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Vibronic Effects in the Electron Paramagnetic Resonance of Mn++ in Ca(OH)&~
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The temperature variation of the spin-Hamiltonian parameters of Mn" in Ca{OH)2 single
crystals was studied. The parameters 52 (=D) and the isotropic part of the hyperfine-structure
tensor A showed marked variation in the range 80-800'K. b2 showed a reversal of sign around
450 'K. The theory of orbit-lattice interaction and the theory of covalent reduction of A
through spin polarization was applied to the interpretation of the temperature variance of A.
The temperature variations of 52 were interpreted as originating from the phonon modulations
of the crystal field. The calculated values were comparable to the experimental values. Im-
plicit temperature variations of b2 were also found to be significant. Included also are the re-
sults of the velocities of sound in Ca(OH)2 as functions of temperature.

I. INTRODUCTION

present the results of investigation of the
Ca(OH)2: Mn" system by the electron-paramag-
netic-resonance (EPR) method, at temperatures
which varied over the range 4. 2-800'K. This
system is of interest because it presents the
follow ing problem.

The first problem is the "zero-field splitting"' of
the S states belonging to the iron group of which
Mn" is a representative. ' The theory of zero-
field splitting was treated extensively by Sharma
et al. But these and earlier ones' assume rigid
lattices only.

The second problem is the phonon-induced con-
tributions to the spin-Hamiltonian parameters.
This was first discussed by Walsh et al. 6 Sub-
sequently, the temperature variation of the hyper-
fine constant for MgO: Mn" was discussed by
Orbach and co-workers, ' and others. Other
cubic crystals were also investigated. ' Of the
remaining spin-Hamiltonian parameters only the
axial parameter D in KTiOS was investigated. '

The S-state ions of the rare-earth group pre-
sent similar problems. The temperature variation
of the hyperfine structure for CaFz. Eu" (and other
fluorite-type hosts) has already been discussed. '~'~

Other spin-Hamiltonian parameters for
CaWO4. Gd' were discussed recently by Harvey
and Kiefte. '.

In addition, the host crystal Ca(OH)z itself is in-
teresting. The absence of H bonding between OH
ions and the hexagonal symmetry of its lattice
makes it possible to set up a simple model of
crystal field. Moreover, it is only recently that
we have been able to obtain this material as large
single crystals containing Mn" impurity.

II. Ca(OH)& CRYSTALS AND EXPERIMENTAL
PROCEDURE

X-ray studies have shown' that Ca(OH)z be-
longs to the hexagonal system, with space group
P(3, 2/m, 1), CdI2 type or D~~. A projection of the
structure is shown in Fig. 1(a). Ca atoms lie in
the invariant positions (0, 0, 0), with point sym-
metry D3„. O and H atoms lie in the special posi-
tions+(3 3 zo) and +(3 3 zg), respectively,
both with point symmetry Sm. Figure 1(b) shows
the unit cell. It contains one molecule. The H

positions were first postulated by Bernal and
Megaw. ' They have since been confirmed by
x-ray diffraction, neutron diffraction, and nu-
clear-magnetic resonance. 20

The Ca(OH)2 structure consists of two sheets of
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phase-sensitive detector operated at 100 kHz/sec.
A crystal -rotating me chanism developed earlier
in this laboratory was employed for anisotropy
studies at room temperature . This mechanism
enab 1ed the crystal to be rotated about a horizontal
axis. Using thi. s device together with a magnet
w h ich is able to rotate about it s vertical axis, any
arbitrary orientation of the crystal relative to the
external magnetic field could be attained . A cavity
for studies in the temperature range be low room
temperature w as of plastic, with the inner surf ace
sputte red w ith gold . For the high -temperature
work (300-800 K) we used a glass cavity, which

was also gold plated. Both cavities, whose loaded
Q' s were about 6000 and 4000, respectively, op-
erated in the TEpgg mode. Temperatures were
measured with un cal ib rated the rmo coup 1es of cop-
per constantan (80-300 'K), and Pt/Pt-10/p Rh

(above 300 'K). The accuracy was estimated to be
~ 2 ' C .

III. RESULTS

A. Qualitative Observations

FIG. 1~ Ca(OH) 2 crys tal lography . (a) projection of
the s truc ture in the (0001) plane . The unit cell is shown
in heavy outline . The threefold axis passes through the
Ca" sites . (b) The details of the hexagonal unit cell . (c)
The geometry of the Ca" site . The octahedron is slightly
compressed along the c axis [or (0001) direction) . The
regul ar octahedron has 1/

= 54. 7'. Note the designation of
p1ane s and the crystal field axes which are mentioned
in the text.

hydroxyl ions lying in the (0001) plane. A sheet of
Ca ion s is sandw iched between them . Each Ca
ion is surrounded by six OH groups forming a
slightly compressed octahedron [Fig. I (c)]. Neu-

tron -diffraction studies revealed that the motion
of hydrogen is in the (0001) plane only. ' ~' Con-
-sequently, there are no hydrogen bonds . The crys-
tal is very soft (2 on Moh' s scale) and has a per-
fect cleavage along (0001).

Single crystals of Ca(OH)2 were obtained by slow
diffusion of NaOH and CaC 12 in an aqueous solution
that was free of CO~ and 0& ~ They mere doped
w ith Mn" during their growth .

An x-band spectrometer, utilizing a circulator
and a simple detection method, was used . The

Typical recordings of the spectrum taken with

the applied magnetic field along the c axis are
show n in Fig. 2. The l inew idths as functions of
temperature and the additional spl ittings due to the
superhyperf inc-structure (SHFS) interaction with

hydrogen of the OH group are il lu str ate d . A

peculiarity of the SH FS splitting, here, is its d e-
pendence on the fine-structure (FS) component.
As shown in Fig. 2, they are well resolved only
for the transitions —,—+ —,

' and (+ —,
' + —', ) . This is

probably due to different relaxation times.
The spectrum at al 1 crystal orientations con-

sistedd

of six groups of five lines . This indicated
that there was only one Mn ' ion per unit cell and

that the hyperf inc structure (HFS) splitting was
larger than the FS splitting. The angular var ia-
tion pattern of the resonances was symmetrical
about the c axis. The spectrum was isotrop ic for
rotation of H in the (0001) plane. The spectrum
exhibited no symmetry at all for a rotation of II
in the (1010)plane nor in any other arbitrary plane
through the c axis. This behavior is consistent
with Mn" substituting for calcium . The c axis is
thus the magnetic z axis . This also indicates the
presence of a large b 4 parameter .3

B. Spin Hamiltonian for Room-Temperature Spectra

The room-temperature spectrum m as analyzed
using the spin Ham ilto nian adapted for D 3„symme-
try:

'Ic(S) = p, ~ H g ~ 8+ I A

+ 3bp02 +~$(bq04+b404). (1)
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FIG. 2. Recordings of the ESB spec-
trum of Mn impurity in Ca(OH)2 for
H along the (1210) direction (i.e. ,
perpendicular to the c axis). We have
(a) 96 K, (b) 300'K, and (c) 609 K.
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This spin Hamiltonian was diagonalized by a per-
turbation method which included second-order
terms. The parameters obtained in this way were

git = gx = 2. 0010+0. 0005 A)) 92 05,

A~ = —90. 28 + 0. 15,

b~ = —6. 7+0. 56, bg = —2. 48+0. 5 G, b4 4 0.

The sign of b& was obtained from a separate mea-
surement at liquid-helium temperature; that of the
HFS tensor components was assumed to be nagative.

C. Temperature Variations

The spectra shown in Fig. 2 indicate that as the
temperature of the crystal varies from 80 to 609 'K,
the FS components reverse their order. For ex-
ample, the FS components of the I = ——', line cross
over at about 300 'K, wherea, s those of the m =+ 2

line do so at about 609 'K. The FS components of
other HFS lines cross over at temperatures be-
tween these bvo. This behavior indicates that bz
reverses sign.

The spectrum did not undergo abrupt changes

which would indicate discontinuous changes in the
spin-Hamiltonian parameters. The crystal be-
haved reversibly at all temperatures up to about
825 'K. At this temperature and above the crystal
starts to decompose.

The temperature variations were investigated in
five experimental runs in which the spectrometer-
cavity system was stabilized at 30 different tem-
peratures. At each temperature the resonant
fields were measured; The results were used to
compute the spin-Hamiltonian parameters by the
method described in Sec. IV. The results for bz

and for A. are presented in Fig. 3. Here A is the
Fermi contact term

A= g(A„+2Ai) .

The temperature variations of the g values were
immeasurably small, and that of b4, while showing
some decrease with temperature, also showed
much scatter. 54 was not investigated.

IV. INTERPRETATION OF TEMPERATURE VARIATIONS

There were two spin-Hamiltonian para, meters
which showed much temperature variation; the
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FIG. 3. Experimental temperature
variations of A {the isotropic hyperfine
constant of Mn", diamonds) and of &2

for Ca{OH)2. Mn" {open circles).
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axial parameter b~ (or D) and the HFp parameter
A. %'e discuss their temperature variations in

terms of the orbit-lattice interaction first and in

terms of covalency last.

A. Orbit-hatt}ce Hami}tonisn in 83d Symmetry

In the presence of an electric dipole p, and a
change e', the potential at a distance (St —r) is

p cosy e'
iS-rI 8-rl ' (3)

e
tst P t (cosR)

( 6 ~' 6 ~'
Scosy

(

—
r + —-or+ )Ps(coors)

St is the position of the neighboring ion in a dis-
placed position from its equilibrium position 0t,
r is the position vector of an electron, and y
is the angle between 5t and the c axis. The first
term of Eq. (3) represents the potential due to a
distant-point dipole for R, = St » r. We expand this
in Legendre polynomials and the first few terms
'-~f this expansion are A = (Bey, cosy)/3R + ee'/R~,

8 = (16ep cosy)/R'+ 5ee'/R
(6b)

Since all OH ions are equidistant, we have set
Rt=Rr, . Equation (6a} must be expanded in nor-
mal modes appropriate for XF6 of B3~ symmetry.

t' 128 y 128
+/ 8 + ~+ ''' P4(cosset&)+ '''

(4)
The orbit-lattice Hamiltonian as used in the litera-
ture can be obtained systematically as follows: %e
expand V around 5t in a Taylor series:

F = Fo+ (&F)0 ' «+ 2 &t ' (~'F)o ' o't

where ot = St —5t and Vo is the static potential. All

derivatives are evaluated at equilibrium separation.
The second term of Eq. (5) is the orbit-lattice in-
teraction, which we expand (after multiplying by

e),

FoL= f&F'„Ht &t+&&t' t&(St F~)lo)F ~«'
(6a)

where F„stands for FP(t'), F„* stands for Ft", *(5,},
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We choose the coordinates (X, Y, Z) and number
the (OH ) groups as indicated in Fig. 1(c). e and

p, are the charge and the dipole on OH ions. They
are both negative at the Ca" site in Ca(OH)z.

The result of this expansion is

-
E « ' &(3» Y*) (r» c'»)

[(vr' V) &[V'])& —Vr, (8rr)

[ ~ V(j» ) C(A» )q(jA& )
where

F= (128e)» cosy)/R'+ 35ee'/R (gb)

+ ~ «(jEz) ~ C(jEz(n))q*(jEz(n))].
g=i, a x=1,3 fe 1,8

(7)
V(jI', ) are coefficients coupling the XY[» cluster
mode q(jI', (n)) to electron operator C(jI', (n)),
where C's are defined in Table I. It should be
noted here that, excepting C(A„), they are not op-
erator eigenstates of energy in D3„symmetry. Al-
so, only the symmetric representations A,~ and

E~~ are involved —the latter doubly degenerate
(n = 2). There are several q's that transform ac-
cording to the same representation (in fact, two as
A, z and six pairs as Ezz). Among the five operator
eigenstates (TaMe I), one transforms as A„and
the remaining two pairs as 1Ezz(n) and 2Ezz(n).
Figure 4 should serve as an aid to E»l. (7). Thus,
to write down terms involving the coefficient
V(2Ezz), we have

»
' V(2E,') [C (2E,(1)) q(2E', (I))+C (2E,(2)) q(2E', (2))],

The summation over the index i is implied in all
the above formulas.

8 Hyperfine-Structure Constant A

The basis of the theory is the admixture of the
excited configurations (3d ns) into the ground-state
configuration 3d of Mn". ' The existing theories
use only the orbit-lattice interaction Hamiltonian
of Eq. (7). To those we must add the second-
order axial crystalline field:

I3d') = I3d)-2 lns),E(3d) —E(ns)

where V is def ined below. Since the hyperf ine
magnetic-field operator of the kth electron at the
nucleus is

8
Hm, = 3»» g)»»» s,», ()(r»,);

the first-order terms of H~, cancel between the
states in Eq. (9), and we are left with

i. e. , use the terms connected by lines running from
right to left. The»luantities (x, , y, , z, ) in Table I
are the components of the vector a& —o&,3, i. e. ,
the difference between the displacements of two
diagonally opposite OH ions (Fig. 1).

The second- order term is

le[v,. (V'V) ir, ]=( V."[V (r, ir, )' Bv',.]

( S'M, IH», I

zS'M, ) = —g»»s M,

„„.[E(3d) —E(ns)] [E(3d) —E(n's)]

x(l v I'+
I
~ v(jA». )q(jA„) I'
)=1

2 2 3

+ ~
I
~ «(jE')q(jEl. ( ))I').

tink j=1 k=1

TABLE I. Orbit-lattice coupling coefficients and normal coordinates of XY6 molecule having D& symmetry.

c(jl,.(n))

(—', »i)' '&0={g(sz'-r')}

(
—', x)"' (Y, + Y,)/&~={V&( '-y')}

;(-',.) [»'(Y, —Y~,)ar={xy~s}

(~»&)'"(Y»+ r*»)/W&= zx~&

i(-', ~) '"(Y,—Y*,)/W= ~yvY

v(jr',.)

+2~3B(3 cos y —1) sing+~A sing
—2~B(3 COS y —1) Cosy+ 2~6 A COSy

—2B sinay

—+~B sin2y cosy

—2A sing

—3B sin y cosy

3B sing cos y-3A sing

3~2A cosy

q(j~";(n))

{x»+x2 2x3 ~(y» y2) }/2~
{z,+z, + z,}/We

{x,+x, +4x, —v"a(y, -y2)}/~
+ {x,—x, —E&(y»+y2)}/~~

{z,+ z, —2z,}/v%2
l{-z»+z2}

{x,+x, -2x, +&2(y»-y2)}/~2
PS'(x, -x, ) + y, +y, —2y,}/~24

= q{iz,[(i)}
= —q{lz2»(2)}

= q{&&2(i)}
= —q{iZ', (2)}

{x»+x2+ x3}/W
{y»+y2+ys}/~6

Symmetry

1Aig
2Ag

1z,'(1)
1z,'(2)

1Z,'g. )

1z', (1)
1z,'(2)

2z,'(1)
2E,'(2)

2E', (1)
2z', (2)
2z', (1)
2z'(2)
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q (Aig)

C(A)g} i
q {Aig}

v (i A«}

v (2A,g)

q{IEz (I))

C(IE,(l)) & q{IEz (I))

~, q(IE', (I})

q(IE', (2) )

C (IEz(2)) & q{IEz(2)}

i, q(IE,'{2)}

I
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v(IE,')
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FIG. 4. Coupling scheme of normal
modes q()r) of XZ, cluster of D3, sym-
metry to operator eigenstates trans-
forming as representations of DM point
group [see Eq. (7)].

q(2E,'(I) }

C(2E (I)) ~ q(2E', (I))

q(2E, O))

q(2Ez(2}}

C{2Ea(2)'I~ q (2E,{2})

q {2Ez(2))

I
i V{2Ez)
I

I

I
i v(2E, )
I
I
I
I

I
I

I

I
I V(2E', )

I
I
I

Electron
Orbit

Operator

Normal

Co-ordinates
Coupling

Coefficients

In Eq. (11)we form products only between compo-
nents having the same symmetry, e. g. , cross
products like q(jEz, (1)) q*(jEz,(2)) are zero. Also,
the cross products involving V,„and one of the q's
contribute nothing, since V is independent of
the vibrational coordinates and its product with q
averages to zero.

To adapt Eg. (11) to a form suitable for compu-
tations, we introduce the following quantities: For
any product V(m)V(n)q(m)q*(n)(B /ee') in Eq. (11),
we have

I' = V'(m) V'(n)
A~

tions. Also

&c pij&. = (I/4&)

&& J I sinO"„dO'„dy„4', 4ttsin(k R, ) sin(k 5&) .

(13)
Here 4' denotes the direction cosine along the e
axis of ionic displacement in longitudinal or trans-
verse mode, and O~ and y„are the spherical polar
angles of the wave vector k. Using spherical
Bessel functions, the integration in Eq. (13) was
done without any approximations. " (npij&, and

&o.P ij), are related:

Qp

2
+ 1 Z&oPij&, k dk

(12)

&o«j&~ = -'(1- &o~ij& ),

&npij&, =- —2&npij&, ,

where a summation over a., P, i, and j is implied
and

V'(m)= V(m)/(N„'~Bee'/R4)

and kD depends on the model used for lattice vibra-

where n ep. A table of relationships for &o'pij&,

in D3„symmetry was constructed. It was subse-
quently used to evaluate the sum over i and j,
which is appropriate to each product q(n) q(m).
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1. Acoustical Branch

If, in a standard notation, &„=kv„ then

1 (' D~~ (t' 2x, I x,dx, Q(nPzg),
~
„+1

v(r o
ty fy»y

I ex'

(14)

s:,(v) = 'q', ('(())"(j)( „„,, + ()

(kD
E(&Pij), k dk,

0
(16)

where k»)= (6»» N, /V) and N, is the number of
unit cells in a crystal of volume V. It is 1.028
x10 cm ' for Ca(OH)z.

Since in a standard notation»z, (H», )=I,S,A(T),
with p, ,=g„»»„I,/I, we finally obtain

2

A (T) = AR[1 —a~ Dg (E'„-(T) + Q E'„'"(f))],

(17)

where AR is a "rigid-lattice" HFS constant. The
remaining dimensionless parameters are

where x, = If(d„,/kz»T. We have used the Debye
approximation and TD is the "reduced Debye
temperature" [O/v 3 for Ca(OH)3]. The zero-
point contribution from this branch is

1
+',.(0)=z)»T») V'(z) V'(j)(I/&s) J xvdx. ~(»)'pzj)s

(15)
where x, = k(d„, /k»»To.

Z. Optical Branch

We use Einstein's approximation to calculate
the contribution from an optical branch having a
single frequency &, independent of k:

anisotropy of Ca(OH)z causes a longitudinal and

transverse vibration to bear a complicated relation-
ship to one another. Nevertheless, the values of
(o»Pij ), were computed as if the crystal were iso-
tropic. Optical-branch contributions were assumed
at two frequencies: one (Ez~) at 247 cm 'and another

(A„) at 282 cm '. As an approximation, each was
assumed to contribute two transverse and one
longitudinal branch. These assumptions do not
influence critically the net values for A, since the
contribution of the optical modes steadily drops
from about 20% at low temperatures to about 6%
at high temperatures. We assumed the value of
2. 60x10'4 cmerg for the sum g„„.U„„,= U44 in

Eq. (11). It was obtained from the corrected Eq.
(20) of Ref. 9. It should read 4»»(e /R ) U«= 2. 02
&&10 cm . The contribution from g,„was ignored
since its value is estimated to be only 3.6x10 4.

The quantity D,„„in Table II is

Dex))»(T) = [»» A(T))/[E~(+ + ~ &o'")] ~ (20)

According to Eqs. (17) and (18), if the above theories
are correct, D,„,t should be independent of tem-

perature. The slight dependence of (theoretical)
D on T reflects the temperature variations of v&

and R. The latter depends on T through the ther-
mal expansion of the crystalline parameters. The

subsequent decrease of D above 300'K, however,
is accidental. This was because the value of v, at
300 'K was assumed at temperatures above this.

C. Axial Parameter

We can estimate the magnitude of vibronic con-
tribution to the spin-Hamiltonian parameter b2 as
follows: Using Eq. (8a), the second-order term
involving I'g, only, is

e Qo» ~ PV o, = — (3cos'y —1) + —Z(o; ~ r, )'
2R

8»» g»»») g)((»z)(( (ee ) k»)

75 ARI R Spa vq
(18) (A B z ~ z 6B~—

~

—+ (3cos y —1) Z o» — Zz»n»o»
I, R 2R R

a = — " "~AR(3cos y —1)
~

Z U
75 IAR

nn' ~

(19)
Since the velocity of sound in Ca(OH)z is not

available in the literature, we have measured it in

a separate experiment. The results are shown in

Fig. 5. The measurements were carried out at
10 MHz.

The results of computations based on Eq. (17)
are summarized in Table II. The computation was
carried out at a Debye temperature of 249'K as
obtained from the velocities of sound at room tem-
perature and at p, = 1.65D. The following com-
ments on the values in Table Q must be made. The
dipolar contributions are almost of the same order
of magnitude as those due to the point charge. The

where (n, , nz, , l, ) are the direction cosines of r, .
Using the notation of Ref. 1, the crystalline axial
Hamiltonian is

(22)

where

Bz(Q») = (-', »»)'» ARK' . (23)

Neglecting the first-order terms, the axial part of

Eq. (5) is
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FIG. 5. Velocities of sound in
Ca(OH)2 as functions of temperature.
The longitudinal velocity v& is
marked by diamonds and the trans-
verse velocity v& by open circles.

v=~ 1 ~'~p~~') v8' (24)
where

+ W4q(IA~~) q(2A, ~), (26)

bp(T) = [1+K~ hp(o')/Bp ] bps . (25)

Next, we expand Eq. (25) in normal modes:

~& &p(o'~)/Bp = Wi [q (2Ai ) cos y+ q (IAq~) sin y

where

Bz = Z, Bp~(R, ) .
The bracketed term in Eq. (24) should now mul-

tiply the second-order axial term of the spin
Hamiltonian in Eq. (1). In terms of the spin-
Hamiltonian parameter bz, Eq. (24) is therefore

W, = (3/RBz) [E(3cos y-1)+ 4B],

Wp = —(I/2RBpp) [2A+B(3 cos y —1)],
Wp —— (18A —36B)/RBp,

W4 = 36B siny cosy/RBz .

(27)

In Eq. (26), W, couples the "breathing" mode. Wz

does not couple a normal mode but a random dis-
placement. S'3 and 8'4 couple, respectively, a
square of the z component of the breathing mode

and a product of the two totally symmetric modes.
It is convenient to rewrite this and previous for-

mulas in an expression similar to Eq. (IV):

—2q(IA, ~) q(2A, ~) siny cosy]

+ W, Z, B,'+ W, q'(2A„)

bp(T) = [I+D'~ +a.(~)]baz

where b,~ is b& and is appropriate for a "rigid"
lattice,

(28)

T
'K 10-'F„10-'I 10"D 10 Dexyt

f~ g-A(T) I (~)
Theor. Expt.

0 12.97
100 19.09
200 37.93
300 60.33
400 84.78
500 111.6
600 140.8
700 172.4
800 206.1

3o 313
3.505
4. 504
5.727
7.306
8.995

10.12
12.31
14.02

3.691
3.691
3.770
3.918
3.870
3.822
3.766
3.729
3.683

4.442
3.201
2.906
2. 945
2.837
2.744
2.626
2.431
2.247

0.0557
0.07724
0.1482
0.2397
0.3301
0.4269
0.5296
0.6378
0.7511

0.670
0.670
1.142
1.802
2.42
3.065
3.684
4.157
4.582

TABLE II. Orbit-lattice model of A in the EPH, spectra
of Ca(OH)2. Mn". @=1.65D and SO= 249'K.

D' = ke/(pp Rv, ), (29)

and F is analogous to Eq. (12) except that we re-
place V with appropriate 8'. We shall neglect op-
tical contribution.

The results based on Eqs. (26)-(28) have been
computed separately for each term of Eq. (26) and

are presented in Table III. We should reject con-
tributionsof columns 2 and 3 as they give the wrong
sign. The breathing mode seems to give a contri-
bution which is not only of correct sign but also
of the right order of magnitude. So does column
4. If we add columns 1 and 4, the result is in good
agreement with experiment.
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TABLE III. Orbit-lattice model of bz in the EPR spectrum of Ca(OH): Mn, p, =1.65 and O~~ =249'K. Numbering of
contributions follows that in Eqs. (26) and (27).

0
100
200
300
400
500
600
700
800

—0.803
—l.517
-2.853
-4.349
-5.859
-7.426
-9.047

—10.72
—12.45

10-"S
2

0.127
0.243
0.466
0.720
0.9873
l. 272
l.574
1.895
2.233

('K')
3

5.323
10.25
19.09
28.66
38.23
47.95
57.83
67.86
78.02

-0.225
—0.497
-0.929
—1.35
-1.804
—2. 264

2 ~ 732
—3.205
-3.685

1022D (oK)

1.022
1.022
1.057
1.112
l. 112
1.112
1.112
1.112
1.112

—l.765
—3.334
—6.484

—10.40
—14.01
-17.76
—21.63
—25. 64
—29.78

0.279
0.535
1.06
1.722
2.361
3.042
3.765
4.531
5.340

11.70
22. 53
43.39
68.53
91.39

114.7
138.3
162.3
186.6

(b'„-S', (T))
2 3

-0.494
-1.092
—2.112
-3.228
-4.314
—5.414
—6.532
-7.663
—8.812

EXptc

-4.5
—5.61
—9.28

—15.50
—19.90
—24. 20
—23o 1
-34.00
-40.30

D. Covaiency Effect Q„= q(1E2(l)) cosy - q (1E~(1))siny . (33)

q „=a'IXI') —a'I&I'&

q»„= a'IX —I' )+a'IZX&,
(30)

where for a Ca" site in Ca(OH)z, one set of values
of a' and a' is 0. 7463 and 0. 6657, respectively.

The antibonding molecular a' orbitals formed
from y& and an appropriate linear combination of
the ligand orbitals y& is

We limit this discussion to the role covalency
plays in the dependence of A on temperature. Si-
manek and Huang ' obtained the values of the co-
efficient C of Ref. 6 that was only 50% lower than
the corresponding experimental C for the MgO: Mn"
system. Lue and Huang 6 alsotreatedthe Mn" im-
purity in MgO and other crystals, but they did not
include the spin-exchange effects which seems to
dominate the covalent reduction of the hyperf inc
constant in Mn". Consequently we shall base
our discussion on Ref. 25.

To this purpose we express the operators C in
Table I, so that they transform as the two bases
of E3~ representation of D3„point group and which
form the o bonds with OH . For crystal fields of
reasonable magnitude one result is

They are the trigonal analogues of the cubic nor-
mal modes bearing the same subscript.

We orthonormalize g» and q»„c by the Schmidt
process and obtain

4

(»" = &(0» ~&(—» I
q'- & q ..) (34)

We exclude from Eq. 34 the terms y4, originating
from the orbit-lattice interaction as discussed
previously in Sec. IVB.

The hyperfine field analogous to E»I. (11) is

(H.„)=
3 z~s s. (&0.

"I5(~) Ie."& + &&" I5(y) It."&)

3 g~s ~2 ~ a.ca."(q."
I
«I q,&(Q'. + Q'.),

(35)
where we used the notation of Ref. 25. The cor-
rection to A. for the covalency effect (in G) is

+Acov = Deov~c lEce cov(~) + Eon, eo (~)l (36)

where

D = ~& gNp~ ka2
&cov= 3 I Ea ag s ~ Cnn' ~

»C»
= &(A —~.x») ~ (31) Q c„„,= Qa„,a„., &y„., I5y

I y„,&,
nn'

Now, while»c»» is orthonormal to the s-type or-
bitals of Mn", y„„ the vibrational distortions of
the complex Mn(OH)8, destroys this. The resul-
tant P», now have finite overlaps with q»„, . Simanek
and Huang ' calculated these overlaps as functions
of bond length through the relation

0» I inc& I
~c s +S c Q» (32)

where Q; is a normal coordinate having the same
symmetry as (» and S„,= (2p, I q»„,&. There are
several vibrational modes which couple to the»1»»

states, but two of them are particularly important:

Q„= q(1E~z(2)) cosy —q(IE~(2)) siny,

E'„„„=(I /ks)I .

I stands for the integral in Eq. (12). Table IV
summarizes the results of computation based on

E»l. (36) and the estimated value of g„„.C„„,as
1.56' 10 cm 3. The results for hA, as expected
are only about three times smaller than the ex-
perimental ones.

The assumptions used in obtaining the above re-
sult must be stressed: We used the values of C„„.
for MgO crystal. Appropriate values for Ca(OH),
are expected to be similar, since the bond lengths
are comparable [2.1 A for MgO and 2. 37 A for
Ca(OH)», ] and the covalent reduction factors for A

are also similar.



3178 HOLUJ, QUICK, AND ROSE N

TABLE IV. Covalent model of A in the EPR spectra of
Ca(OH)2. Mn" SD =249'K.

T
'K

0
100
200
300
400
500
600
700
800

10 'Fa

0.645
1.060
2.037
3.153
4.317
5.551
6.853
8.221
9.654

Fop, car

l. 844
1.952
2. 511
3.194
4.074
4. 986
5.917
6.858
7.807

10'Dcm

1.808
l. 808
l. 864
1.955
l. 949
1.943
1.937
1.930
1.925

0, 139
0.210
0.395
0.629
0.853
1.089
1.336
1.593
1.860

V. DISCUSSION

The temperature dependence of any observable
G can be divided into two parts: implicit or that
due to a thermal expansion (BG/8 V)r and explicit
or that due to lattice vibrations (BG/sT)„. The lat-
ter has been dealt with in Sec. IV. The contribu-
tion of the former is best estimated experimental-
ly by measuring the changes of G as a function of
pressure (BG/SV)r and then using the relation

(37)

The following trends have been confirmed for Mn"
in II-VI crystals: (i) Cubic spin-Hamiltonian param-
eters b4 show no implicit, or, for that matter,
little temperature dependence. (ii) HFS constant A,
while showing marked temperature dependence,
has no implicit part. (iii) Orthorhombic parameters
b~ and b2 have not been studied in these crystals.

Points (i) and (ii) have been confirmed for Ca(OH)z.
Incidentally, (i) can possibly be explained by the
following argument. In expanding V(r) in Taylor
series [Eq. (5)], we could just as well take the de-
rivatives with respect to the electron coordinates,
as was done, for example, by Stevens. Confining
our remarks to b04, this means that the explicit con-
tribution to b4 can only come from terms in Y~ (x),
which as is well known, do not occur in Mn".

It is very difficult to make any measurements
involving pressure on Ca(OH)2. This is because
the crystals have a layered structure and easily
disintegrate. However, expressions for b„as
functions of the interionic distances are available
and their implicit parts can, therefore, be esti-
mated theoretically. We limit this discussion to

According to Sharma et al. ,
' the rigid lattice

gz, can be written (in cm ')

and Blume-Orbach (D»), mechanisms. B,' is de-
fined in Eq. (23) and (B4)' for DM symmetry is

B4 =B4 —v'7/10B4, (38)

where using Eq. (4),

1. p ee' 118 eo cosy,
)4 4 R5+35 B6

&& (35 cos y& -30 cos'y&+3),
(40)

~35+ ee' 1SS escosye)
4 2 R' 35 R'

x (cosy~ sin~y, .cosN, ).

Using thermal-expansion data for Ca(OH)2, the re-
sults based on calculations based on Eg. (38) are
presented in Table V. These results should be
compared with the values of b~ obtained experimen-
tally. The implicit temperature variation of ba

is therefore significant. Also of significance is the
agreement between the signs of the calculated and
experimental b~ at low temperatures.

VI. SUMMARY

This paper has presented the results of the in-
vestigation of Ca(OH)z . Mn" by an EPR method at
temperatures ranging from 4. 2 to about 800 'K.
The EPR spectrum was found to be axial at all
temperatures and was consistent with Mn" replac-
ing Ca". The isotropic parameter A of the HFS
and the second-order axial parameter b2 for (Ca
(OH)z were investigated over the temperature
range 4. 2-800 K. A was found to decrease from
91.9 to 88.0 G. in this range, b2 on the other hand,
increased from —16.0 to+17 G.

Temperature variations of both parameters
were discussed, in the case of A, in terms of vi-
bronic interaction and spin polarization of ns-shell
electrons by exchange potential, and in the case of

b~, in terms of crystal field modulation by lattice
vibrations. The model included a point charge
and a point dipole of XF6 cluster in BM symmetry.
Vibrational motion was handled using the spherical
Bessel. functions. The vibronic-interaction model

TABLE V. Values of bz obtained from Eq. (30). Third
nearest neighbors were included. p, = l.65D. All values
are in G. The value of 22 0 was obtained by extrapolation
in Fig. 3.

ba„= —0. 073 05 B2+ 2. 1044(B2) —1.7417(Bo~)2
Temperature

('K) 300 600 900

+ 4. 3404B4 . (38)

These terms are due to, respectively, spin-spin
(D»), Orbach-Das-Sharma (D»8), Watanabe (D„c)

Dss +DoDs +Wc
+Dao
Expt.

2.85 3.25 3.64
-80.41 -75.33 -70.4
-21.5 -7.5 +7.7

4.03
-65.68

(+22)
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accounted for less than 10%%ug of experimental values
and the spin-polarization model for additional 30/p
in the case of A (see Tables II and IV). The lat-
tice vibration model accounted for almost 80~&~ of
the temperature variations of b~.

The implicit temperature variations of bz were
also estimated using the theories proposed by

Orbach et gl. ' 3 These were found to be signifi-
cant.
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