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The contributions of different three-phonon scattering processes to the thermal resistivity
of isotopically pure Ge are presented in the Ziman limit. The modified expressions of Ham-
ilton and Parrott for three-phonon scattering strengths are considered.

I. INTRODUCTION

Using a variational treatment, Hamilton and
Parrott' have recently estimated the contribution
of different scattering processes to the thermal
resistivity of Ge. They have considered an an-
harmonic isotropic continuum model. The graft-
ing of umklapp (U) processes in the Debye way of
specific heats has made their model much more
rigorous, but unfortunately their expression for
three-phonon scattering strengths are slightly
in error. 2 As a result their calculated values
are incorrectly estimated. It was, therefore,
considered desirable to check at least the Ziman
limit on the phonon resistivity due to three-pho-
non scattering processes. It is encouraging to
note that one obtains reasonable values of the
Ziman limit with the modified expressions of
three-phonon scattering strengths. In the Ap-
pendix we also present the results of calculation
of three-phonon scattering strengths for a simple
cubic crystal. In spite of the several drastic
assumptions made in the derivation for a simple
cubic crystal, it is interesting to note that the
results reduce to correct expressions of three-
phonon scattering strengths for an isotropic
case.

II. THEORY

The upper bound of the Ziman limit on the
thermal resistivity S'0, due to a three-phonon
process of the type s+s'- s", is given by'
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where N0 is the number of unit cells, 0 is the
volume of a unit cell, 4 is a reciprocal-lattice
vector, !A,", ', l is the three-phonon scattering
strength for the process s+s' = s", and N is the
equilibrium distribution function related to the
deviation function P by the expressions' N= N
+ gN(N+ 1) and Q = P+ 5g, where N is the distribu-
tion function. The denominator in (1) can be re-
lated to the Boltzmann equation in the form

X=PP,
with its left-hand side as
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where vT is the temperature gradient and k0 is
the Boltzmann constant.

The correct expressions for the three-phonon
scattering strengths are as follows:

«« t
The phonon-phonon collision operator P,'~. due to
a three-phonon process of the type s+s' = s"
is given by the relation '
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The equilibrium transition. probability P~, -,',
is given by
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III. RESULTS

In the evaluation of (Wo)„," for different pro-
cesses, the integrals have been evaluated using
the Gaussian quadrature method. Use of five pivots
has been made. The limits of integrations are the
same as those used by Hamilton and Parrott. The
trial function is chosen as Q = g. u, where u =
—VT/T. The Debye radius is calculated from the

formula q~=(6w /0), where 0=(-,'a) and a is the
lattice parameter of Ge. The use of modified ex-
pressions for lA,",.'," l ensures a correct picture
of the results.

Table I shows the comparison of our calculated
values of the Ziman limit of thermal resistivity
due to three-phonon processes with the experi-
mental values of thermal resistivity as determined
by Slack and Glassbrenner. ' The theoretical
values of the thermal resistivity due to the three-
phonon processes alone, as determined by Hamil-
ton and Parrott, are also given in Table I. In
their calculations different terms of the expansion
of the trial function up to R = 2 are considered.
It maybe seen from Table I that, except at
100'K, our values of the Ziman limit of thermal
resistivity are in general higher than the experi-
.mental values, which should be the case. The
low value of three-phonon resistivity at 100 'K
shows that the mass-defect scattering should also
be taken into account. In our calculation the
deviation between the calculated and the experi-
mental values of phonon resistivity decreases
with the increase in temperature. This is ex-
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FIG. 1. Comparison of the theoretical values of the

thermal resistivity due to three-phonon processes with

the experimental values in Ge in the temperature range
100-300 'K.

pected because in the high-temperature region,
three-phonon processes are expected to make a
major contribution to the thermal resistivity.
This, however, is not true for the calculations
of Hamilton and Parrott as maybe seen from Fig. 1.
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APPENDIX: THREE-PHONON SCATTERING STRENGTHS

The results of calculations of three-phonon scatter-
ing strengths for simple cubic crystals are as follows:

(7c)

+ j [(c16g + 2c11 2c1g c1«)co88 co828 + (4 c44+c 456) 81118 811128 + (c16g+ 2c11+2c12+c144)co88 ]
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In order to evaluate lA,"...'~. I, one has to note
that it depends on the angles between the vectors
q, q', and q" and also on the limitations which
the crystal imposes on the sound-wave propoga-
tion. The first condition is handled by taking the

three phonons to be coplanar. The second require-
ment is a tough one. We know that in the case of
a cubic crystal there is no meaning at all to a pure
transverse or a pure longitudinal phonon except in
the [100], [110], and [111]directions. In order to
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TABLE I. Ziman limit of the resistivity due to different three-phonon scattering processes {in units of cm'K% ).
Temp.
('K)

100
140
180
220
260
300

(+0)LLL

0.0679
0.2552
0.2729
0.3017
0.3353
0.3718

(+0)gTLL

0.0480
0.2041
0.2242
0.2513
0.2817
0.3142

0.1326
0.5761
0.7625
0.8925
1.0270
1.1630

(~0 )U TLL

0.0099
0.0622
0.0834
0.1038
0.1235
0.1432

0)UTTL

0.0624
0.3330
0.4141
0.4932
0.5727
0.6531

8'0

0.3208
1.4306
1.7571
2.0425
2.3402
2. 6453

a"'e~,
0.456
0.684
0.930
1.220
1.471
1.724

0.198O

0.345
0.435
0.595
0.637
0.725

Reference 4.
"Reference l.

'See Table II of Ref. 1; other values are read from
Fig. 2 of Ref. 1.

1I
C111 6 (C12$ + C456 + 3C144) (6a)

make the problem tractable, we have made a
drastic assumption that pure longitudinal and pure
transverse waves do exist in a cubic crystal for
all directions of the wave vector (q, or q' or q"),
and that the direction of the transverse polarization
vector is arbitrary. Furthermore, we know that
in the case of cubic symmetry, except for waves
propagating in the [100] and [111]directions, it is
no longer possible to regard the two transverse
waves as degenerate. But for the convenience of
calculations, we assume that the two transverse
waves are degenerate. These assumptions allow
us to calculate the three-phonon scattering
strengths for the processes L+ L= L, T+ L= L,
and T+ T= L for a simple cubic crystal.

For the isotropic case, we use the following
conditions:

C112 Y (C125 +C144)
1

1
C1SS= C144+ 2 C456

C44= T(C11 -C12) ~
1

Furthermore, expressing

C123

C144

C45S —2A,

C11=~+ 2P, ,

C12

(6b)

(Sc)

(ed)
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(9c)

(ed)
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we obtain Eqs. (6a)-(6d) for three-phonon scatter-
ing strengths, which have been obtained for the
isotropic case.
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