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We have used comparative Bril louin scattering (reference scatterer: toluerre) to measure the
nine photoelastic tensor elements of calcite (eight elastically symmetric, one elastically anti-
symmetric) in both magnitude and sign. Our measurement of the recently predicted anti-
symmetric component agrees in magnitud e to 5% with that theoretically predicted. By adopting
the theoretical sign for this component, the signs of all other components are determined from
the data. The 5% agreement gives a measure of the absollte accuracy of the results. The
presence of the antisymmetric component causes p 323 and p2332 y previously believed to be
equal, to differ by more than a factor of 10. The formulas needed to analyze Brillouin
scattering in anisotropic media are derived using a new constitutive relation and a new Green' s
function for radiation in an ani sotropic medium. Inclusion of boundary effects (solid angle
expansion, scattering-volume demagnification, etc. ) makes the formulas valid outside the
scattering medium. The convenience of comparative Brillouin scattering for the numerical
determination of the photoelas tie tensor components, particularly in low -sy mmet ry crystals,
is emphasized.

I. INTRODUCTION

%'e report here measurements of the photoe las tic
tensor elements of calcite made by comparative
Bril louin scattering using toluene as a reference
scatterer. All nine elements (eight symmetric
upon interchange of the tensor indices associated
with the measure of elastic def ormation; one anti-
symmetric upon the interchange) were measured
in both magnitude and sign using Bril louin scat-
te ring alone .

The purposes of this work are fivefold: (i) to
measure the recently predicted ' anti sy enny et~i c
tensor element that arises from the coupling of
rotations (in contrast to strains) to the scattering
process (we find agreem nt between the predicted
and measured magnitudes of tIiis element to within

5%); (ii) to demonstrate that the algebraic signs

of al 1 the iens or elements can be determined from
the theoretically known sign of the antisymmetric
tensor element; (iii) to point out that measurement
of the antis ym metric tensor element can be used
to determine the absolute calibration of the scat-
tered light intensity; (iv) to show that comparative
Bril louin scattering is a method as accurate in
determining absolute values of photoe lastic tensor
elements as acousto -optic diffraction or static-
load -induced biref ringence and is more convenient
for low-symmetry crystals; and (v) to present
Bril louin-s catter ing formulas valid for crystals of
any symmetry and of any optical or acoustic anis ot-
ropy in any orientation, for any angle of scattering,
and for rather general orientations of the exit sur-
face . A de rivation of the latter is presented that
is based on a new constitutive relation derived by
an at initio calculation ' and on a new Green' s
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function for radiation in an anisotropic medium.
Calcite was chosen for this study because (a) it

is expected to possess a very large antisymmetric
photoelastic tensor element resulting from its large
optical birefringence, (b) it is nonpiezoelectric and
nonferroelectric, (c) it is not optically active, (d)
it has lower symmetry (trigonal, 3 )n) than rutile'
(the only other crystal whose antisymmetric photo-
elastic tensor element ha, s been measured), and

(e) it is readily available in large high-optical-
quality crystals. Calcite has added interest for
this study because it was the only strongly bire-
fringent crystal chosen by Pockels for study to
demonstrate the correctness of his phenomenolog-
ical formulation of the photoelastic effect.

The Pockels formulation assumed that the strain
completely characterized the elastic deformation
that caused the photoelastic effect. Since Pockels
measured refractive index changes caused by static
homogeneous deformations, the rotation associated
with the elastic deformation was simply a rigid-
body rotation. As such, it was of trivial interest,
and Pockels attempted to eliminate its effect on
his measurements by alterations of his experi-
mental technique. During the past half-century the
photoelastic interaction has often been studied by
the deflection of light by elastic waves created
thermally (Brillouin scattering ) or coherently by
transducers (acousto-optic diffraction ' ). All
workers in these fields until very recently'~' as-
sumed that the Pockels formulation applied equally
well to these forms of measurement of the photo-
elastic interaction. This is not so because in these
measurements the wavelength of the elastic wave is
typically very small compared to the dimensions
of the medium studied. Thus, the elastic deforma-
tion is inhomogeneous and the associated rotation
is not a rigid-body rotation and cannot be avoided
experimentally. The contribution of rotations to
the photoelastic interaction in these cases is thus
as intrinsic as that arising from strain.

The effect of rotations on the photoelastic inter-
action can be derived by a phenomenological argu-
ment or a fundamental calculation with similar
results. The change in the inverse dielectric ten-
sor'[()[ ') is found to be given (omitting for the
moment the indirect photoelastic effect) by

(tkK )'(i] ) t (ii) (k) ) (kl ) +P(i) )[k) ]~[k) ]

—P'(, ~y &» uu, l

where the summation convention has been used and
the infinitesimal strain and mean rotation are de-
fined, respectively, by

1
S(kr) . (uk, i+u=i, -k)

and

l I& [k) ] = 3 (uk, ) u ik) ~,

Parentheses enclosing subscripts indicate sym-
metry upon interchange of the subscripts, while
brackets indicate antisymmetry upon interchange.
The gradient of the displacement vector is denoted
by u, , = 8u, /sx, . In Eq. (1) the Pocl[els tensor is
denoted by p«»&» &. An explicit expression for the
new antisymmetric part p&,»&»& of the total photo-
elastic tensor p&;, », is given by'

t ('')[kl] [5'[k ( )l]J+ ][3(» )l]i ]

The elements of this tensor allowed by symmetry
for the various crystal classes have been discussed
elsewhere. '3 (These requirements are more
specific than those for a general fourth-rank tensor
symmetric on the first pair of indices and anti-
symmetric on the second pair. ) Suffice it to say
here that for calcite the only nonzero elements are
predicted by Eq. (1.4) to be

p(33)[33] p(]3)[]3] 3 (n, —n, ) = + 0.0450 (1.5)

for light of 5145-A wavelength. Here n, and n, are
the principal ordinary and extraordinary refractive
indices. Note that when these indices are known,
the sign and magnitude of the antisymmetric part
of the photoelastic tensor can be calculated. (The
sign is positive for a negative uniaxial crystal and
vice versa. ) The sign can be used in conjunction
with Brillouin scattering (or acousto-optic diffrac-
tion) measurements alone to determine the alge-
braic signs of all of the photoelastic tensor ele-
ments. The predicted magnitude can be used as
an absolute standard or calibration for such mea-
surements. In this work, however, we will use
the light scattering from toluene as an absolute
standard in order to show that the measured mag-
nitude of the antisymmetric tensor element agrees
with the prediction of Eq. (1.5).

II. THEORY OF BRILLOUIN SCATTERING IN
ANISOTROPIC MEMA

Calculation of the Brillouin-scattered light inten-
sity requires a solution of the driven or inhomoge-
neous wave equation

(]' (-3V, ~a) ' E(f', (u, )

[VV —1(V V')j- )[((ua) E(]k, (d]))

=s' (r~ ())]))/&o ~

Here r is the position vector, w~ is the scattered
light frequency (either the Stokes frequency ~o
—cv„or the anti-Stokes frequency &o+ co„, where
coo is the input optical frequency and co„ the acous-
tic frequency), c is the velocity of light in vacuum,
v is the gradient operator, Tc((da) is the dielectric
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1
X&J&tl 2 Ktm(&00)P&mn}nt Knj(&do)

2dl't = o K&l (&tl0) t t nK l(&tt0)

(2. 6)

(2.6)

Here e,» is the piezoelectric tensor, that when
summed over the strain yields the polarization;
x, , is the conventional clamped electro-optic
tensor, that when summed over the low-frequency
electric field yields the change in the inverse di-
electric tensor; 2d, » is the clamped electro-op-
tic tensor expressed in the form conventional
for the optical mixing tensor; f is a unit vector in
the direction of propagation of the acoustic wave.
The derivation of Eq. (2. 4) yields constitutive ex-
pressions for X;»„d;», e»&, and y, ~ including their
expected frequency dependence.

The second term of Eq. (2.4) represents the in-
direct photoelastic effect, that is, the succession
of the piezoelectric and electro-optic effects. It
is numerically significant in strongly piezoelectric
crystals such as LiNbO„LiTa03, a-HIO3, etc.
This effect was first calculated by Chapelle and
Taurel' though their work had been forgotten'
when the first photoelastic measurements were
made on these ma, terials.

In a typical geometry used to observe Brillouin
scattering the nonlinear polarization 6' is nonzero
over a small but finite region in the medium under
study. Outgoing-plane-wave solutions are inap-
propriate for such a geometry. Hence Eq. (2. 1)

of free space (we choose to work in mks units).
6 is the nonlinear driving polarization and E the
electric field. The Fourier expansion of any of
these fields (denoted by Z) follows the general
notation

Z(F, f) = ,' [Z—(F,&dB ) e '"B'+Z*(F, &oB) e'"B' ]

+terms at other frequencies . (2. 2)

When plane waves are used, the notation will con-
forrn to

Z(F t) & [Z( )
&&&tB' 5 (cot-) + Znc ( ) e-«&B'P-4IBt) ]

+other terms, (2. 3)
so that Z(&0B) is the amplitude of the «tB Fourier
component of Z(F, t).

In all previous treatments of Brillouin scattering
in an anisotropic medium ' ' the nonlinear driving
polarization has been determined from the Pockels
phenomenlogical formulation of the interaction.
Here we use the form derived from our ab initio
theory of electrodynamics in anisotropic elastic
dielectrics':

2digraras espy
+&(F~ &OB) = &o X&gnt-

~oap K~(&o„)a,

El (» &0) Mt, l (

where

is best solved by a Green's-function technique.
Formally, the solution is

E(F, (uB) = f G (F, F'') a'(F', &0B)dF'/&o, (2. 7)

where the dyadic Green's function is given by

G(F, F') = f o. '(k, &oB) e'"' 'dk/(2tl) . (2. 8)

The Green's function of Eq. (2. 8), which is valid
for arbitrary anisotropy of the medium, has been
derived, that is, n ' calculated and the integral of
Eq. (2. 8) evaluated in the far field. Using this
form of 6 and taking the optical and acoustic
driving fields that produce &Tt (F) as plane waves over
the source volume which we assume for simplicity
is a rectangular parallelepiped, we find the radiated
electric field to be

V, C cos5'
n)&l B k (Bg 0&oB)

where

hk' -=k0+k„-kB (go, &ttB) (2. 11)

and l &, l 3, and l, are the lengths of the sides of the
parallelepiped. From Eq. (2. 10) it can be seen
that a significant electric field occurs only near

ak" =0, (2. 12)

which is called the~hase matching or Bragg scat-
tering condition. 8'(go, &dB) is a real eigenvector'
of the homogeneous wave equation

(1 —goifo) ~ 8 =[1/n (go, &ttB)] K (&uB) '8 (2.13)

normalized according to

g ~ h~ =5„~ . (2. 14)

In Eq. (2. 13), n" is the refractive index and y de-
notes the polarization state.

The magnetic induction H can now be calculated
and the time-averaged Poynting vector

&«~ "(go &oB) &'(ufo, &dB) &y (&0,) e'"o "e"'
(2. 8)

where V, is the scattering volume, x is the distance
from the volume to the surface, 0 is a unit wave
vector for the wave whose Poynting vector is in the
direction of observation F, kB(go, &0B) is the mag-
nitude of the wave vector of this wave, K" is the
Gaussian curvature in k space of the ~(k) surface
for the q polarization at the point where the sur-
face normal is parallel to the direction of observa-
tion F, 5" is the angle between the Poynting vector
and the wave vector (or equivalently, between 8"
and X)' = K 8'), and )l is a numerical phase which
we need not specify here. C is defined by

1 ~; „" . &' F g sin( —'k, l;)
V~ I;g 2&k( l]
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2 Re(E (I', ~s)» (»&a)]

is found to be

fy e I4(+0& 8 ] 8
lg p( )l232' &pt' &g)g K

x[f0($" 8') —8"(8' ' so)] (2. 15)

It is now necessary to relate the average-dis-
placement-vector amplitude (in the mean-square
sense) to the temperature of the medium. We ex-
pand the displacement vector considered as a
function of position and time in terms of plane
waves as

&/2

u(r, t)= Z
l ~ [a(k„,g)

e""&'""""
i~, g ( 2pV~A

H= 4 h(u„(k„, ()l
f kT

kg, (

Comparison of Eqs. (2. 21) and (2. 23) yields

la(k~, ()l'=»III~~(4, i).

(2. 23)

(2. 24)

The displacement-vector amplitude needed in Eq.
(2. 4) is then given according to the convention in
Eq. (2. 2) by

can also be expressed as

(k $)(e+A "A~ ~ ~~~ I ) (2 22)
~0

kg, (

where k is Boltzmann's constant and T is the ab-
solute temperature. Since kT»k~„(k» $) for
typical experimental conditions,

+a*(k„,()e ""&' "&")b(&,$) . (2. 16)

Here V' is the normalization volume of the acoustic
modes, p is the mass density of the medium, 8 is
Planck's constant divided by 2m, a(k„, $) is an am-
plitude factor depending on the acoustic wave vec-
tor R„and mode type $()=1, 2, 3) having the proper-
ty a*(R&, $) = a (—k&, ]), and b(K, () is a real unit
displacement eigenvector satisfying the acoustic
propagation eigenvalue equation

e;;~iagaiba(» k)=pv'(a, $)&;(a, () . (2. 17)

Here c;,» is the usual elastic-stiffness tensor, a
the unit acoustic wave vector, and v('K, $) the
velocity of the $-type acoustic mode related to the
frequency by

~~(a, $)=k„v(a, $) .
It can be shown from Eq. (2. 17) that the displace-
ment eigenvectors b are orthogonal. With unit
normalization we have

5(a, ~) b(a, q)=5,„. (2. 19)

The elastic energy of the scattering medium

H=
2 f (p ; u+uu&c;;»u~, )dr, (2. 20)

derivable from Eq. (2. 16), can be expressed in
terms of the expansion of Eq. (2. 16) as

@+A(kgb $) a(kgb $) ' . (2. 21)
kg, g

It can be seen here that I g I represents the number
of acoustic excitations (phonons). It was for this
reason that the expansion constants were chosen
as in Eq. (2. 16). By treating the phonons as non-
interacting bosons the energy at thermal equilibrium

x a(k„, ()b(a, ()e'""'

x
l

@"&~~or&~(~o)«&a(a &) I'

x
l
s,( 8 ' h ") —h "( 8 " s,) l, (2. 26)

where X"' refers to the entire bracketed quantity
in Eq. (2.4). Since the normalization condition
(2. 14) requires the magnitude of 8" to be
(n" cos5') ', the last factor in Eq. (2. 26) is simply
[(~')2cos5'] '. In order to obtain the total scat-
tered power P"„,inside the medium Eq. (2. 26)
must be integrated over Vdk„/(2m) . In perform-
ing this integration, functions of k& such as
v (a, g) ands(a, $) can be removed from the inte-
grand since they are slowly varying functions of
k„compared to 4 . After this removal a should
be interpreted as being a unit vector in the direc-
tion of k& -ko. With this approximation and with
the use of the integral expression for 4 given in
Eq. (2. 10) the integral I which must be evaluated
is simply

(, ~) '""', (
2kT

pV» k~, $i
omitting an arbitrary phase factor implied by Eq.
(2. 24).

We now multiply the magnitude of S" from Eq.
(2. 15) by r &II „, where &0„ is the solid angle (in-
side the medium) of Poynting vectors observed, to
obtain the power P" (k„), in W, scattered from an
acoustic wave characterized by a wave vector k&.
Using Eqs. (2. 4), (2. 15), and (2. 25), we obtain

, (- )
&o(us[n'(so, &us)]'(cos 5')V,'C'&Q, AT

16m c Vpv (a, $)K~

I=—
(2 ),V~

'

l

e' " " ' 'drdr
~v$ $ v, $+ v

(2. 27)
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Thus, we obtain

&0()(&&n (sQ (()+)(cosh")V,&Q„kT )g8 if 8, I
ins 18 2 2( ~)K8 ( i Xi& & i(i()o )&» ~ i

(og V,&Q„kT '(

8 2c2pva &1 „8„"(cosf")(cos&8)K

II 32
Ad&8V, r&Q„kT li(n") (n ) (cos5 ) (cos5 )S, ii

fnPfnnkl n 0 l
~

(2. 28)

S' = —,'coen lE I cos6 (2. so)

Equation (2 ~ 28) applies within the scattering me-
dium. Previous theories of Brillouin scattering
have left the supposedly simple calculation of cou-
pling the scattered radiation from the inside to the
outside of the crystal to the experimenter. For
many simple commonly used geometries the problem
is, in fact, trivial; for general orientations of low-
symmetry crystals and general orientations of the
exit surface the problem is far from trivial. Be-
sides transmission factors, source demagnification
and solid-angle expansion must be considered. Con-
sideration of these effects is complicated in the
general case by the noncollinearity of wave vectors
and Poynting vectors and by astigmatism introduced
by the planar exit surface. Solution of this general
coupling problem has recently4 been obtained. The
solid angle expansion is given by

where e" and e are unit vectors in the direction
of the scattered and incident electric fields, d"
and d are unit vectors in the direction of the scat-
tered and incident electric displacement fields
(d-=&i ~ e/I& ei), and p"' is related to g"' by

p"' -=-2(» ') (» ')
~

X — " ' "'
)

( 2d a e
U'8l i))» jn mni)& ~ + & (& )0 Pa & a

7 O„a„asesal
=p«i&&)»+p«i&r&» — I i . (2. 29)

Oak~pa k+g) aa

The intensity (W/m8) of the incident light beam in
the medium is

sQ, ,
K'(k")'( cos o.'cos5"
cos5" j (n&') cosP

where o. and P are the angles between the Poynting
vector and the surface normal outside and inside
the surface, respectively, DQD is the (small) solid
angle in free space subtended by the detector, and
dQ~ is an element of solid angle of the wave vectors
inside the medium which corresponds to the ele-
ment dO„of solid angle of Poynting vector direc-
tions. The scattering volume can be expressed as

ALDcosP
sin0, cos n

(2. 32)

(2. 34)

where V' and K" are the transmissivities of the
input and output surfaces. Inserting Eqs. (2. 31)-
(2. 34) into Eq. (2. 28), we obtain

where A is the cross-sectional area of the incident
light beam inside the medium, I, is the length of
scattering volume observed, l~ is the apparent
length of the scattering volume normal to the ob-
servation direction seen by the detector (equal to
the field-stop diameter if the detector lens system
has unit magnification), and 88 the scattering angle
between the incident and scattered Poynting vec-
tors inside the medium. Equation (2. 32) is valid
when the incident and scattered Poynting vectors
and the exit surface normal are coplanar. The
incident and scattered powers measured outside
the medium, P~ and P~, respectively, are given by

(2. 33)

I&" &u kTl EQ (n"n ) cos&" (cos& ) & &
~ dy efi d8k ~2

p 4 p .
g ) dnt Pntnlfl dn ~If: l

8»~c pv (sine, )n'n cos&' cos&'

This is the power in W outside the medium scattered
into one Brillouin frequency component ~~ into
the detector solid angle &AD in a polarization state
y from an incident light beam of power P and

polarization state ~ by an acoustic mode of type
t that propagates close to the direction k~-ko.
Note the reciprocity in Eq. (2. 35) between char-
acteristics of the incident and scattered light waves.
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Note also that Eq. (2. 35) applies to any crystal
symmetry, any orientation of the crystal, any
scattering angle, and rather general exit surface
orientations (specified above).

We have ignored here the finite phonon lifetime
and hence the linewidths in frequency of the Bril-
louin-scattered components. The scattered power
in Eq. (2. 35) thus refers to the scattered power
per unit frequency integrated over the experimental
line shape of a particular Brillouin frequency com-
ponent.

The formulas of this section can be used as fol-
lows: (i) Choose the input optical frequency ~o,
the input and output polarization, and propagation
directions; (ii) find k„=k„a from Eq. (2. 12) and
one of the frequency conditions &us= &uo+ &u„; (iii)
find the three acoustic velocities v(a, g) and their
associated displacement eigenvectors b(a, $) from
Eq. (2. 17), the latter with a normalization de-
termined by Eq. (2. 19); (iv) find the acoustic
mode frequencies (Brillouin splittings) by Eq.
(2. 18); (v) find the electric field unit vector e"
or the electric displacement field unit vector d"
for the chosen output propagation direction, and
polarization state p from Eq. (2. 13); (vi) find
e' from the known input propagation and polariza-
tion directions from the wave equation (2. 13); (vii)
find the nonzero components of the tensors in
p"' from the point-group symmetry of the scat-
tering medium; and (viii) find the expected scat-
tered power from Eq. (2. 35).

We have compared our Eq. (2. 35) for the scat-
tered optical power with several other workers'
results with boundary coupling added to their work.
If we specialize Eq. (2. 35) to liquids, we find that
we are in agreement with the result of Benedek
and Greytak. For cubic crystals we find agree-
ment with Loudonao and Chandrasekharan. We
agree with Born and Huang~s provided the additional
numerical~~ and dimensionala' factors previously
pointed out by Loudon are included in their equa-
tions. We find that our Eq. (2. 35) is at variance
with the predictions of Benedek and Fritscha on
some orientations in cubic crystals. It appears
that their Eq. (25) will follow from Eq. (23) only
if P« is replaced by 2P44 in both places it appears
in their Eq. (25). The same replacement should
also be made in their Eq. (36). We also find our
Eq. (2. 35) disagrees with Chandrasekharana~ in
birefringent crystals. His treatment of aniso-
tropic crystals appears to confuse the role of
electric and electric displacement vectors.

The most thorough previous attempt to discuss
Brillouin scattering in an anisotropic crystal is
the work of Motulevich. ~~ Several remarks should
be made concerning her work. First, Motulevich
did not concern herself with the surface coupling
effects discussed above. Second, she did not dis-

tinguish between the solid angle of propagation
vectors and the solid angle of Poynting vectors as
done in Eq. (2. 31). Third, she did not distinguish
between the crystal volume and the scattering vol-
ume. Fourth, her introduction of the average in-
dex of refraction (which appears to the eighth
power in his final result) rather than appropriate
dielectric tensor components in transforming the
photoelastic susceptibility to the Pockels tensor is
a needless approximation. Last, her final result
is the component of the Poynting vector along the
propagation direction, not the magnitude of the
Poynting vector. Cummins and Schoen ' have re-
cently given expressions for Brillouin scattering
in a great variety of simple but useful scattering
geometries in crystals of different symmetries.
They give a comparison of their formulas with ours.

III. EXPERIMENTAL TECHNIQUE

The light source used in these experiments was
an argon-ion laser which produced a linearly po-
larized output of 0. 2 W when operated at 5145 A.
A prism in the laser cavity caused exclusive os-

0
cillation on the 5145-A line. A temperature-con-
trolled etalon in the cavity led to oscillation on a
single cavity mode. Stable operation on this mode
was maintained by controlling the position of one
cavity mirror with a servocontrol mechanism.
The error signal used to operate this mechanism
was derived from the output laser beam at a fre-
quency at which this cavity mirror was being piezo-
electrically oscillated. A half-wave plate in the
output beam was used to obtain the orthogonal po-
larization. A 25-cm focal-length lens focused the
beam into the calcite crystal which was at room
temperature (23'C). The calcite crystals used
had polished faces perpendicular to the orthogonal
crystallographic axes. Two selected schlieren-
grade calcite crystals were studied, one of Mexi-
can origin and the other of South African origin,
with consistent results. A pressure-scanned
Fabry-Perot interferometer which had collection
optics with an f/6. 3 aperture, an operating finesse
of 40, and a spacer chosen to give a 69-6Hz free
spectral range was used to analyze the Brillouin
scattered light. A scattering angle of 90 outside
the crystal was used in all measurements. The
containing vessel of the Fabry-Perot had windows
with slightly wedged surfaces and with antire-
flective coatings. Following a 0. 5-mm-diam field
stop of the interferometer were a narrow band
filter (20 A between wavelengths of half-trans-
mission), used to discriminate against the Raman
scattered light and fluorescence, and a Polaroid
polarizer. Initially, the light was detected by a
low-dark-current EMI No. 6256S photomultiplier
tube whose anode current was amplified and re-
corded on a strip chart. Later, the light was de-
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tected by a Bendix Channeltron phototube (S-11
photocathode) followed by amplification, pulse-
height selection, counting, and strip-chart re-
cording.

Absolute values of the photoelastic tensor ele-
ments were obtained by comparing the scattered
light signal with that from toluene in the same
geometry and at the same input laser power. The
photoelastic coefficient of toluene is well known26

(n P = l. 60). Since the output polarizations of the
light must be perpendicular to the scattering plane
for Brillouin scattering in toluene, while an output
polarization parallel to the scattering plane is also
possible with crystals, we checked that the detec-
tion system (apart from the Polaroid polarizer)
was insensitive to the state of optical polarization.
This showed that the comparison to toluene of both
output polarizations of scattered light from calcite
was valid.

The phonons responsible for the scattering were
identified by their Brillouin splittings calculated
from Eq. (2. 15) with the refra, ctive index values of
Gifford 7 and the elastic constants of Dandekar.
The splittings were also calculated using the elastic
constants listed in Ref. 29 but the Dandekar values
gave better agreement with the observed Brillouin
splittings (average absolute deviation 2. 6 times
smaller). Thus the latter were used in the evalua, —

tion of the data, that is, for the calculation of
v(a, $) and b(a, $) appearing in Eq. (2. 35). Though
it is algebraically complicated in low-symmetry
crystals, the Brillouin splittings can be used to
determine the elastic constants. Because of the
good agreement of the measured and calculated
splittings (from Dandekar's values, see Table I),
however, this was not done here.

Several effects due to geometric optics in the
calcite crystal and the toluene reference cell must
be accounted for. First, owing to differing re-
fractive indices the transmission coefficients of
the input and output surfaces will be different for
the two specimens. Second, when the unscattered
laser beam leaves the sample perpendicular to a
surface, the reflected beam can produce Brillouin-
scattered light which can also enter the detection
optics. For the toluene sample and for X-Z and
X-Y' (incident-scattered) propagation directions in
calcite the reflected-beam Brillouin-scattered

' light will have the same Brillouin splittings as the
forward beam has. For F-Z geometries in calcite
the splittings will differ and the effect can be
easily explored and a small correction to the data
justified. If the input and exit surfaces for the
laser beam form a Fabry-Perot interferometer
for the unscattered light, these effects will be en-
larged. This, however, is easily prevented by a
slight tilt of the crystal relative to the laser beam.
Third, when the scattered light propagates within

a finite solid angle about the optic axis, polariza-
tion mixing can occur al,org the exit path of the
scattered light because of the finite aperture ef-
fect. Strain birefringence can add to this effect.
The result of this can be the appearance of forbid-
den Brillouin scattered lines. These effects can
be minimized by minimizing the exit path of the
scattered light, that is, by bringing the scattering
volume as close to the exit surface as practicable
(-0.3 mm in our experiments) and limiting the de-
tection solid angle. A correction in the measured
intensities can then be made to account for the
small residual effect. Fourth, the difference of
the indices of refraction of the test sample and the
reference scatterer requires a small change in
position of the scattered-light-collection optics to
compensate for the altered optical path.

The final test of the accuracy of the absolute
values of the photoelastic components by the com-
parative scattering technique is furnished by mea-
suring components known accurately from other
work and comparing the results. Previously, we
have reported measurements of certain components
in rutile~ which agreed to within 3/~ of measure-
ments of the same quantities obtained by acousto-
optic diffraction experiments. We have also mea-
sured the two independent photoelastic components
in fused silica (Homosil) and find ~p&z~ = 0. 275 and

IP44I = 0. 078. These compare favorably in mag-
nitude with the values P,~=+0. 2VO and P44= —0. OV5

found by Primak and Post by static-load-induced
refractive-index variations and with the values P,2

=+0.265 and p44
———0. 0'77 found by Vedam, Schmidt,

and Roy' by hydrostatic-pressure-induced refrac-
tive-index variations.

We wish to emphasize the convenience of t;he

above-described method of determining numerical
values for the photoelastic components. The con-
venience of the method increases for low-symmetry
crystals relative to acousto-optic diffraction. This
is due to the difficulty of generating the mixed-
character acoustic waves in low-symmetry crys-
tals by transducer techniques. These waves are
present in a crystal by virtue of its thermal con-
tent in sufficient quantity for the Brillouin-scat-
tering technique.

IV. RESULTS AND DISCUSSION

A summary of the experimental orientations
studied in calcite is given in Table I. The scat-
tering geometry is given in the first column. The
notation A(bc)D means that the incident beam prop-
agated along A and was polarized (electric field
direction) along 5, and that the scattered light
propagated along D and was polarized along c. As
can be seen, right-angle scattering was used in
all cases. The second column lists the unit dis-
placement vectors b found from Eq. (2. 17) when
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the unit propagation vector a, given in the third
column, is used. In the fourth column the calcu-
lated value of a constant C, which contains only

linear acoustic and optic properties, defined by

t. = (n'n')'cos&' cos&'/pv

TABLE I. Summary of Brillouin-scattering measurements. Column 1, scattering geometry; column 2, unit acoustic
displacement vector; column 3, unit acoustic propagation vector; column 4, calculated values of C, I'see Eq. (4. 1)];
column 5, calculated value of acoustic velocity; column 6, calculated value of Brillouin frequency splitting; column 7,
measured value of Brillouin frequency splitting; column 8, measured value of (FC)& [see Eq. (4. 2) t. Modes whose
scattered power is indicated with an asterisk were observed but weak. Because of possible feedthrough from the stronger

' modes in the orthogonal polarization the measured scattered powers were regarded as untrustworthy.

Geometry

Y(zz)X
Y(zz)X
Y{ z)X
Y(zy)X
Y(zy)X
Y{zy)X
Y(gy)X
Y( y)X
Ygy)X
Y(g z)X
Y( z)X
Y( s)X
Y( x)z
Y( x)z
Y( x)z
Yby)z
Y(gy) z
Y(xy)z
Y{z~)Z
Y{zx)Z
Y(z~)Z
Y(zy) z
Y{zy)Z
Y(zy)Z
Y( x)z
Y( x)z
Y( x)z
Yby)z
Y(xy)z
Y(xy)z
Y(zx)Z
Y(z~)Z
Y{z~)Z
Y{zy)Z
Y(zy) Z
Y(zy)Z
z(xy)x
Z()t;y)X
z(gy)x
z(yy)x
z(yy)X
z(yy)x
Z( z)X
Z( z)X
ZQg)X
Z(yz)X
Z(yz)X
Z(yz)X

Special
Special
Special

0.437
0.545
0.714
0.405
0.525
0.748
0.437
0.545
0.714
0.462
0.574
0.676

0
1
0
0
1
0
0
1
0
0
1
0
1
0
0
1
0
0
1
0
0
1
0
0

0.602
0.071
0.795
0.602
0.071
0.795
0.615
0.161
0.772
0.615
0.161
0.772

1
0
0

0.296
0.661

—0.688
0.273
0. 712

—0.647
0.296
0.661

—0.688
0.307
0. 612

-0.729
0.651
0

—0. 759
0.651
0

—0. 759
0.702
0

—0.712
0.702
0

—0.712
0

—0.532
0.847
0

—0. 532
0.847
0

—0. 559
0.829
0

—0.559
0.829

—0.440
0.861
0.256

—0.440
0.861
0.256

—0.531
0.809
0.254

—0.531
0.809
0.254
0

—0.892
0.452

—0.849
0.511
0. 128

—0. 873
0.466
0.145

—0.849
0.511
0. 128

—0.832
0.544
0.106
0.759
0
0.651
0.759
0
0.651
0.712
0
0.702
0.712
0
0.702
0
0.847
0.532
0
0.847
0.532
0
0. 829
0.559
0
0.829
0.559
0. 667
0. 504

—0. 549
0.667
0.504

-0.549
0.583
0.566

-0.583
0.583
0.566

-0.583
0
0.452
0.892

-0.707
—0.707
—0. 707
—0.745
—0.745
—0.745
-0.707
—0.707
—0.707
—0.667
—0.667
—0.667

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

—0.707
—0.707
—0.707
—0.707
-0.707
—0.707
—0.667
—0. 667
—0.667
-0.667
—0.667
—0. 667

0
0
0

+0.707
+0.707
+0.707
+0.667
+0.667
+0.667
+0.707
+0.707
+0.707
+0.745
+0.745
+0.745
-0.707
-0.707
—0.707
—0.707
—0.707
-0.707
—0.667
-0.667
-0.667
-0.667
—0.667
-0.667

0.707
0.707
0.707
0.707
0.707
0.707
0.667
0.667
0.667
0.667
0.667
0.667
0
0
0
0
0
0
0
0
0
0
0
0

-0.247
—0.247
-0.247

0
0
0
0
0
0
0
0
0
0
0
0
0.707
0.707
0.707
0. 707
0.707
0.707
0.745
0.745
0.745
0.745
0.745
0. 745
0.707
0.707
0.707
0.707
0.707
0.707
0.745
0.745
0. 745
0.745
0.745
0. 745
0.707
0.707
0.707
0.707
0.707
0.707
0.745
0.745
0.745
0.745
0.745
0.745

—0.969
—0.969
—0.969

[scj,
(m2/N)

3.47 x lO-"
1.16x 10-~3

3.73 x 10-»
4.12x 10-»

&5x 10-~

9x ].0-'s
1.53 x 10-"
2.4 x 1O-"
2.71x 10 ~3

2o 82 x 10-»
4.04 x 10-~3

1.01x 10 ~3

8.98 x 10-~3

4.96
1.976
0.728
6.39
2. 58
l.012
9.68
3.85
1.419
7.48
2.65
l.018
6.91
forb.
2.17
forb.
3.51
forb.
forb.
2.55
forb.
5.33
forb.
1.574
forb.
8.44
1.462

11.46
forb.
forb.
8.48
forb.
forb.
forb.
1.084
5.71
7.96
6.05
1.670
7.96
6.05
1.670
6.12
4.18
1.229
6.12
4. 18
l.229
forb.
3.93
1.619

11.7
18.5
30.4
12.9
19.1
32.3
13.0
20. 6
34. 0
11.9
20. 0
32. 2
15.4

2. 85
4.51
7.43
2.96
4.41
7.45
2. 85
4. 51
7.43
2.74
4.60
7.42
3.37
4. 73
6.01
3.37
4.73
6.01
3.25
4.70
5.97
3.25
4. 70
5.97
2. 62
3.05
7.33
2. 62
3.05
7.33
2.57
3.14
7.20
2.57
3.14
7.20
3.14
3.60
6.85
3.14
3.60
6.85
3.03
3.67
6.75
3.03
3.67
6.75
2. 94
3.77
5. 88

11.8
18.9
30.5
13.0

32.7
13.1
20. 7
34.3
12.0
19.9
32.3
15.1

~ ~ ~

27. 5 27.4 6.19x 10 ~2

~ ~ ~

1.12x lp-'321.6 21.4

~ ~ ~

5.7 x 1O-'420. 4 20.1
~ ~ ~

5.15x 10-~314.1 13.9
~ ~ ~

7.22 x 10-~325. 9 26. 0
~ 0 ~

1.85x 10-'
3.07x 3.0-~2

1.66x 10 ~2

13.9
33.5
12.0

14.2

12.1

11.2 11.3 9.03 x 10-~3

~ 0 o

2.67x 10"
7.0 x 10 ~4

1.39 x 10-~3

5.42x 10 ~3

6.2x 10-~3

2.59x 10-»
4.40 x 10-"
3.81x lo-"
1.31x lp-»
2.31x 10 ~3

2.51x lp-"

8.4 x 1O-'4
~ ~ ~

2.05x lo
1.53x 1O-"

13.8
31.4
14.6
16.6
31.4
14.6
16.6
31.4
13.2
16.1
29.3
13.2
16.1
29.3

13.6
31.2
14.4
16.5
31.4
14.4
16.5
31.4
13.1
15.9
29.3
13.1
15.9
29.3

16.6
25. 8

16.8
26. 1

cs VA +Vp +PM
gO-«m2/N) O m/sec) (GHz) (GHz)
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is given. The fifth column gives the acoustic
velocity calculated from Dandekar's elastic con-
stants of calcite. ' The resulting predicted Bril-
louin splittings &v~ in 6Hz are listed in the sixth
column. The corresponding measured values
~p„are listed in the seventh column. The agree-
ment between calculated and measured values (2%
or better in all cases) is adjudged to be good. The
eighth column lists the experimental values of
(CF)~ for calcite found in these experiments. F
is defined by

(4. 2)

In obtaining the values in the eighth column the
longitudinal sound velocity in toluene was taken as
1.344+0. 001 km/sec (measured from the Bril-
louin splitting), the density as 866 kg/m, the in-
dex of refraction as 1.504, and the photoelastic
coefficient as 0. 313.2 These values yield
(CFt'~ I'z)„= 0. 669x 10 m2/N for toluene.

It can be seen from Table I that only one allowed
mode was not observed [expected at 19.1 6Hz in
the y(zy)X geometry] The. upper limit for the
strength of this mode is sufficiently small to make
the upper limit as useful as an actual measure-
ment of it in determining the photoelastic com-
ponents. Note that we have measured 36 modes
from which we determine nine photoelastic tensor
elements (eight symmetric, one antisymmetric).
Note that all the elements except P33 can be ob-
tained in calcite by 90 scattering with the incident
and scattered light traveling along axes of the
orthogonal crystallographic coordinate system.
The one special geometry listed was used to mea-
sure P 33 For that geometry the incident and
scattered polarizations lay in the scattering plane
(extraordinary rays); the unit incident propagation

vector inside the medium was [0, 0. 866, 0. 5] and
the unit scattered propagation vector inside the
medium was [0, 0. 471, —0. 882].

As discussed in Sec. III, small corrections were
made to the measured intensities to account for
reflections of light inside the calcite crystal and
the toluene reference cell. Other small cor-
rections to account for strain birefringence and
the finite aperture effect were made for the FZ
and FZ geometries, also as discussed in Sec. III.
The effect of strain birefringence and finite aper-
ture is easy to evaluate in these orientations be-
cause each scattering mode is allowed in only one
output polarization state as seen from Table I.
For XZ geometries, however, the same scattering
mode (in frequency) is allowed in either output
polarization state. This makes evaluation of strain
birefringence and finite aperture corrections less
certain for these geometries. If ZX geometries
are used, the finite aperture effect is reduced be-
cause of the small angular aperture of the incident
laser beam. Depolarization from strain birefring-
ence can be minimized by observing scattering
from a volume close to the input surface in this
case.

The photoelastic components for calcite were
determined from a least-squares analysis by com-
puter fromthevaluesof TablelusingEq. (4. 2). The
resulting values are listed in the sixth column of
Table II. The corresponding photoelastic-stress
coefficients II&& calculated from the symmetric
part of our photoelastic-strain coefficients P &&

and
Dandekar's elastic constants are listed in the
seventh column. There cannot be a photoelastic-
stress coefficient corresponding to the antisym-
me tric photoelastic-s train coefficient.

Several points should be made about our measured

TABLE II. Summary of photoelastic-strain tensor components P;& and photoelastic-stress tensor components II ff for
calcite from Pockels's work, from Pockels's work recalculated with Dandekar's elastic constants, and from the present
work. fFor reasons unspecified, Ref. 29, p. 134 quotes Pockels's II;& values 2% higher than Pockels did and lists II44

=+0.35 rather than —3.4 (in units of 10 cm /dyn—= 10 m /N). I

Subsc ripts
ij

11 or 22
33

12 or 21
13 or 23
31 or 32
14 or (—)24

or 65
41 or (-)42

or 56
44 or 55
(23) [23] or
0.3) P.3~

II;& (Pockels)
(10 ~2 m2/N)

-0.60
+0.44
+0.90
+2.48
+1.55

—1.09

—0.66
=3.4

II '&

(Pockels recalc. )
(10-12 m2/N)

—0. 70
+0.39
+0.80
+2. 54
+1.42

—0.65
—2. 9

Pf',j
(Pockels)

+0.095
+0.178
+0.189
+0.215
+0.309

-0.006

+0.010
—0.090

Pj)
(Pockels
recalc. )

+0.106
+0.188
+0.191
+0.223
+0.310

—0.012

+0.0007
—0.069

pij
(our meas. )

+ 0.062
+0.139
+0.147
+0.186
+0.241

—0.Oll

—0.036
—0.058

+0.047

II))
(our meas. )
(10 ~2 m /N)

—0. 85
+0.18
+0.65
+2. 30
+1.14

—l. 29

—l. 10
—3.18
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p, , values: (i) The measured magnitude of the anti-
symmetric component

P (23)l:23l P (13)&133 +

agrees within 5% with the value + 0. 0450 calcula, ted
in Eq. (1.5). (ii) On the basis of this agreement
in magnitude we feel justified in assigning the plus
sign to the measured value just quoted. (iii) On
the basis of this theoretically determined sign the
algebraic sign of each of the other photoelastic
tensor elements is determined from our Brillouin-
scattering measurements alone. (iv) Combining
the antisymmetric and symmetric parts we obtain

P (23 )23 —P (13)13 ——0. 011

P(23)32 P (13)31 0. 105

(4. 3)

(4. 4)

We see that these components, which for years
were believed equal, differ by a factor of about 10.
Thus the rotational effect in calcite is almost as
dramatic as it was found to be in rutile, where
these components differed by a factor of about 30.
(v) The 5% agreement on the magnitude of the anti-
symmetric component indicates the accuracy that
the other measured component values are ex-
pected to have. (vi) Our measured values of the
larger P&~ components are -

39%%uo smaller than the
values measured by Pockels by static-load-in-
duced ref rac tive-index- change measurements
quoted in column 4 of Table II. Pockels used
Voigt's measurements of the elastic constants
of calcite in his data analysis. Since Voigt's
measurements differ somewhat from modern mea-
surements, such as Dandekar's, we have recal-
culated photoelastic-stress components II&& and
photoelastic-strain components P;& from Pockels's
data using Dandekar's elastic constants. These
recalculated values are listed in the third and
fifth columns of Table II. The elastic constants
enter Pockels's analysis in two ways: (a) The phase-
change term arising from sample width changes is
proportional to the elastic compliances and must
be subtracted from the measured phase change.
(b) The resulting photoelastic-stress components
must be multiPlied by the elastic stiffnesses to
obtain the photoelastic-strain components. The
recalculated Pockels's p, &

values are in no better
agreement with our values than were his originally
quoted values. We thus can offer no explanation
of this discrepancy. We are, however, sure that
p41 must be of opposite sign and larger in mag-
nitude than Pockels's value. His measurements
were very insensitive to this small coefficient.

In addition to Pockels several other workers
have studied aspects of the photoelastic effect in
calcite. Recently, Kachalov studied Brillouin
scattering in calcite with a view to verifying our
prediction1 of an antisymmetric part of the photo-

elastic tensor. His procedure was to assume
Pockels's value of p44, calculate p(23)t 23] by Eq.
(l. 4) above, and then calculate the relative scat-
tering strengths expected for various geometries.
The values thus used by Kachalov (P &»)» —0.045
and p&»»s--- —0. 135) are at considerable variance
with those found in our work given in Eqs. (4. 3)
and (4. 4). Kachalov finds that his experimental in-
tensities are in considerably closer agreement
with those calculated on the above basis than with
those omitting the antisymmetric part of the photo-
elastic tensor altogether. Kachalov has measured
intensities on a relative basis for only three scat-
tering modes that involve p(23)23 and p(23)32 as well
as P4, . Thus it is not possible to derive values of
these components from his measurements.

Two other Brillouin-scattering studies in calcite
have been performed. One" had the objective of
observing a change in the Brillouin splitting de-
pending on the state of polarization of the incident
and scattered light. This effect, first predicted
by Vladimirskii 8 and later by Chandrasekharan,
results from the wave-vector conservation (phase-
matching) condition in the presence of birefringence.
The other study3~ was aimed at measuring the
anisotropy of the scattered intensity as a means of
verifying the predictions of Motulevich's theory
of Brillouin scattering in anisotropic media.

Davis and Vedam3 have studied the changes in
the ordinary and extraordinary refractive indices
of calcite under hydrostatic pressures up to 7
kbar. They point out that the phase changes in-
duced by such large hydrostatic pressures can be
measured much more accurately than the smaller
phase changes to which one is limited when em-
ploying uniaxial pressures. However, to obtain
the change in refractive index per unit pressure
from the Davis-Vedam measurements, the dimen-
sional changes of the crystal must be accounted for.
Davis and Vedam calculate this; the calculated
magnitudes for either polarization account for
approximately 90% of their quoted result. The ac-
curacy of the result is thus 90% dependent on the
accuracy of the compressibility numbers used for
the calculation. The compressibility numbers
used by Davis and Vedam were measured by
Bridgman and are believed to be very accurate.
The best and most recent set of elastic constants,
Dandekar's, which we find give excellent agree-
ment with our Brillouin splittings, agree exactly
with Bridgman's compressibility data. Thus, we
conclude that the Davis-Vedam values should be
very trustworthy. They measure refractive index
changes of 0. 50&& 10 /kbar and 0.44x10 /kbar for
the ordinary and extraordinary indices, respectively
(see Table III). These quantities are 0. 5'7&& 10 3/
kbar and 0. 52&& 10 ~/kbar if Pockels's original p,~
values and Bridgman's compressibility data are
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TABLE III. Comparison of various measurements of
the change of ordinary Mo and extraordinary ~~ refrac-
tive indices per unit of hydrostatic pressure P.

Pockels-
Bridgman

Recalc. Davis-
P5ckels- Danclekar Vedam

Our
values

~,ip
(10 3/kbar)

~./J
(10 3/kbar)

0.57

0.52

0.60

0.53

0.GO

0.44

0.48

0.40

used for calculation. Davis and Vedam are of the
opinion that the discrepancy between their data
and the calculated Pockels-Bridgman values would
disappear if Pockels's values had been deduced
with modern elastic constants. Using the recalcu-
lated Pockels values of Table II (found using Dan-
dekar's elastic constants) however, we find that
the calculated Pockels-Dandekar (Bridgman) values
are 0. 60&10 '/kbar and 0. 53&&10 '/kbar for the
ordinary and extraordinary indices, respectively,
thus increasing the discrepancy with the Davis-
Vedam results. Thus we conclude that the Davis-
Vedam values differ significantly from Pockels's

values, recalculated or not. Values calculated
from our data differ from Pockels's values also;
our values are 0. 46&& 10 s/kbar and 0. 40&& 10 s/kbar,
respectively. If we take the 5% agreement with the
theoretical antisymmetric part of the photoelastic
tensor in calcite as well as rutile as being in-
dicative of the accuracy of any of our p&& measure-
ments, then the former value is in agreement
with Davis and Vedam while the latter is not.

Narasimhamurty measured the ratios of sev-
eral photoelastic tensor elements in calcite and
believed his agreement with Pockels to be fairly
good. He apparently calculated two of the three
ratios from Pockels's values wrongly. Corrected
values for these lessen the agreement markedly.
His ratios are in no closer agreement with ratios
obtained from our data.
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