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the [100] TA mode. This would imply only a 3%
error or so in the corresponding fluorine-ion eigen-
vectors. As a method for checking these eigenvec-
tors, isotope-induced absorption is very sensitive
but allows access to only a few modes. Others are
forbidden by symmetry or swamped by two-phonon
summation absorption.

The frequency of the X, symmetry point has been
found to decrease by 2-3% from the room-tempera-
ture value measured in Li F, opposite to the shift
direction normally expected.

Finally, by using the shell-model data in the

region above the reststrahlen frequency, it has
been shown that the isotope-induced absorption may
be responsible for some of the small features in
the high values of conductivity measured by other
authors.
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A model of a graphite crystal is proposed in which planar layers of positive charge are con-
sidered instead of the point charges of nuclei. The interlayer electronic density is calculated
integrating both the Thomas-Fermi and the Thomas —Fermi-Dirac equations. From these
densities, the total energy of the electrons is calculated including corrections for inhomogene-
ity in the form of Weizsacker and Kirzhnits. The influence of the different corrections is
studied with the result that the best method is to calculate the density from the Thomas-.
Fermi-Dirac equation and to take into account the inhomogeneity corrections in the form of
Kirzhnits.

I. INTRODUCTION

The method of Thomas —Fermi-Dirac (TFD)
gives the energy of an electron system by means
of the integral'
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where lt is the reduced Planck constant, m is the
electron mass and —e its charge, p is the number
of electrons per unit volume, and R is the electric

field. The first term of the integral gives the ki-
netic energy of the electrons, the second one gives
the potential energy, and the last one gives the ex-
change energy. The potential energy is given in
terms of the electric field for later convenience.
The integral (l) must be a minimum subject to the
following conditions: the Poisson equation, which
relates the electrostatic potential to the charge
density, the normalization of the density, and the
boundary conditions. The latter are usually stated
by giving the positions of the external charges or
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the electric field at the boundary of the volume oc-
cupied by the electrons. The TFD method has been
applied with success to the determination of prop-
erties of electron syst~~ms when these properties are
not very sensitive to the charge distribution, as is
the case, for example, in the calculation of the ef-
fective potential in atoms. However, the method
fails in the calculation o~e interatomic forces be-
cause, as 'i'eller has proved, the TFD method
without corrections does not explain even the sta-
bility of molecules. Nevertheless, there are re-
cent calculations of this type. '

As is mell known, the TFD method is a semi-
classical approximation of the self -consistent-field
Hartree-Fock method, with which the TFD coin-
cides in the case of an homogeneous electron gas.
The semiclassical approximation is obtained when
the zero- and first-order terms of a series expan-
sion in powers of h are retained. Therefore, the
obvious corrections to this approximation should
be to take into account more terms in the series
expansion. In this way, inhomogeneity corrections
to the TFD method have been derived mhich are
also called quantum corrections. The derivation
of the quantum corrections, however, is not as
simple a matter because it is known that the series
expansion of the density in powers of 5 does not
almays converge. Therefore, it is not obvious
that the corrections actually refine the TFD meth-

. od, and several different inhomogeneity corrections
have been proposed to date.

An inhomogeneity correction to the Thomas-
Fermi (TF) method was proposed long ago by
Weizsacker. He justified, in an intuitive form, a
correction to the energy given by the integral

U„= (h'/8m) f [(Vp)'/p] dv . (2)

The rigorous derivation of the quantum corrections
has been made by Kompaneets and Pavlovskii, '
Kirzhnits, and others. ' The quantum corrections
of lower order have been found to be of the form

Uz = (5'/V2m) f [(Vp)'/p] dv - (h'/12m) f V'p dv .
(3)

Actually, only the first term of Eq. (3) is usually
quoted in the literature because the second one is
zero when the external charges are pointlike. In
the model of graphite that we will study this is not
so, and the second term of Eq. (3) must be taken
into account. The existence of the second term is
clearly seen in the paper by Kirzhnits, for exam-
ple.

Kirzhnits has shown that the correction of Eq.
(3) reduces the error in the energy of atoms from
20 to about 3%%up, while the Weizsacker correction
[Eq. (2)] is too large. If the calculation of the en-
ergy of an atom is performed correcting also for
the lack of validity of the TFD method in the neigh-

borhood of the nucleus, the Kirzhnits method [TFD
plus Eq. (3)] gives a result which is close to the
Hartree-Fock energy, differing by about 0. 2%%up.

'
However good these results are, the value of the
inhomogeneity corrections has been questioned ow-
ing to the lack of convergence of the series ex-
pansion of the electron density in terms of 5.
Actually, Dagens has shown that the series ex-
pansion of the energy may be convergent even if the
series expansion of the density is not. Another
difficulty of the Kirzhnits method is that the in-
homogeneity corrections to the exchange energy
[not taken into account in Eq. (3)] may be as im-
portant as the corrections to the kinetic energy
when the density is low. ' Even the form of the
corrections to the kinetic energy is questioned,
and some authors believe that Eq. (3) is not the
best one. ' Actually, it has been shown that the
corrections of Weizsacker [Eq. (2)] and Kirzhnits
[Eq. (3)] give upper and lower bounds to the ener-
gy, each one being a better approximation in spe-
cific cases. This discussion shows that the prob-
lem of the inhomogeneity corrections to the TFD
method is not solved, so that it is interesting to
test the different corrections in some particular
electron systems.

A very sensitive test for the correctness of a
calculated electron density is the use of this den-
sity in the study of interatomic forces. A number
of calculations of interatomic forces by the TF
method are found in the literature. Most of them
refer to noble gas atoms, but the covalent binding
of some homonuclear molecules has been studied
also by this procedure. 4 However, it seems that
the calculation of the covalent binding energy has
little value because the TF method, without cor-
rections taking into account the granularity of elec-
trons, cannot give rise to shell effects, which are
essential in the interpretation of the covalent bond.
In fact, the method will predict similar bonds for
molecules with a similar number of electrons,
such as nitrogen, fluorine, and neon, but it is
well known that the first two molecules are stable
and the last one is not. This shows clearly that
the method is not adequate in the study of covalent
bond if corrections taking into account the granu-
larity of electrons are not included. Some general
corrections of this type have been proposed, such
as that by Fermi and Amaldi (see Gombds') and by
Plaskett et aL ' Without these corrections, which
do not seem easy to include in the study of inter-
atomic forces, it is obvious that only forces which
depend on the global distribution of electrons can
be calculated by means of the TF method. On the
other hand, intermolecular long-range forces are
also excluded because they depend essentially on
the electron correlation, which is not taken into
account in the TF method. (These are frequently
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called van der Waals forces, although this name is
sometimes used with a wider meaning. ) There-
fore, it seems that only some medium-range
forces can be calculated with the TF method. This
seems to be the case of the interlayer force in
graphite, and this assumption is confirmed by the
present calculation.

In this paper, we deal with a very simplified
problem in which the TFD equation can be analyt-
ically solved. Aside from the interest of the cal-
culation of the interlayer force in graphite, the
purpose of this paper is to test, in a particular
problem, whether the inhomogeneity corrections
are an essential refinement to the TFD method and
which is the best method to take it into account.
We mean that one of the purposes of this paper is
to compare the different inhomogeneity correc-
tions (i. e. , Weizsacker, Kirzhnits, etc. ) and to
see which is the best one; also, to see how these
corrections must be included in the calculation.
We have made calculations using the corrections in
the form of Weizsacker [Eq. (2)] and in the form of
Kirzhnits [Eq. (3)]. Another aim of the calculation
is to make a comparison between the results ob-
tained from TF and TFD equations. In the first
case, the electron density is found by solving the
TF equation, and the exchange (Dirac) and inhomo-
geneity corrections are calculated as perturbations.
In the second procedure„ the exchange is taken in-
to account from the very beginning calculating ihe
density from the TFD equation, while the inhomo-
geneity correction is considered a perturbation.
(Calculations are in progress in which both ex-
change and inhomogeneity are taken into account in
the starting equations. )

II. MODEL OF GRAPHITE

A graphite crystal consists of a set of planar
layers, the interlayer distance being 3.354 A.
The carbon atoms in a layer form a hexagonal lat-
tice, the distance between nearest-neighbor nuclei
being 1.421 A. The bonds in every layer are
strong, while the forces between layers are much
weaker. In order to find the interlayer force, we
must calculate the energy per atom of a crystal as
a function of the interlayer distance. We will as-
sume that the interatomic distance in a layer does
not change when the interlayer distance changes
and that the vibrational energy of nuclei is negligi-
ble compared with the electronic energy. The en-
ergy per atom U will be a function of the interlayer
distance R with a minimum at the equilibrium dis-
tance R0=3. 354 A.

The first step in the calculation is the solution of
the TF or TFD equations once the position of every
nucleus is given. These equations, depending on
three variables and being nonlinear, are extremely
difficult to solve accurately. We very much sim-

d p 8v2
dX 31T

(4)

(6)

plify the equations by substituting homogeneous,
planar distributions of electric charge for the actu-
al charges due to the (pointlike) nuclei. The sur-
face density of charge is so chosen that the total
positive charge of a large crystal will coincide with
the actual charge of all nuclei in it. If d (= 1.421 A)
is the interatomic distance, the surface density of
atoms in a graphite layer is n= 4/(3v 3 d ) and the
charge density g= 6en=0. 6405 a. u. [From now on,
we will use hartree units (a.u. ) such that 5 = m = e
= 1.] Hence, the electric field in the neighborhood
of a layer is normal to it and has a magnitude IEOI
=E0=2z0=4. 024 a. u. In order to justify the use
of this model of graphite, it is necessary to show
that the change in energy with the interlayer dis-
tance is almost independent of the actual distribu-
tion of the positive charges of nuclei. It is not
needed to prove that the absolute energy is inde-
pendent of the model. In fact, the interlayer force
depends very much on the electron density in the
mean region between layers, but it is probably al-
most independent of the density in the neighborhood
of a layer. It is reasonable to assume that the
electron density in the mean interlayer region does
not depend very much on the detailed charge dis-
tribution at the layers. A test of these hypotheses
is the agreement between the results of the cal-
culation and the experimental data. If the agree-
ment is good it is very probable that both the model
of graphite and the TF method of calculation are
good. Nevertheless, a disagreement may be due
to the failure of either.

An estimate of the error involved in our model
of graphite can be found by considering the changes
in the interlayer force when the layer stacking
changes. It is known" that the force constant can
change from 2. Ox 10 up to 3.6x 10 dyn/cm in
different specimens of graphite, even when the in-
terlayer distance changes less than 3%, although
it is not clear if these changes are in part due to
lattice defects. In any case, this does not invali-
date our model as a test for the TF method, be-
cause the different corrections of the TF theory
give rise to changes in the force constant of graph-
ite of several orders of magnitude, as will be seen
at the end of the paper.

The proposed model of graphite extremely sim-
plifies the starting equations, which become or-
dinary, instead of partial, differential equations.
Indeed, they can be solved analytically. If x is the
distance from a point inside the crystal to the
nearest layer, the equations are
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f (E +C) i dE=22772C i'o-E i [ — Z 0.06 -„~l

Z —
~sa Z + G(Z )], Z =C—/Eo .

This function added to the U»(R) appears also in

Fig. 1.
Finally, the inhomogeneity correction was ob-

tained from both Eqs. (2) and (3). The last one
gives the integral

U»= (A/120(( ) (60(() i
[ f (E + C) i'E dE

0.04

—5Eo(EO+C)' + ~ Eo '] 002
where also the energy was redefined so that U»(~)
= 0. Integration by parts gives

U = (A/28(( )(60m)'~'[E ~' —E (E +C)' '

——', c f"(E'+c) '"dE],
0

0
1 3 R.i2

x Ca.u.)
which reduces U~ to known integrals. From this,
the function U»+ UL)+ U~ was obtained, which also
appears in Fig. 1. The calculation of the inhomo-
geneity correction from Eq. (2), which is straight-
forward, gives a total energy U(R) from which a
much stronger interlayer force is obtained, the
interlayer equilibrium distance predicted being
less than 3 a. u.

The comparison between thefunctions U(R) shows
that the exchange and inhomogeneity corrections
are essential in the calculation of interlayer forces.
It is interesting to note that the stability of graphite
is predicted without taking into account the inho-
mogeneity correction if the exchange correction is
calculated as a perturbation. This is probably an
accident because, according to the Teller theorem,
the inhomogeneity corrections are essential in ex-
plaining the stability.

It has not been necessary to obtain explicitly
the electron density in order to find the energy,
but it is interesting to perform the calculation.
From Eqs. (4), (7), and (8) we obtain

4((p= (250/9(( )'i'(E + C) i' .

Eliminating E between this equation and Eq. (9) and
integrating, we obtain a relation between the den-
sity p and the position x in integral form. The in-
tegration was performed numerically. In Fig. 2,
the function p(x) is shown for two values of the
interlayer distance, R = R0 and R = . The density
as a function of x for an infinite interlayer separa-
tion (i. e. , C= 0) has the simple analytical form

p(x) = ( (( (() [x+ (225(( /2EO)'i ]

This is the electron density which the TF method
gives for the surface of any metal if the positive
charges of nuclei are approximated by an homo-
geneous distribution.

FIG. 2. Electron density as a function of the distance
to the nearest layer. Dashed lines, from YF equation;
continuous lines, from TFD equation. In each case, upper
line for equilibrium interlayer separation, lower line for
infinite interlayer separation.

IV. CALCULATION FROM THOMAS-FERMI-DIRAC
EQUATION

The first step is to combine Eqs. (5) and (7) in
order to obtain the following relation between E
and p:

E= [ (( (3/(() i
p —2(((3/(()' p —C]'

(15)
where C is an integration constant. On the other
hand, from Eq. (7) one derives

dE EO 1 "' Ep, c
2(( o p 2((p (0) 2(( p(((i 2) p'

(16)
where E(p, C) is the right-hand side of (15). Two
relations between C, p(-,'R) and p(0) can be obtained
from Eq. (15) taking into account the boundary con-
ditions (6), which can be written

E(0) = 4. 024 a. u. =E(p(0), C),

E(2R) = 0= E(p(~ R), C) .

Hence, the values of p(0) and C were numerically
calculated for each value of p(~R). In practice
values of p(-,'R) were taken between 0. 002127 5

and 0. 089 63 a. u. From the values of p(2R), p(0),
and C, those of Bwere found by numerical inte gration
of Eq. (16). The values of R so obtained lie between
8. 60 and 3. 01 a. u.

The interlayer distance R = 8. 60 a. u. is the
greatest one for which the solution of Eq. (5) has
no singularities. This value of R corresponds to
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FIG. 3. Inter1ayer binding energy from TFD equation.
UT+D, TFD energy; Uz, inhomogeneity (Kirzhnits) energy.

the lowest possible value of p(2R) (= 125/192m'),
which is obtained from Eq. (15) taking C = 0 and
E=O. If R &8. 6 a. u. the TFD equation gives a
discontinuous density, which is zero in all points
at a distance greater than 4. 3 a. u. from the nearest
layer. This is similar to the result that atoms
have finite radii in the TFD theory.

The calculation of the energy is straightforward
if Eq. (1) is integrated from 0 to 2R in the coor-
dinate x in a similar form to that indicated in Sec.
II of this paper. Going from the variable x to E by
means of Eq. (7) and then to p by Eq. (15), the
following expression is obtained [after a redefini-
tion of the energy similar to Eq. (12), but such
that U(R= 8. 60)= 0]:

UT Fn= (A/14411) j[10lT (Sp(0)/'w) 26(3p(0)/7) ]Eo

+ CR+2(3/iT) J p
~ E(p, C)dp} 7. 7123 .

P( a/2)

The integral was evaluated numerically and the
values of the energy so obtained are plotted in Fig.
3. The energy is chosen to be zero for the greatest
interlayer separation R = 8. 60 a. u. because the

TFD method gives constant energy for R &R

The function U»D has no minimum as was expec-
ted from Teller theorem. It is seen that the cal-
culated energy is quite different from that obtained
starting from the TF equation and adding the ex-
change correction as a perturbation.

The inhomogeneity correction is obtained from
Eq. (3) which, taking into account Eq. (7), gives

f'P(0) ( dp dpUr= (i's») il
~ dR &p —(3&&)

Jp(&/2) k + x=o

The derivatives are obtained from Eq. (15) and the
integral in (17) was calculated by a numerical
method. The values of U~, added to that of V»D,
give the function U(R) which is shown in Fig. 3. It
is not possible to calculate the energy for values
of R greater than 8. 6 a. u. because the function
p(x) is discontinuous in this case and the integral
(17) is not defined.

The agreement of the final function U(R) with
experimental data is very good, as will be seen in
detail in Sec. IV. Nevertheless, a calculation was
performed taking into account the inhomogeneity
correction also in the form of Weizsacker [Eq.
(2)]. The procedure is similar to that described
starting with Eq. (3). The energy so obtained,
U~(R), when added to U»n gives a minimum of
the total energy for R &3 a. u. far from the experi-
mental equilibrium distance. As a conclusion, it
seems that the Kirzhnits correction [Eq. (3)] is
much better than the Weizsacher correction [Eq.
(2)] in this problem.

The electron density p(x) can be obtained from
Eqs. (7) and (15). The resulting differential equa-
tion can be solved analytically if C = 0, which cor-
responds to R = R . However, the analytical
form is rather complex and it is better to make a
numerical integration. The function so obtained
is shown in Fig. 2 in comparison with that obtained
from the TF equation. A numerical calculation
was performed also for the experimental interlayer
distance R=RO which is also shown in Fig. 2. It
is to be noted that the function p given by the TFD
equation is not strictly the electron density, the
difference being important when the number of
electrons is small. ' In a graphite crystal the
number of electrons is indefinite and the difference
is probably small.

V. DISCUSSION

The experimental data about the interlayer force
in graphite are very limited. In fact, only two
quantities have been measured with good precision:
the interlayer distance and the force constant. '
Actually, the force as a function of the interlayer
separation is known between R =2. 90 A and Ro
= 3. 35 A. ' The interlayer distance corresponds
to the position of the minimum of the function U(R)
and the force constant to the second derivative of
this function at the minimum. The absolute value
of the minimum, i. e. , the binding energy, has not
been measured. In our calculation, the interlayer
distance may be very sensitive to the model of
graphite, although the agreement with the experi-
mental datum would support both the model and the
TF theory.

Until now, there was only one theoretical calcu-
lation of the interlayer force in graphite, due to
Brennan, who used the molecular-orbital method20
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TABLE I. Comparison of calculated and experimental
quantities.

Interlayer
d jstance Bind jng enerp'a' I'orcc constant

(a. u. ) (a. u. ) (a.u. )

Expt.
Our calc. UTF -~ UD

UTF UD ' US&

UTFD i Uit'

Brennan

G. 34
i.98
4.9~
G. 07

(G 37)c

0.0114
0.02GO

0.0039
0.00GG

0.001 G9a

0. 0057
0. 01Gg

0. 002;y;j
0. 0019

in the linear combination of atomic orbitals ap-
proximation (LCAO). The results of Brennan, how-

ever, were very sensitive to the effective charge
of the carbon atoms, which became, in fact, an
adjustable parameter. Furthermore, Brennan
calculated only the repulsive part of the potential,
taking a London-type term -A/R for the attractive
part. The parameter A was obtained from the
condition that the minimum of U(R) would coincide
with the experimental datum. In this way, the
Brennan interlayer potential depends on two param-
eters which were determined from two empirical
data (force constant and interlayer separation). A

number of interlayer potential functions can be
found in the literature, ' obtained empirically or
with reference to the paper of Brennan, the most
recent being due to Drickamer et al. '

In Table I the experimental data are compared
with the results of the present calculations. The
comparison clearly shows that good results are ob-
tained only when the electron density is calculated
from the TFD equation, and inhomogeneity correc-
tions are taken into account by the method of
Kirzhnits. As was indicated, the binding energy
has not been measured, and we compare our results
with that of Brennan for this quantity (see Table I).
The agreement between the result of Brennan and

that obtained from the TFD equation plus Kirzhnits
correction is also satisfactory, but this is not the
case for the other TF calculations. Our calculation
of the binding energy as the difference U(~)
—U(RO) is straightforward if the electron density
is obtained from the TF equation, but it is not pos-
sible from the TFD density, which is discontinuous
for R = 8. 6 a. u. In this case an extrapolation was
performed, which is explained in the Appendix.

The agreement between the function U»D+ U~ and
the experimental data is better than is usual in TF
calculations. (It is to be noted that force constants
are extremely difficult to obtain theoretically with
accuracy. ) An explanation of this fact can be found

From Ref. 19. See, however, comment on this
quantity in Sec. II.

"See Appendix for the procedure to determine the param-
eters.

'From the best empirical data at the time of Brennan
calculation.

by considering the conditions of validity of the TF
method. The semiclassical approximation which
leads to the TF equation is valid when the following
inequality holds

'd%

dx
d I 2&]&(x) I

"'
dx (18)

where the potential Q(x) is measured from the
Fermi level and atomic units are used. The values
of x for which condition (18) holds depend on the
function Q(x) and this function depends on the start-
ing equation (TF or TFD) and the value of the inter-
layer distance R. Nevertheless, the difference
in the potentials (or in the densities) is not great,
as can be seen in Fig. 2. Therefore, we make an
estimation of the left-hand side of inequality (18)
using the simplest function, which is Eq. (14). In
this way, the following condition is obtained:

x«9a. u. (19)

APPENDIX: ANALYTICAL POTENTIAL FUNCTION

As a summary of the calculations, it is useful to
obtain a simple analytic function U(R) fitting the

It is seen that all calculations have been made un-
der this limit because the inequality x & &R always
holds and the calculations have been limited to —,'R
&6 a. u. in solving the TF equation. In the solution
of the TFD equation, the exchange term imposes the
condition

x & —'R & 4. 3 a. u. ,

which is stronger than inequality (19).
The calculation of the electron density in our

model of graphite can be compared with that of the
free atom. The TF method cannot be applied in the
region of the atom which is close to the nucleus
because the potential changes rapidly in this region
and condition (18) does not hold. In our model of
graphite, however, the condition (18) is fulfilled
up to the layer of positive charge because the
singularity of the nuclear potential has been elimi-
nated. On the other hand, the TF method does not
hold in the external region of the atom and this is
also true in graphite. However, the planar sym-
metry in this case —instead of the spherical one in
the atom —makes the charge density decrease more
slowly in graphite, so that the region of validity
is greater.

As a conclusion of the calculations, it seems that
the TF method can be used to determine medium
range interatomic forces in quantitative agreement
with experimental data. For this, it is necessary
to calculate the electron density from the TFD equa-
tion (the TF equation being not enough), which must
be solved with great precision. Corrections for
inhomogeneity must be included in the form of
Kirzh nits.
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numerial values of the best interlayer energy (U»n
+ Ur). As was indicated, the TFD method does not
permit a calculation of the energy for an infinite
interlayer separation. This shows that an unknown
constant must be added to every calculated value.
On the other hand, the minimum of the function can
be sensitive to the model of graphite. For thege
reasons we have not identified U»D+ U„with U(R)
but rather we have assumed the following relation:

U»D(R —&R)+ Ur(R —6R) —C = U(R) . (20)

The constant 6R has been determined so that U(R)
has a minimum at the experimental interlayer dis-
tance, which gives 5R = 0. 264 a. u. At first we
chose for U the form used by Drickamer et al. ,

'
which is

U(R) = —a/R +B/R'

but the fit obtained was poor. Finally, we found
that a good fit is obtained using the function

U(R) = -A/R +B e (21)

The best values of the parameters are A = 11.868
a. u. , n = 1.338 a. u. , and B = 16.719 a. u. The
constant C of Eq. (20) has the value 0. 0016 a. u. ,
which was used to estimate the binding energy
(0. 0039 a. u. ) which appears in Table I. The force
constant of the fourth line of Table I was obtained
also from Eq. (21). The constants of the second
and third lines were obtained by fitting parabolas
to numerical values around the minima, .
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