in the total magnetization in the paramagnetic
region above the Neel point. In addition to zero-
field relaxation we will also consider the related
problem of the electron-paramagnetic -resonance
(EPR) linewidth.

Our main interest is in antiferromagnetic insula-
tors where the dominant interaction is the Heisen-
berg exchange coupling JS, ~ S&. We specifically
rule out other than dipolar anisotropy, a restric-
tion which limits the applicability of the analysis to
S-state systems such as MnF2. It should be noted
that critical relaxation effects associated with
single-ion anisotropy have been discussed by
Tomita and Kawasaki from a somewhat different
point of view. Also, Fedders has examined the
dipolar contribution to '.he EPR linewidth using an
approach rather similar to ours. However, his
analysis was restricted to the high-temperature
limit, whereas our primary concern is the behav-
ior near the critical point.

The remainder of the paper is divided into three
parts. First, the zero-field relaxation is investi-
gated. Second, a general study is made of the line-
width problem. Finally, the published data on the
EPR linewidths in RbMnF3, MnF&, MnO, and MnS
are interpreted according to the theory developed
in the preceding sections.

The starting point for the calculation of the re-
laxation time is an equation given previously in I.
In the exponential approximation, which is appro-
priate to the exchange-narrowing limit, the time
dependence of the relaxation function characteriz-
ing the z component of the total spin takes the form
e '~r&, where Tz is given by I, Eg. (11):

—=KTg p, & h
2

x Q ([It„„(q) P,„(q)]'+4It„,(q)'+ It„,(q)'+ It„,(q)']

In this equation K is Boltzmann's constant, T is
the temperature, g is the electronic g factor, p,~
is the Bohr magneton, and X~ is the uniform field
susceptibility. The U ~(g) are related to the Fou-
rier transform of the spatial part of the dipolar in-
teraction:

v„,(q) =g 8 *' '*J [S(-r"„).(r, ,)s —a.s r', &]~;.
where the sum is over the N spins in the lattice.
The symbol (S(q, t), S(q)) denotes a relaxation
function defined by

(S(g, t), S(q))= J dh&e""'~"'

(~) e-(x+tt/h )XS ( @))

in which
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S (q) =Z e "'& S ~, (4)

with n=@, y, or z. In Eq. (3) 3C is the Hamiltonian
and the brackets denote an ensemble average.

It is important to keep in mind that Eq. (1) is in
itself an approximate expression which is obtained
by factorizing a four-spin correlation function. As
with many calculations of this type, it is difficult
to estimate the error associated with the factoriza-
tion. From a comparison with experiment (to be
discussed below) it appears that the approximation
preserves the essential features of the exact ex-
pression in that it leads to results which compare
favorably with experiment both in their magnitude
and temperature dependence.

'

A second point meriting comment is that Eq. (1)
is appropriate only for those temperatures where
the important contributions to the sum over wave
vectors q come from regions of the Brillouin zone
where the relaxation function (S (q, f), S,(q)) is ap-
proximately the same for each of the spin compo-
nents. For cubic systems this is not an important
restriction. However, in systems of lower sym-
metry, like MnF2, in the limit as T approaches
T„(The Noel temperature), Eq. (1) must ulti-
mately be replaced by a more general expression
which incorporates the anisotropy of the relaxa-
tion function, an effect which of course arises from
the dipolar interaction itself.

Equation (1) is suitable for both ferromagnets
and antiferromagnets. The difference in the be-
havior of the two types of systems with respect to
zero-field relaxation has its origin in both the be-
havior of y~ and the region of the zone a,ssociated
with the critical-point anomalies. The suscepti-
bility of the ferromagnet diverges nea, r the critical
temperature. Moreover, the important contribu-
tions to the q sum come from wave vectors near
the center of the zone. In antiferromagnets, on
the other hand, y~ is finite at T„, and the impor-
tant contributions come from wave vectors near
Ko, the superlattice vector for the ordered state.
Because of the latter property, it is important to
single out the contribution from the Ko region. We
do this by introducing the function 6(1/Ta), defined by

6(1/Tz) =KTg pz 8' yr N

x{[v„„(K,) v(K, )]' 4+U.,(KO)'

x U„,(K,)'~ U„(K,)']
"5 1, dt(S(q+K„ f), S(q+K,))'. (5)

Q

The symbol g indicates that the summation is re-
stricted to the interval 1 pl $ & 1, where $ is the cor-
relation length associated with the staggered sus-
ceptibility y(q)*, which is defined by

X(q)*=a'l ~(S(Ko+q), S(K +q)).

The reason for introducing b,(l/T, ) is that near T„
we have the approximate equality

1/Ta(T) = b, (l/T, ) + I/T, (~),
where I/Tz(~) is the relaxation time for the high-
temperature limit, where g is taken to be zero.
The approximate nature of Eq. (V) must be stressed.
The equation amounts to asserting that the wave
vectors near Ko are the source of the anomalous
increase in I/Tz near T„; the contribution from
the remainder of the zone varies more slowly with
temperature. The justification for this approxima, -.
tion will be discussed in Sec. IV A in connection
with the EPR linewidth in RbMnF„where 6(I/Tz)
as well as the anomalous part of the linewidth is
equal to zero. There it is shown that approximating
the noncritical part of the linewidth by the infinite-
temperature limit introduces errors of no more
than 15% for (T —T„)/T„~0. 1, a level of accuracy
we a,ssume holds for other systems as well.

Since we will in effect be using empirical values
for I/Tz(~) our main interest is in b(l/T2). As
noted, h(I/T2) characterizes the relaxation rate
for fluctuations along the z direction. In the in-
vestigation of the anisotropy of the relaxation rate
it is helpful to introduce the principal values and
principal axes of the tensor U ~(Ko). After making
theprincipal-axistransformation, U ~(KO) takes the
form

o. o o)
0 Uq 0

(o o o.)
With reference to the principal axes the relaxation
rate for fluctuations along a direction characterized
by cosines y, , y~, y, can be written

6(1/Tz) =A [(1 —y, ) U, + (1 —yf) U&+ (1 —y,) U,

-2v. v, y', -2v, v, y.'-2v. v, y,'), (8)

where A is given by

A=ETg P,~ k yz A

& Z J dt(S(q+Ko, f), S(q+Ko)) . (S)

Equation (8) is seen to have the effect of separat-
ing b, (l/Tz) into two factors —an angular part which
reflects the symmetry of the magnetic lattice and

an isotropic but temperature-dependent part which
incorporates the spin dynamics. In the language
of mode-mode-coupling theory Eq. (8) character-
izes a decay process where a fluctuation in the total
magnetization decays into two fluctuations of the
staggered magnetization via the dipolar interaction.

In Eq. (S) the dominant temperature dependence
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is connected with the relaxation function. Experi-
mental and theoretical studies' ' carried out near
T~ have shown that the relaxation function is ade-
quately approximated by

X(0)*(S(q+K„f), S(q+K, ))—,--. . .--;—, (io)
pa 1+0

where I', is of the form

I,=
& "'f(q~),

with f (0) being finite. Equations (10) and (11), it
should be noted, are appropriate only for those
temperatures where the dipolar contribution to
(S(q+Ko, f), S(q+Ko)) can be neglected. Inserting
(10) and (11) into (9) leads to the result

A-(T/X, )&"'

for the temperature dependence of 6(L/Tz). The
exponent —,

' is in agreement with the value reported
by Kawasaki for nondipolar anisotropy. It differs,
however, from ~, the value associated with the
anomalous part of 1/T2 in ferromagnets. ' (Using
a somewhat different approach Kawasaki has also
obtained values —,

' and —,
' for the exponents charac-

terizing the EPR linewidth in ferro- and antiferro-
magnets, respectively. ')

Equations (8) and (9) have a form identical to
what would have been obtained with a single-ion
anisotropy of the form

2g p~ (U, S,+ UqS~+ U~S,),
where S„~„refer to spin components along the
principal axes. It must be emphasized that this
equivalence applies only to 4(L/Tz). Differences
in the range of the two types of interactions cause
the equivalence to break down at arbitrary points
in the Brillouin zone. As a consequence, 1/T2
—A(L/Tz) calculated with the effective single-ion
anisotropy will not, in general, be the same as
that obtained with the true dipolar interaction.

III. FPR LINEWIDTH

The EPR linewidth is a measure of the relaxation
rate for spin fluctuations perpendicular to the static
field. The analysis of the linewidth is complicated
by the effect of the field on the spin dynamics. In
discussing this problem it is convenient to distin-
guish between extrinsic and intrinsic effects. The
extrinsic effects are accounted for by inserting
factors of e""~ o"" in the relaxation functions as-
sociated with spin components perpendicular to the
static field. In addition, the linewidth has also to
be evaluated with the appropriate exponential fac-
tors included, all other parameters remaining un-
changed. The intrinsic effects are those which can
not be accounted for by this procedure. Of pri-
mary importance among intrinsic effects is the in-
fluence of the field on the decay of the fluctuations

~y(T) =X[U„(K,) --,' U„„(K,) --,' U„(K,))',

g p, Ho /A I'0» 1, (14)

where A is given by Eq. (9). The z axis is along
the static field.

In the short-correlation-time limit, g p~ Ho/8 I'0
«1, both the secular and nonsecular terms con-
tribute to the broadening. The resulting linewidth
is then given by the angular average of the zero-
field rate in the plane perpendicular to Ho. (The
use of the angular average for the linewidth is
equivalent to replacing the decay rate of the reso-
nant component of the transverse magnetization by
its time average over a I.armor period, an ap-
proximation which appears to be satisfactory for
frequencies near the center of the line. )

The appropriateness of the short- or long-cor-
relation-time limit must be decided for each indi-
vidual system. It should be noted, however, that
the linewidths in the two limits often have rather
different angular dependences. As a consequence
it may be possible to infer the correct limit from
angular data alone.

IV. COMPARISON WITH EXPERIMENT

A. RbMnF3

Measurements of the critical behavior of the EPR
linewidth in RbMnFS have been reported by Gupta
and Seehra. They find that the linewidth narrows
slightly as the critical point is approached from the
high-temperature side. Relative to the high-tem-
perature limit the width at (T —T~)/T~ = 0. 1 has
decreased by 15/o for microwave frequencies on the
order of 9. 2 QHz. For frequencies on the order
of 24 QHz the decrease is much less, amounting to
about 2% at the same temperature.

An examination of the relevant neutron data (Ref.

of the staggered magnetization. Since relatively
little is known about the intrinsic effects, we will
not consider them in any detail except to point out
where they appear to come into play. Fortunately,
the extrinsic effects are far easier to deal with.

The calculation of the EPB linewMth can be car-
ried out along the lines of the zero-field analysis.
We make a separation similar to that outlined in.

Sec. II by writing the linewidth y(T) as

~(T) = ~~(T)+ ~(-),
where y(~) is the limiting value at high tempera-
tures. Apart from intrinsic effects the field de-
pendence of Ay(T) depends on the relative magni-
tudes of gps Ho/8 and I'0, the decay rate for the
superlattice point. We consider two limiting cases.
In the long-correlation-time limit, gp, s Ho /h I'0» 1,
only the secular part of the dipolar interaction con-
tributes to the width. In this case we have
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4) shows that the condition gp, ~ Ho/8 I'0«1 is satj.s-
fied for both frequencies for (T —N)/T„& Q. Ql.
Thus in this range the short-correlation-time limit
is appropriate so that y is given by the angular av-
erage of I/Tz. Because the magnetic lattice is
simple cubic, the U z(Ko) are all zero, "with the
result that b (1/T2) and &y vanish identically. Thus
the linewidth is predicted to be nondivergent, in
agreement with experiment.

The slight narrowing reported in Ref. 10, which
has been attributed to decay processes involving
spin fluctuations near the center of the zone, is
a direct measure of the accuracy of the approxima-
tions embodied in Eq. (7). In the absence of accu-
rate zero-field data we use the x-band result, 15/p,
as the estimated error for (T —T~)/T„~ 0. l. Al-
though the narrowing becomes less pronounced for
temperatures greater than 1.1T„, the increase in
accuracy is only apparent since the approximations
reflected in Eqs. (10) and (11) begin to break down
in this region.

r(T) -~(")=&„(T—T,) '", Ho llc

y(T) —y(~) = &, (T —T,) '", H, I c

(15)

(16)

T„—T,=1.2'K . (17)

The results of extensive measurements of the
parameters characterizing the relaxation functions
in MnF~ have been published recently by Schulhof
et al. 5 For (T —T„)/T„&0. 15, it is found that the
relaxation functions for fluctuations with wave vec-
tors near Ko become anisotropic with the critical
behavior limited to spin fluctuations parallel to the
c axis. From the discussion in the preceding sec-
tions it is apparent that Eqs. (8) and (14) apply only
outside this region, that is, (T —T„)/T„& 0. 15.
Data on I'0, when extrapolated to temperatures
greater than 1.15T„, indicate gp~HO/RI'0 «1 for
realistic values of the field. Thus the short-cor-
relation-time limit is again appropriate.

For MnF2, which has a body-centered tetragonal
lattice, the principal axes of U,z(KO) coincide with

the a, b, and c axes. Relative to these axes we
have U, = U~= U, and U, = U„. Thus the zero-field
relaxation rate for spin fluctuations along a direc-

B. MnF2

Measurements of the EPR linewidth in MnF, near
T~ have been reported by Seehra and Castner and
Seehra. ' It is found that the linewidth increases
as the critical point is approached from the high-
temperature side. The width for Ho parallel to the
c axis is greater than the corresponding width with Ho
perpendicular to c. Below (T —T„)/T„=O. 15 the
linewidth becomes field dependent. Above this
temperature the following behavior is observed:

tion making an angle n with respect to the c axis
takes the form

~{1/T~)=A{U„—U, ) sin n, (18)

where A is given by Eq. (9). As noted, the anom-
alous part of the linewidth is obtained by averaging
b, (1/T2) over directions in the plane perpendicular
to Ho. The result of this averaging can be written

~y = A(U„—U,)'(1-—,
' sin'S), (19)

h" (T —T ) '", (T —T )/T -o 15 (20)

Assuming this dependence to hold at higher tem-
peratures we would have

&~(T/Xr) (T —TN)
"

~ (21)

Since (~c.-y(0)* (approximately) it can be argued
that away from T„ the critical exponent for $ should

approach the molecular field value --,' in which
case we would have

A (T/y, r) (T —T„) '" . (22)

When allowance is made for the temperature varia-
tion of (T/yr), Eqs. (21) and (22) are found to
bracket the data. It should be noted, however, that
both (21) and (22) become less accurate with in-
creasing T —T~ and should not be taken seriously
for To 2

A further test of the theory comes from a nu-
merical evaluation of Ay itself. This is carried
out in the Appendix with the result

b,y = 640 + 380 Oe (Ho ll c, T = 77 'K), (23)

b.y=320+190 Oe (H, J.c, T=VV'K) . (24)

These numbers, whose uncertainty reflects the un-
certainties in the values of the empirical parame-
ters characterizing the relaxation function, are to
be compared with the experimental 6 values

b,y = 180 Oe (Ho ll c, T = VV 'K), (25)

by=110 Oe (Hole, T=77'K) .
It is apparent that the agreement, while not pre-
cise, is at least semiquantitative and could be im-
proved by a more realistic choice for the upper
limit of the integral in Eq. (Al).

As has been pointed out, for (T —T„)/T„&0. 15
the linewidth becomes field dependent. The ques-

(26)

where 8 is the angle between the external field and
the c axis. From (19) it is evident that hy(HO II c)/
b p(HO J.c) = 2, which is in agreement with the ex-
perimental value at V7 'K (see note added in proof).
It is worth pointing out that, were the long-correla-
tion-time limit appropriate, the ratio would be 4 in-
stead of 2.

Values for (, the correlation length, are also re-
ported in Ref. 15. It is found that
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tion then arises as to whether the field dependence
is an extrinsic or an intrinsic effect. We argue for
the latter. Were the field dependence extrinsic it
would come from the freezing out of the nonsecular
terms in the dipolar interaction which accompanies
the breakdown of the condition gpBHp/KI'p« l.
Since I'p decreases as $, such a freezing out
might occur very close to T„. Were this the cause
of the field dependence there would be a change in
the linewidth from a form described by Eq. (19) to
a form characteristic of Eq. (14). However, both
equations yield the same result for Hp parallel to
the c axis, so there should be no extrinsic field de-
pendence for fields in this direction, a result in
contradiction to what is actually observed.

Our final comment on MnF& concerns the anisot-
ropy in the relaxation function. In the linewidth
measurements the anisotropy appears to be masked
by the field dependence. Such is not the case for
the zero-field time. To account for the anisotropy
in the calculation of the relaxation time for the
fluctuations perpendicular to the c axis, the inte-
gral in Eq. (9) must be replaced by

J dk (S[( (q+Kp ~ f) S(((q+ Kp))

x(S~(q+Kp, t), S,(q+Kp)),

where II and l refer to spin components parallel
and perpendicular to the c axis. An evaluation of
b(1/Tp) using the modified expression for A leads
to the conclusion that b (1/Tp) approaches a finite
value in the limit as T approaches T„, since I'~
and $, remain finite.

C. MnO and MnS

EPR linewidth measurements in Mno and MnS
have been reported by Battles. '7 These compounds
have an fcc magnetic lattice and undergo an order-
ing of the second kind, type A, where the spins are
confined to (111)planes. P The superlattice vector
is of the form (p/a, v/a, v/a). According to Fig.
2 of Ref. 17 the linewidths have divergent compo-
nents which vary as T/(T —T„) for T ~ T„+10 'K.

The absence of neutron data comparable to those
available for MnF& precludes quantitative analyses
of these systems. [We note, however, that the ob-
served temperature dependence is not very much
different from that given by Eq. (22).] However,
the most interesting aspect of the problem is not
the rate of divergence but rather the existence of a
divergence to begin with. As has been noted, the
simple- (and body-centered-) cubic lattices show no
divergence, &(1/Tp) and by being identically equal
to zero.

The divergence in the fcc system arises because
the tensor U p(Kp) has the form

O L V)
U0 U

U U 0

in a coordinate system whose axes coincide with

the [100] directions of the cubic lattice. ' The
principal-axis transformation reduces the above
matrix to the form

o)
0 —U 0

—U 0

0 0 2U

In the preceding sections we have outlined a the-
ory for the critical anomalies in the zero-field
relaxation rate and EPR linewidth in antiferromag-
nets. The essential feature of the theory is the
association of the anomalous increase in these
quantities with a process in which a fluctuation in
the total magnetization decays into two fluctuations
in the staggered magnetization via the dipolar cou-

with c axis along one of the equivalent [111]direc-
tions. The zero-field relaxation time thus has the
angular dependence

6(l/T2) = 9U (1 —y,) A

for spin fluctuations along a direction making an
angle cos ~y, with respect to the closest [111]axis.

As noted, the EPR linewidth in the shori-cor-
relation-time limit is obtained by averaging 1/T3
over directions in the plane perpendicular to Hp.
The general analysis is complicated and will not
be dealt with here. We consider only the cases
where Hp is along the [100] and [112]directions.
After some calculation we find

by=4. 1U A (short-correlation time, Hp )[ [100]),
(29)

by = 2. 0 U2A (short-'correlation time, Ho II [112]) ~

(29)
The nonzero value for b.y with Hp tl [100) is to be
compared with the corresponding result for long-
cor relation times:

~y= 0 (long-correlation time, Hp ~( [100]) . (30)

Since the experimental results indicate a diver-
gence we conclude that the short-correlation-time
limit is appropriate, at least for T —T„+10 'K.
We should mention, however, that the angular de-
pendence of hy, as reflected in Eqs. (28) and (29),
is stronger than what has been reported for MnS,
where the ratio b y[100]/Ly[112] is slightly less
than unity. "

V. FINAL COMMENTS



CRITICAL-POINT ANOMALIES IN. . . 3185

pling. The increase occurs because near T„both
the correlation length and the lifetime of the fluc-
tuations in the staggered magnetization increase
rapidly with decreasing temperature. In this re-
spect the behavior of 1/Tp in antiferromagnets and
ferromagnets is similar, the principal difference
being that in the latter system the decay is into
fluctuations with wave vectors near the center of
the zone.

It has been noted that the decay process is strict-
ly forbidden in an isotropic system since the total
spin is a constant of the motion. This suggests
that we may treat the relaxation in the spirit of
perturbation theory, an approach followed in the
derivation of Eq. (1) where it was assumed that
the influence of the dipolar interaction on (S(q, f),
S(q)) could be neglected. At the end of Sec. IV B
it was pointed that this approximation cannot be
made very close to T„, where the anisotropic
terms in the Hamiltonian have a pronounced effect
on the dynamics of the staggered magnetization.
When the anisotropy is allowed for, both 6(1/Tp)
and hy remain finite at the critical point.

A second aspect of the theory which received
some comment is that its applicability is limited
to the critical region above the Neel point. At

high temperatures the mode-mode-coupling ap-
proach breaks down and the linewidth is no longer
dominated by the critical fluctuations. It was esti-
mated that this happens at temperatures T +2T„.

A third point is that the theory also applies, with
obvious modifications, to the case of nondipolar
anisotropy provided the anisotropy is sufficiently
weak so as to maintain the exchange-narrowing
limit. When this is not the case it is necessary to
go beyond the exponential approximation for
(S(0, f), S(0)), a point discussed in some detail in
Ref. 2. (In easy-axis systems the exponential ap-
proximation is valid as long as 1/T p« I',p, where
1» is the decay rate for fluctuations perpendicular
to the easy axis. )

Finally, we should like to emphasize that addi-
tional work is needed to refine the quantitative as-
pects of the theory. More must be learned about
the temperature dependence, angular dependence,
and magnitude of the contributions from the non-
critical modes. Additional experimental work is
also called for. It would be particularly useful to
have accurate measurements of the zero-field re-
laxation time to avoid the complications of the in-
trinsic field dependence. A direct confirmation
of the angular dependence of b, (1/Tp) would be val-
uable at this point.

Note added in proof Measureme. nts of ry in
MnFp have been reported by Seehra (Phys. Rev. ,
following paper) which confirm the angular depen-
dence predicted by Eq. (19). An interesting fea-
ture of the data is that the ratio Ly(Hpl~c)/Ly(HpJ. c )

In this Appendix we outline a numerical calcula-
tion of the anomalous part of the linewidth in MnF3.
In this analysis we make full use of the experi-
mental information about the relaxation functions
which was reported in Ref. 15. Assuming an ex-
ponential decay for the relaxation function as in
Eq. (10) and extending the upper limit on the q sum
to infinity leads directly to the result

&T8' lax(0)* (U, i
—U, ) (1 —-', sin 8)

4p'h'(c/av) Xr N

Cf Cf Q'

(1+ 2(P)P P
(Al)

where q =q„+q, +(c/a) q„c and a denote lattice
constants, and v is the volume per spin. We
evaluate this expression at T= (T„+10)'K, which
is approximately the lower limit of the isotropic
regime. At this temperature we have"

x(0)*/x. = 13 + 3,
where X, is the susceptibility of the noninteracting
lattice evaluated at T„. Also, it is found that '

$ = V. 3 ~ 0. 9 A (A3)

I'; = 0.35[1+0.38 (qg) + ~ ~ ] meV (A4)

at the same temperature. Values of U„—U, can be
inferred from the work of Keffer. According to
Ref. 20 we have

(U„—U,)'= 50/v' . (A5)

With v=39 A, a/c= 1.5, TN = 67. 5'K, Xr/X,

remains equal to 2 down to within half a degree of
the Noel point. This behavior is a consequence of
the fact that in tetragonal symmetry (and

gp, pHp/RI'p «1) we have

~y(Hpllc) = ~(1/T, (i)),
while

by{Hp&c) = p[h(1/Tp()~))+ b(1/Tp(L))],

where the parentheses associated with 1/Tp indi-
cate directions relative to the c axis. Since
b,(l/T, (lt))=0 [Eq. (18)]we obtain the result

Ay (Hp)) c)/ hy(Bp&c) = 2

which is valid even at temperatures where the

(S,(Kp, t), S,(Rp)) are anisotropic. This analysis
of course neglects intrinsic field effects, which

appear to be unimportant at X-band frequencies
for T —T„~ &

'K.

APPENDIX
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=0. 39, and @=2 it is found that

~y=S40+SSOoe (H, [ic, x=77'K), (A6)

b y = 320 + 1900e (Ho 1 c, T = VV 'K),
which are the results quoted in the main text.
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EPR linewidth measurements in MnF2 are reported near the Noel temperature T~ as a
function of orientation and temperature. The angular dependence of the temperature-depen-
dent part of the linewidth for T & Tz+10'K follows the curve (1 —2 sin &), in agreement with
the prediction of a recent theory by Huber (8 =0 for magnetic field Hll c axis). The observed
breakdown of the Huber theory for T & Tz+10 K is briefly discussed.

I. INTRODUCTION

Recent experimental studies of the electron-
paramagnetic-resonance (EPR) linewidth in anti-
ferromagnets have shown that the anisotropy plays
a fundamental role in the nature of the anomaly ob-
served near the Neel temperature T~. For ex-
ample, in the uniaxial antiferromagnet MnF2, '
the EPB line broadens as T- TN, whereas in the
cubic antiferromagnets RbMnF3, KMnF3, and
KMn: MgF, the EPB line narrows slightly in the
same temperature range. Earlier attempts to
quantitatively explain the EPB line broadening in
MnF~ were only partially successful. In the pre-
ceding paper' (hereafter referred to as 1) Huber has
presented a theory which clearly brings out the role
played by the anisotropy in the critical-point

anomalies in the EPB linewidth in antiferromagnets.
In this paper we present the first experimental
evidence which quantitatively verifies several as-
pects of the Huber theory.

II. REVIEW OF HUBER'S THEORY

In the calculations given in I it is assumed that
the dominant spin-spin interaction is the isotropic
exchange coupling of the Heisenberg type and that
the dipole-dipole interaction is the source of
anisotropy. Manganese fluoride fits such a Hamil-
tonian to an excellent approximation. For our pur-
poses, the starting point is an equation for the
zero-field relaxation rate 1/T2 derived by Huber
using the random-phase approximation (RPA).
This equation is


