
PH Y SIC A L REV IEW B VOLUME 6, NUMBER 8 15 OC TOB EH, 1972

Self-Consistent Local Orbitals for Solid Ne, LiH, MgS, and ZnSe~

A. Barry Kunz and Daniel J. Mickish
Department ofPhysics and Materials ResearchI aboratory, University ofIllinois, Urbana, Illinois 61801

(Received 24 April 1972)

In this paper we report on self-consistent local orbitals for a series of materials. This
series includes crystals which are molecular in nature, ionic in nature, and rather covalent
in nature. In all cases the local-orbitals equations are solved using analytic Hartree-Fock
methods. These equations are solved exactly to first order in interatomic overlap. In pre-
vious works we have reported solutions for several ionic crystals. The results of these
studies are examined and contrasted.

I. INTRODUCTION II. LOCAL-ORBITALS EQUATIONS AND THEIR SOLUTIONS

In this paper we continue our study of self-con-
sistent localized orbitals for nonmetallic solids. '
In previous papers we reported results for the I,iX
systems NaC1, NaBr, KCl, KI and solid Ar. In
this paper, we extend this previous work to solid
Ne and to I iH. We also report results for MgS
and ZnSe. We have reported numerical results for
I,iH previously; however, here we report analytic
results. As before, we evaluate the local orbitals
exactly only to first order in interatomic overlap.
It is not a Priori obvious that such an approximation
is valid for ZnSe, a rather covalent substance. None
the less, a solution was obtained in order to study
this question. This study is discussed in this
paper. The results for MgS are of some interest,
in that MgS is a basically ionic substance and one
thinks of the lattice as containing Mg" and S ions.
In free space, the S ion is weakly bound at best
and may not necessarily be bound in the limit of
Hartree-Fock theory. Therefore it is interesting
to observe the local orbitals for this ion in a solid
environment. In this paper, we find it of interest
to study whenever possible the relative distortion
of the outer orbitals in the crystalline environment
from the free ionic ones, as a function of the di-
electric constant. Since this is at best a qualita-
tive question the analysis is performed in a simple
way.

In these calculations we use the analytic Hartree-
Fock method of Hoothaan. ' As in our previous
work, we use only a minimum angular basis here.
All one-center one-body integrals are evaluated
analytically. All one-center two-body integrals
are evaluated by numerical means using previously
written and accurate codes. All two-center in-
tegrals are performed numerically using a program
written by one of us (A. B.K. ), which uses a double
application of Simpson's rule, and is accurate to
about six significant figures. In Sec. II the equa-
tions used are briefly discussed. In Sec. III the
numerical details are presented. Finally these
results are analyzed and conclusions are drawn.

In this paper we are concerned with obtaining
approximate solutions to the Adams-Gilbert equa-
tions. These equations are

(F+ PAP) 4 „&
—— ca& 4x, ,

where p is a spin-independent kernel of the first-
order density matrix and is given by

(2)

S„;» is the Ai, Bjth element of the inverse of the
overlap matrix S whose Ai, Bj th element is gi IBj )
Using rydberg units we find that

Z, 4P p(r~, r~)d
Irg —5,, 1 Ir, —r, I

2p(r„r, ) (2)

In Eg. (I), A is an arbitrary Hermitian operator.
In Eg. (2), we use upper-case letters for nuclear
coordinates and lower-case letters for electron
coordinates.

We approximate Eg. (1) by looking at the ion at
site I=A. We expand F about A in terms of the
complete set Q„, , where this includes virtual or-
bitals. We alsoapproximate S~,',» by 2&&&,» —S&&~~.
We also expand PAp about site A. We then sys-
tematically exclude all terms which are quadratic
or higher powers in S&,~z for B & A. This results
in the equation

(F„+ U~ —&qq) P„;

=(-~.~~y»&»IAIAj) y'~)e. » (4)

It is this equation which we solve here, with

2za, pa(ra~ r2)—4l - ' dr~
Iry —l'cg l g )rl —rg)

p 2Z~ p~( ra ~ rq)Fg=- Vg — ~ ~ + 4 dr~
Jrj. —a~l
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TABLE I. In this table, we give the basis used for the
calculation of Ne. It was obtained from Bagus Q,ef. 5).
In order to demonstrate the accuracy of our results, we
give the results for the free-atom eigenvalues and eigen-
vectors obtained using our code and from Ref. 5. For
the free-atom case, the C's given are normalized such
that f&P»(r) dr=1. This is to facilitate comparison with
the results of Bagus, who adopts this normalization. The
eigenvectors for solid Ne are given also. Here the nor-
malization is g&C„» =1. Results are in rydbergs. The
symbols are defined in the text.

Ao~

'is= —4 74

+0$

2. 69
4. 00
2. 00

Cion

0. 841 14
0.253 66
0.47764

TABLE II. Results of the local-orbitals calculation
for Li in LiH are given. Results in rydbergs. The nor-
malization for the solid is/&C„&&=1.

Aoy

L=O

Basis used

Zog

15.439
8.806

10.995
3.764
2. 301

Z fg

10.542
4. 956
2. 793
1.623

Free-atom eigenvalues
Reference 5

isis= —65 54 '2~s= —3 86
E~2P= 1 ~ 70

and eigenvectors
This work

qi 1
= —65. 55, e2 2

= —3. 86

q2 2p= —1.70

j Cio C2Oy

1 0.092 18 0.006 45
2 0. 948 91 —0.288 21
3 —0.044 99 —0.0 26 32
4 0 ~ 003 08 0.569 72
5 —0.000 03 0.530 66

c&i&
0.009 30
0.241 54
0.482 33
0.365 32

Ciog
0.09245
0.94860

—0.04485
0.003 20
0.000 00

C2O)
0.006 38

—0.288 13
—0.026 37

0.569 96
0 53045

C2i&
0.009 31
0.241 54

—0.482 43
0.365 23

Solid-Ne results
ei 1

= —65. 55
q2 2

=- —3. 86

C io

0.096 88
0.99418

—0.047 01
0.003 16
0.000 00

qi, 2
= —1.70

q2 2
——4x 10

C2Og

0.007 68
—0.346 87
—0.031 75

0.686 19
0.638 56

C21

0.014 27
0.370 81
0.740 19
0 560 73

(5)

In Eqs. (4) and (5) summations are over all lattice
sites except A =B and over all occupied orbitals
about these sites.

The method used to solve Eq. (4) is the analytic
Hartree-Fock method of Roothaan. Here we u. e
a minimal-angular-basis set and expand Q„, in the
form

such work. In the cases considered here, the use
of a minimal angular basis seems reasonable for
all but ZnSe which is a tetrahedral system, where-
as the others are cubic. None the less, it is in-
cluded by way of comparison and also as an experi-
ment.

III. DETAILS OF CALCULATION

In this present calculation, we test for self-con-
sistency by comparing the coefficients C of the
Slater orbitals for the ith iteration with those from
the (i —1)th iteration. When the maximum dis-
crepancy fell below 0. 001, the calculations were
said to be converged. This level of self-consis-
tency has been found to provide excellent total
energies and one-electron wave functions for a
variety of atomic cases. The calculations were
performed using a code written by one of us
(A. B.K. ) on the XDS Z-5 computer in the Ma-
terials Research Laboratory and also on the CDC
6600 computer at Wright Patterson Air Force Base.

Wherever possible, we used a basis for the ions
which had been obtained previously. For Ne we
used the work of Bagus, for S we augmented the
basis given by Watson and Freeman, for Zn and
Se the basis given by Watson and Freeman' was
used.

In Table I we give our basis for Ne along with
the free atomic and the local-orbital eigenvalues
and eigenvectors. In this table we include the re-
sults of Bagus as a comparison. In Table II we
give our basis for Li' and the local orbitals for Li'
in LiH. In Table III we give the basis for H and
the local orbitals for H in LiH. In Table IV we
give our basis of Mg" and the local orbitals for

N„= [(2Z,)) ""» /(2l+ 2A, + 2)!]' TABLE III. The local orbitals for the H ion in LiH
are given. Results in rydbergs. The normalization is

In this type of solution, one chooses a set of A. » and

Z» and then varies the C„» to minimize the energy.
Hence the solution of Eq. (14) becomes a process
of matrix formation and diagonalization. In prin-
ciple, the A's and Z's are also varied; however,
it is usually possible to borrow a set of A's and
Z's from previous work or to scale them from

Ao
0
0
0

~is = —0. 8781

Zog
0.69
1.50
0. 29

C&oy

0. 992 883
0. 081 704

—0. 086 643
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Ap~ ZQS

16.459
10.072
12.256
5. 004
3.321

AU

13.554
6.450
3.879
2. 669

ei 1
———98.118

'2s2s =- 7 537

C &Qz

0.203 92
0. 976 32

—0. 072 19
0. 001 16
0. 000 85

&2~P = —4. 584
~fes = —563 && 10

C209

0. 00539
—0.376 69
—0. 02468

0.492 36
0. 78425

C2gg

0. 01047
0.348 03
0. 677 1.5
0. 64825

Mg" in MgS. In Table V we give our results for
S in MgS. In Table VI we give results for Zn" in

ZnSe, and finally in Table VII we give results for
Se in ZnSe. We note that these results for LiH
are not directly comparable to those we obtained in
the past owing to the different choices of localiz-
ing operator A in the two cases. In this paper we
use A= U„ in Eq. (4), whereas in the past we used
A = —U& . However, for the ions Se and S the
choice A = —U& did not result in localized orbitals,

TABLE IV. The basis is defined and the local orbitals
are given for Mg" in Mgs. The normalization is g&C„»

——1.
The notation has been defined in the text. Rydbergs are
used.

whereas A = U„does. Finally we note that in
Tables I-VII the energy parameters &;z are deter-
mined by the equation

s ) ——(Ai ~E~+ U~ ~Aj) .

IV. DISCUSSION OF RESULTS AND CONCLUSIONS

(7)

The class of materials covered in this report
ranges from a highly unpolarizable material Ne (Kp
= 1.26) to highly polarizable substances such as
MgS (Kp= 5. 1) and ZnSe (Kp= 5. 9). In the past we
have considered systems with intermediate po-
Iarizabilities such as Ar (Kp= 1.67) LiCl (Kp
= 2. 75), Liar (Kp= 3. 16), LiI (Kp= 3. 80), and LiF
(Kp= 1.92). It seems instructive to observe the
change in outer orbitals of the anion as a function
of the polarizability or as a function of K0.

First, in the case of Ne (Table I) we see that
the solid-state local orbitals differ by a trivial
amount from the free atomic orbitals. A similar
result has been found for Ar, ' although the changes
in Ar are greater than for Ne. In order to make
the changes quantitative, we search the outer-
orbital-wave-function coefficient table for the free
and crystalline solid and find that coefficient C„»
changes most. This change is given for several
substances as a function of K0 in Table VIII. Ex-
cept for the bromides and iodides, it seems clear
from Table VIII that the crystal orbitals tend to
distort in proportion to the dielectric constant of
the medium. This we feel to be especially marked
for MgS and ZnSe, where the anions in free space

TABLE V. The basis is defined and the local orbitals
given for S in Mgs. The normalization is $&C„&&=1 and
results are in rydbergs. The notation has been given in
the text.

TABLE VI. The basis and the local orbitals for Zn
in Znse are given. The normalization is/&C„» ——1 and re-
sults are in rydbergs. The notation is defined in the text.

Ap~

0
0
1
1
1
2
2
2
2

Zpj

17.8666
13.9239
13.7526
8. 9398
6.2464
5.7842
3.0431
2.0549
1.2872

Al j
0
0
0
1
1
1
1
1

Zj j
12.7980
8.1734
5 0103
3.8107
2. 1976
1.5528
0.7790
0.4120

1
2
3
4
5
6
7
8
9

10

Ao~ Zo

31.6557
27. 9415
14.4013
13.6516
6.8235
5.1970
5.4626
2. 3494
1.3648
0.8829

z„
19.6637
12.3337
11.7281
7.4809
4.6219
4.3975
1.9142
1.0264
0.6758

Z2j
1.8017
2. 9851
5.3914
7.9320

13.5738

q @1,= —183.95
q2 2,

———17.947
qa, p

= —I.8656
egg =-554x10 7

g~3 = —207x10

q2p =82x 10
q +2&

———13.314
q3p3P

= —0. 9117
c~p= 396 x 10

el I = —708. 358
c2 2

= —90.421
q3 3

= —12, 970
cgp2p= —79. 552
e3p3p= —9.387

&3d3d =

~isas =

&2s38 =

&2p3g

—3.278
—643 x 10
—244x10 7

—76x10 7

0.0

Cioy

0.682 31
0.721 67
0.066 36

—0.068 02
0.063 10

—0.02432
0.005 09

—0. 002 98
0. 00740

C20y

0.158 45
0.167 84
0.19041

—0.18130
—0. 86652
—0.355 44
—0.01941

0.00475
—0.001 46

C3pg

0.035 92
0.066 66
0.052 26

—0.061 50
—0.26244
—0.222 87

0.382 84
0.750 12
0.399 94

C21

0.041 91
0.339 81
0.93917
0.023 07
0.012 56

—0.006 65
0.001 69

—0 ~ 000 53

C

0.021 43
—0.006 94

0.302 93
—0. 213 77
—0.009 34
—0.897 13
—0.225 51

0 ~ 079 06

CION C209

1 0.99105 0.30603
2 0.12694 0.18104
3 —0.01124 —0.73859
4 0.00919 —0.49467
5 —0.01799 —0.16306
6 0.03026 0.21395
7 -0.01588 -0.10476
8 0.00031 0.00069
9 -0.00020 -0.00038

10 0.00008 0.00015

C30$

0.10235
0.05751

—0.23965
—0.33189

0.72237
—0.10403

0.53363
0.03000

—0.01662
0.00663

C2&&

0 16509
0.98301
0.07212
0.03401

-0.00751
0.00353

-0.00002
-0 F 00000
0.00000

C3i

0.06489
0.35513
0.15384

—0.53835
-0.72845
—0. 15622
-0.02872

0.01619
—0.00744

C32&

0.20045
0.69232
0.62915
0.28681
0.04923
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TABLE VII. The basis and the local orbitals used for Se in ZnSe are given. The normalization is Z&C„&&
-—1 and results

are in rydbergs. The notation is given in the text.

1
2
3

5
6
7
8
9

10

Ap~

egg =- 922. 167
121~ 717

qa 3
= —18.231

q4 4
——-2. 074

e 2p2p
———108.916

Zpf

36.2133
32. 1027
16.7049
15.8029
8.1006
6.3382
6. 5018
3.3714
2.1084
1.4461

g3 3
—-13.692

q4p4p
———1.168

F3~3~.
'= —5.669

g~2 = —654x 10

Ag~

0
0
1
1
1
2
2
2
2

22. 5809
14.9893
14.2061
9.1689
5.8363
5.1943
2.7166
1.5552
l.0866

q&3
———258 x 10"7

qg4 = —51x 10-7

q2, 3, =- 80 x 10-7

g2 4
———45x10-7

A2~

0
0
0
0
0

Z2f

2.7861
4.3903
6.9094
9.6548

15.5610

e3 4
—352 x10

p=0. 0

&2p4p= —30 x 10 7

q3~=1306x 10 7

1
2
3
4

6
7
8
9

10

Cgpg

0.98595
0.1441

—0.01900
0.01651

—0.03998
0.06234

-0.03018
0.00152

—0.00087
0.00032

C20~

0.31661
0.19151

—0.73262
—0.54537
—0.11957

0.11247
—0.04182
—0.00093

0.00088
-0.00036

C30)

0.13283
0.07782

—0.30210
—0.43958

0.57793
0.49444
0.33419
0.03667

—0.01606
0.00621

C40g

0.03286
0.01738

—0.06798
—0.13183

0.39773
-0.29101

0.37717
—0.57961
—0.38873
—0.32314

0.15872
0.96784
0.19112
0.03947

—0.00386
0.00103
0.00024

—0.00022
0.00011

C3&&

0.05745
0.32327
0.17908

—0.38123
—0.83954
—0.09688
—0.02118

0.01004
—0.00459

C4U

0.00641
0.09919
0.01607

—0.04522
-0.33624

0.08466
0.53857
0.54708
0.52747

C32y

0.14941
0.74866
0.56599
0.30680
0.05197

are not found to be bound in the Hartree-Fock
limit using our codes. In the case of the bromides
and iodides, the deviations are partly masked by
the large basis sets employed in the calculation,
which permit the distortion to be distributed over
a large number of coefficients. Even so, the re-
sults within the bromides and within the iodides
scale with Ko.

It is interesting to further examine our worst
case ZnSe. First, the assumption of small over-
laps is least valid here; second, the environment
of a given ion is tetrahedral, which makes our sim-
ple basis less than desirable. We have examined
the overlaps for nearest and next nearest neigh-
bors in ZnSe and find the largest to be 0. 2 using
our local orbitals; hence if this is not exactly
small, it also is not very large. Second, Euwema
has computed ZnSe charge densities from our
orbitals as well as from other methods and finds
them to be neither appreciably better nor worse
than by any other method.

Finally, we wish to comment upon some recent
work on local orbitals, performed by Adams.
In this work Adams argues that the preferable
choice for A in our Etl. (4) would be —U„. In
this paper we have chosen to use A= U&. Adams
argues that the choice A = —U~ will produce orbi-

TABLE VIII. In this table we present the maximum
deviation of an expansion coefficient for a local orbital
C„&& compared with the equivalent free atomic value for
a variety of crystals as a function of the dielectric con-
stant Kp Results are for the anion if ionic.

Substance

Ne

Ar
LiF
NaCI
NaBr
KI
LiCl
LiBr
LiI
MgS
ZnSe

Kp

l.26
1.67
1.92
2.25
2.62
2.69
2.75
3.16
3.80
5.1
5.9

+Cnlg

10x 10 '
4x 10-'
5x10 2

7x 10-2

3x 10"2~
2x 10-2
6x 10-2
7x 10 2~

4x ].0"2~

S ion not bound
Se &on not bound

Deviation masked by large number of basis vectors
used in the expansion.

tais which are least distorted from free atomic
orbitals, and that such orbitals are preferable.
Adams gives a series of arguments to justify this,
which we need not consider at this time. In the
majority of cases, we would agree with this con-
clusion of Adams. However, we find cases, such
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as MgS or ZnSe considered here, where the S or
Se free atomic orbitals are either very diffuse or
unbound„and local orbitals which are minimally
distored from the free atomic case would be very
diffuse and overlap greatly at best. Such orbitals
would be poor choices in many calculations be-
cause of their great overlaps. Therefore, we find
it desirable in some cases to obtain local orbitals

which are greatly distorted from the free orbitals.
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Direct Optical Observation of the Semiconductor-to-Metal Transition in SmS under Pressure
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A discontinuous change in the ref lectivity due to the first-order semiconductor-to-metal
transition has been observed in SmS at a pressure of about 6 kbar. The metallic state is char-
acterized by a golden yellow luster which arises because of interband transitions superimposed
on the Drude reflectivity. These results and the pressure dependence of the optical-absorption
edge in semiconducting SmSe and SmTe are in excellent agreement with earlier resistivity
measurements.

Recent resistivity measurements' under pressure
on Sm Te, SmSe, and SmS have revealed that these
monochalcogenides undergo a pressure -induced
semiconductor -to-metal transition, without involv-
ing any change in the crystal structure. This dis-
covery has generated considerable interest in the
study of their magnetic and pressure-volume be-
havior' under high pressure, as well as optical
studies at atmospheric pressure. ' 6 In this paper
we show that the change in ref lectivity under pres-
sure is one of the most striking phenomena asso-
ciated with the semiconductor-to metal transition
and in this respect is more spectacular than the
resistivity change which can be influenced by ex-
trinsic impurities. In particular, we present for
the first time evidence for metallic ref lectivity in
SmS at hydrostatic pressures greater than 6. 5

kbar. These results, together with our optical-
absorption data taken under high pressure on the
insulating state of Sm Te and SmSe, provide strong
evidence for the interpretation that the semicon-
ductor-to-metal transition in all three compounds
arises from 4f-electron delocalization into the 5d
conduction band and that this is an intrinsic proper-
ty of the material.

The measurements were made in a hydrostatic-
pressure vessel equipped with sapphire windows.
Plexol was used as a pressure medium. The re-
flectivity or absorption data could be taken over
the wavelength range 0. 26-2. 5 p, . The maximum
attainable pressure was about 14 kbar.

Figure 1 shows the ref lectivity of single-crystal
SmS at a fixed wavelength of 0.8 p, as a function
of pressure for near-normal incidence. With in-


