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Comment on "kq Representation for the Impurity Problem in Semiconductors"

J. R. Brews
Bell Telephone Laboratories, Murray Hill, Mezz Jersey 07974

(Received 20 January 1972)

Recently Zak has derived a novel form for the wave equation of an electron trapped near a
defect in a semiconductor. We find that the kq representation only obfuscates Zak's analysis,
and that Zak's equation is simply the many-band Wannier equation with the defect-potential
matrix elements put into differential form. By reordering the operators in Zak's equation we
also find that Zak's evaluation of corrections to the one-band Wannier equation involving suc-
cessively higher derivatives of the defect potential is simply an approximate evaluation of a
more general series of corrections derived earlier by Blount.

INTRODUCTION

Zak has recently considered corrections to the
one-band Wannier equation for one-electron im-
purity states in semiconductors. While his analy-
sis is apparently based upon the kq representation
originated by Zak, we will show that in fact his anal-
ysis is made in a %annier function representation
by virtue of a transformation employed at an early
stage [Zak's Eq. (7)J. Consequently, Zak's form
for the wave equation, his Eq. (12), should be iden-
tical with the wave equation in a Wannier represen-
tation. We will show that indeed this is the case
and that Zak's use of the kq representation is ir-
relevant.

Since Zak's equation is the Wannier equation with
the defect-potential terms expressed in differential
rather than matrix form, it is reasonable to com-
pare Zak's estimate of these defect-potential terms
with previous estimates. We find that by reorder-
ing the operators in Zak's equation we can evaluate
the defect-potential terms without resorting to
Zak's power-series approximation to the wave-
vector dependence of the Bloch functions. With this
more general evaluation of the defect-potential
terms we regain the same series of terms in deri-
vatives of the defect potential previously obtained
by Blount.

PROOF THAT ZAK'S EQUATION IS IN WANNIER
REPRESENTATION

Qur demonstration that Zak has used the W'annier

representation is based upon his transformation of
the hq representation of the wave function C(k, q)
to an unidentified representation in which the wave
function is given by E„(R). This transformation is
Zak's Eq. (7):

C(k, q) = „, Z e-*"'"E„(R)y„; (q),
n, &

where N is the number of unit cells and g„s(q) is
the Bloch function for band n and wave vector k
normalized to the number of unit cells. We will
show that E„(R) is the wave function in a Wannier
representation. To do this we use the relation'

C(k, q) =(1/N I )Z„- e '"' g(q+R), (2)

which connects the kq representation of the wave
function C(k, q) to the wave function in the coordi-
nate representation g(q+ II), Substituting Eq. (2) in
(1) we obtain

Z„- e '"'" [g(q+R) -Z„E„(R)y„s(q)] =0 .
If we now multiply Eq. (S) by exp(ik ~ R )/Nt(s, sum
over k, and use the definition of the Wannier func-
tion a„(r —R):
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a„(r —R) = (1/N) Z-„e '"'"g„"„(r)

plus the identity

(1/fi)Q ef)('&R Ro&
jf: R, Rp

we find that Eq. (3) becomes

g(r) = Z F„(R)a„(r —R),
ngR

with

r =q+Rp .

(4)

(6)

(6)

We conclude that our Eqs. (V) and (9), which are
the very equations Zak has claimed are difficult to
derive except with the kq representation, are very
immediate and clear consequences of the Wannier
expansion and the Schrodinger equation, respec-
tively. They are much less immediate and less
clear when derived using the kq representation.
It seems appropriate to term the kq representa-
tion irrelevant to the defect problem, at least when

used as Zak has suggested.

DIFFERENTIAL FORM FOR IMPURITY-POTENTIAL
TERMS

That is, Zak's F„(R) is simply the wave function in
a Wannier representation.

kq REPRESENTATION IS IRRELEVANT

It will now be shown that Zak's analysis is both
shortened and clarified by avoiding the kq repre-
sentation. We begin by showing that the basic ex-
pansion of Zak's analysis, his Eq. (8), follows in
two lines from the Wannier expansion, our Eq. (6).

To put Eq. (6) into the form used by Zak, sub-
stitute Eq. (4) in (6):

g(q+ R ) = — Z P„-„(q+R ) e '" "F„(R)
nyk~R

=+ 0», -f &a / a&&0 &
(q) F.(Ro)

We have established that F„(R) is the wave func-
tion in the Wannier representation. Consequently,
F„(R) satisfies the standard Wannier equation (e. g. ,
see Blount' )

[E„(k)—e] F„(R)+ Z 'U „(R, R(&) F„(R(&)= 0, (10)
ffpRp

where

'U „„(R,Ro) = f d r a* (r —R)1&(r) a„(r —Ra)

is the matrix element of the impurity potential 'U(r)

between Wannier functions and where c„(k) is the
energy versus k relation for the mth band, and k
is the operator given by

where we have introduced the operator (attributed
to Roth4) obtained by replacing the k dependence of
the Bloch function by a —i(s/g&) dependence.
Comparison of our Eq. (V) with Zak's Eq. (8) indi-
cates that Zak's "new wave function" g(R, q) is giv-
en by

$(R, q) = P(q+ R), (8)

i. e., Zak's new wave function is the same as the
usual wave function and its general dependence
upon the two variables (R,q) is only a dependence
upon the usual coordinate r = q+ H. Thus Zak's use
of the kq representation has so obscured the analy-
sis as to lead him to a spurious generality.

The identification of Eq. (8) is also obtained from
the Schrodinger equation in the usual coordinate
representation. One simply shifts the origin by
substituting r = q+ R and the Schrodinger equation
becomes

The impurity-potential-dependent term in Eq.
(10) can be put into the same form as Zak's Eq.
(12). This can be done as Zak suggests by substi-
tuting Eq. (V) into Eq. (9), or it can be done direct-
ly by using Dirac notation for matrix elements.
Using either approach the defect-potentia1. -depen-
dent term becomes

Z 'V~(R, Ro) F„(R(&)
fl, Rp

x ['U(q+ R) ())» f &Q/ Qff &
(q) F„(R)]

Thus the Wannier equation [Eq. (10)] becomes

8e„i= —-e F„(R)
eR

2

(-, ' +)'(q)+u(i+R)) f(i+R)=of(i»),
2m sqs

(9) where

+Z~.„~R, -i F„(R)=0, (11.)
sR

which is Zak's Eq. (6) for g(R, q). Here V(q) is
the periodic crystal potential and 'U (q+ R) is the
defect potential. It is therefore untrue that "it
would not be easy to arrive at (this form of)
Schrodinger's equation without the kq representa-
tion. "

Ry —i = ~ )(g]gR) q 'U q+R
8R

&& 4», -f &a/ aff &
(q) ~ (12)

Equations (11) and (12) are Zak's Eqs. (12) and (13),
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respectively.

EVALUATION OF OPERATOR '0„„[R,—i (BIB~))

Zak has evaluated the operator g„„[R, —i(B/BR)]
by expanding the wave-vector dependence of the
Bloch functions in a power series. We now will
show that. a more general result can be obtained if
one uses a slightly different form of Eq. (12), viz. ,

w„R, —i=
= Z g*„&-,(q)V ~ q+ R+ i - y„"„(q)

le - I =-&(a(ai)

(13)
where in Eq. (13) it is to be understood that all the
R dependence is to be placed to the right of all k
dependence before the substitution k= —i(B/BR) is
made. The equivalence of Eqs. (12) and (13) can
be shown by expanding the Bloch function in Wan-
nier functions:

q„;(r) =Z e'"'"0 a„(r —H()) .
Rp

Then Eq. (13) becomes

" q e'"' P'U q+R —Rp
q, Rp

x«.(r -Ho)]a= ((agan) .

Since now all the R dependence is to the right of
all the k dependence we are free to replace k by
—i(B/BR) to obtain

p

R, —i ~
= Z 4~, -;(a& a((& (q) e"o'

q, Rp

x 'U(q+ R —R(&) a„(r —H(&)

=& y. , ;(agan&(q)&(q+H) e., ((agan&(q),

which is the result of Eq. (12).
The advantage of Eq. (13) over Eq. (12) is that

we can now make a Taylor-series expansion of
V[q+ R+ i(B/BR)] about the lattice site 0 and
thereby obtain correction terms to the one-band
Wannier equation without any approximations to the
wave functions. Thus

8 ~ ~ . 8 BQq+H+i =- ='U(R)+ q+i = =+etc.,
Bk Bk BR

and Eq. (12) becomes

8
='U(H) 6„„

—i +'UR F R =qF R (16)

The higher-order terms in Eq. (14) constitute cor-
rections to the one-band Wannier equation depen-
dent upon the rate of variation of the impurity po-
tential 'U(R). For example,

()&*-„(q)
~

q+i = g„a(q)
Bk - g=-~ &a/ &R)

= Z u*„„-(q) i = u„.„(q)
~Bk ].a=-((a/aa)

( 8
(16)

where u„„(q) is the periodic part of the Bloch func-
tion and the corresponding Wannier equation be-
comes the system of equations

B - - . B BU(R)
e„~ —i +g(R)+X„„—i ~ F(R)

BR BR

Z„(R)= ~Z.(H) .
n~m - BR.) BH

(IV)

This result was obtained previously by Blount as
the first correction of a series of corrections to
the one-band Wannier equation involving deriva-
tives of the defect potential. The corrections in-
volving higher derivatives of the defect potential
are obtained by retaining more terms in the Tay-
lor-series expansion of Eq. (14). If the important
wave-vector dependence of the wave functions is
restricted to the neighborhood of a band extremum,
Blount's series of corrections reduces to that of
Zak.

SUMMARY

In this paper it has been shown that (a) the
wave equation obtained by Zak is in the Wannier
representation; (b) Zak's use of the kq represen-
tation is irrelevant to the impurity problem, since
the analysis can be both shortened and clarified by
using the Wannier representation; and (c) one ob-
tains the same corrections to the one-band Wannier
equation previously derived by Blount provided
one avoids Zak's approximation to the wave-vec-
tor dependence of the wave functions.
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8 8'U
+Z g„;(q) q+i = g„;(q) „—~+etc .

a Bk
"

f=-g (a(aa) 8

(14)
The leading term in Eq. (14) leads to the one-

band Wannier equation
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Comment on Electroreflectance Curve Fitting*

J. Grover and P. Handler
Department of Physics and Matevia/s Research Laboratory, University of I/linois,

U~bana, I//inois 61801
(Received 7 May 1971; revised manuscript received 10 March 1972)

We use one-electron theory to fit the direct-edge electroreflectance data of germanium taken
by Handler, Jasperson, and Koeppen in 1969 and compare this fit to another done by Weinstein,
Dow, and Lao using an excitonic theory. The results (Fig. 2) suggest that the data contain in-
sufficient information to distinguish a single method of fitting.

The past few years have seen major experi-
mental improvements occur in the field of electro-
reflectance. ' Carefully controlled experimental
conditions have allowed the experimenter to ob-
tain spectra which can be confidently compared to
theory. Since 1958, when Franz and Keldysh3
predicted the effect of a strong electric field on
optical absorption, numerous improvements have
been made on the one- electron theory of electroreflec-
tance, culminating in the work of Aspnes, 4 who

derived the exact form of the one-electron line
shape for all types of three-dimensional critical
points.

In addition, the effect of the Coulomb interaction

has been taken into account numerically by several
authors. Among these are Ralph, ' Blossey, and,
most recently, Dow and Redfield. Weinstein, Dow,
and Lao (WDL) fitted a portion of the electroreflec-
tance data taken in our laboratory by Handler, Jas-
person, and Koeppen (HJK) in 1969. The data in-
cluded structures attributed to transitions from the
light- and heavy-hole valence bands and from the
spin-orbit-split valence band to the lowest conduc-
tion band and spanned the energy range from 700 to
1200 meV.

The most important effect discussed by HJK was
the "beating" or interference of the light- and
heavy-hole line shapes. This phenomenon is as-
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FIG. l. M/R electroreflectance
data of HJK (Ref. 9) as fit by WDL
(Ref. 8) using excitonic theory and

by HJK using one-electron theory.
Regions contributing to the least-
squares sums used by the separate
authors are shown. Though barely
distinguishable from the abscissa
in this linear plot, the data points
in region 8 are well above the noise
level and show up quite well on a
logarithmic plot (see Ref. 8, Figs.
1 and 3).
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