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Spin Susceptibility of an Interacting Electron Gas
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A simple calculation of the wave-vector- and frequency-dependent paramagnetic spin sus-
ceptibility of an interacting electron gas is presented. The equation of motion of the double-
time Green's function is solved using a moment-conserving decoupling approximation. For
the short-range interaction, our expression for the dynamic spin susceptibility reduces to a
previous result of Wolff. In the static and long-wavelength limit, our result for the Stoner-
enhanced spin susceptibility coincides with that obtained from consideration of the ground-
state energy in the Hartree-Fock approximation.

I. INTRODUCTION

The free-electron model has proved very useful
to understand, at least qualitatively, a number of
important physical properties of simple metals.
In this model the ion cores provide a uniform
neutralizing background of positive charge and the
conduction electrons are treated as a degenerate
Fermi gas. The spin magnetism of the conduction
electrons in simple metals can be correctly es-
timated from Pauli's formula. However, it is
known for quite some time that one of the impor-
tant manifestations of Coulomb interactions be-
tween the electrons is to enhance the spin suscep-
tibility over Pauli's value. ' In recent years,
there has been renewed interest to study the
effect of electron-electron interaction on the prop-
erties of electron gas in metals. It is felt that a
quantitative explanation of the Stone r-enhanced
spin susceptibility of simple metals such as sodi-
um, where the effect of periodic potential is known
to be negligible, would provide a direct test of the
theories of electron correlations at metallic den-
sities.

Recently, Toigo and Woodruff have developed a
theory of dielectric response function of an inter-
acting electron gas by solving the equation of mo-
tion for the Green's function of electron-density
operators. These authors have used a moment-
conserving decoupling approximation, suggested
by Tahir-Eheli and Jarret. The theory of Toigo
and Woodruff has given very good result for the
dielectric function in the long-wavelength limit.
It was, therefore, thought that it would be worth-
while to examine the spin susceptibility of an in-
teracting electron gas in the same approximation.

In this paper we present a simple calculation of
the wave-vector- and frequency-dependent para-
magnetic spin susceptibility of an interacting elec-
tron gas. The equation of motion of the double-
time Green's function is solved using a moment-
conservigg decoupling approximation. For the
short-range interaction, our expression for the

The system of degenerate liquid of electrons,
immersed in a uniform neutralizing background of
positive charge is described by the Hamiltonian
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where a"„,, ak", are the electron-creation and
-annihilationoperators, respectively, and &uf =k2/

2m, Q(k) =43e /k'. We use I=1 throughout. The
Fourier transform of the electron-density-fluc-
tuation operator is given by
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The Fourier transform of the z component of the
spin-density-fluctuation operator is defined as
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The frequency- and wave-vector-dependent spin
susceptibility is obtained as a linear response of
an electron system to a magnetic disturbance. It
may be expressed in terms of retarded Green's
function as

x(4, t) =«s, (fl, t); s', (q, o)»
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k,e
(4)

where the angular brackets denote the exact
ground-state average, appropriate to the system
Hamiltonian (1) and 8(t) is the unit step function.
We have defined the spin susceptibility in units of

g p.& where g is I ande's factor and p, ~ is Bohr

dynamic spin susceptibility reduces to a previous
result of Wolff. ' In the static and long-wavelength
limit, our result for the Stoner-enhanced spin
susceptibility coincides with that obtained from
the consideration of the ground-state energy in the
Hartree- Fock approximation.

II. GENERAL THEORY
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magneton. It is possible now to derive the exact
expressions for a few low-order frequency mo-
ments of the spin susceptibility function. To de-
rive these moments we note that the imaginary
part of this function is given by

x"(g, f) = —,'&[s,(q, f}; s', (q, o)]& .

(6)
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We define the Fourier transform X"(g, &u) of the
imaginary part of the spin susceptibility as

x"(0, t) =
~ 2, e '"'x"(0, ~) .

4 a

The various odd frequency moments of X"(g, &u)

can be obtained from Eq. (5), by differentiating it
with respect to time and then taking the limit
t- 0. The resulting commutators can be exactly
evaluated for the first few low-o."der moments.
The first frequency moment is given by

r eo

d&d

Now if we make the usual Hartree-Fock-type de-
coupling approximation in Eq. (9), we obtain an
integral equation

Gi, ($, (a ) = g q, Gi, ($, (u) + G„",(fl, (u)

where

G .(~l, (u) = (nr,.;,—n;, )/[&o —(~. ..—(ui)]

is the free-electron Green's function. Equation
(11) is the same as obtained by Wolff. ' The solu-
tions of the above equation has been discussed by
Wolff.

However, here we make the following decoupling
approximation:

« [pi, ,(e, ff 1;s', (0)» = ~-,.(4) «s,(0);s,' (g)»
(12)

Making use of Eqs. (12) and (9) in Eq. (4) we ob-
tain

nq
4m

(7) where

which is independent of particle interaction. How-
ever, in the third frequency moment, the Coulomb
potential explicitly enters along with two-particle
static correlation functions. The result for this
moment shall not be given here. We shall make
use of the first frequency moment to calculate the
spin susceptibility of an interacting electron gas.

We derive an expression for the frequency- and
wave-vector -dependent spin susceptibility by
solving the equation of motion of Green's function
occurring in Eq. (4). The equation of motion for
the said Green's function is'

df
G-,.(4, f) = 5(t) & [s,(4), p-,.(4)]&

Its Fourier transform is given by
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This is an exact equation and cannot be solved
without making some approximation to linearize
it. The commutator occurring in the last term of
the above equation is found to be

[pi, 'N), If']

=Z y(q)(ai p- &i.;$ e-&i.i UPC si.a, s) ~

(g ) ~~ nips, y nj, y
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The coefficient Ai, (fl) is determined by using the
condition that the first frequency moments of both
sides of Eq. (12) must be equal. This gives

li ~ 1
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On simplification it can be easily seen that the
first term on right-hand side of above equation be-
comes

gP(g)(ni„—ni, q, ) (q'/m)(n& —n&) .

The denominator here is obviously the exact first-
frequency moment of the spin-susceptibility func-
tion, which we have already calculated [Eq. (7)].
For the evaluation of the numerator, we have
made the usual Hartree-Fock decoupling approx-
imation to calculate the averages. The contribu-
tions whicn are quadratic in interaction have been
ignored here for simplicity. We hope to investi-
gate the effects of these terms later. In the ap-
proximation described above, the numerator is
given by

&[[[p„-.(g),e,],a], S,'(g)]& = -,'y(g)(n„- .-n-„, )
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Now for the paramagnetic case n& = nk = ~n so that
this term becomes zero. A„-,(g) thus, can be
evaluated and we obtain, for the paramagnetic spin
sus ceptibi lity,

whe re

and

x& (4, ~)
2 I -I($, ) x ($, )

2

(17)

(18)

III. RESULTS

We shall now examine our expr es sion for the
frequency - and wave -ve cto r -dependent spin sus cep-
tibi lity in the fol 1owing important cases .

(i) &olff's case. When the electron interaction
is short ranged, i.e. , &f& (k —g') = v (a constant).
In this case it can be easily seen that P„",(g) sim-
plifies to —2v and we get, from E Is. (17) and

(18),

X2 (4 ~)
2 I -.x.(C, -) (20)

It is very interesting to note that this expression
for spin susceptibility is exact ly the same as ob-
tained by Wo lff for the short -range interaction
from Eq. (11).

(ii) Static limit. The second important case is
to consider the expression (17) in the static limit
(i. e. , when ~ -0). In the static limit it can be
seen that expression (17) reduces to

I. D(E~) U(q, 0)
2 I -I(q, 0) D(ep) U(q, 0)

(21)

where 2D(e~) is the density of states at the Fermi
surface and

U(q, 0) = —+ 1 — ln
1 1 q q + 2 t

2 q 4 q —2
(22)

In Eg. (21) and what follows q is expressed in
units of q2 . I(q, 0) is the static limit of I(q, ~) and
can be written in the form

I(q, 0) = (8ve'/q2) G(q, 0)/q2

where

(23)

P2, (fi) = —
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The integrals occurring in E I. (23) are exactly the
same as involved in the work of Toigo and Wood-
ruff and can be solved numerically by making
certain tran sformations . '

(iii) Stoner enhancement (long-wavelength limit).
It can be seen that in the long-wavelength limit
(i.e. , q - 0) integrals occurring in E I. (23) can be
directly evaluated and one gets

(26)lim [G (q, 0)/q '] = -,'
a "Q

Also in the long-wavelength limit, U(q, 0) ap-
pro aches unity. Thus, in the static and long -wave-
length limit our expression for the paramagnetic
spin susceptibility reduces to

(27)x=xo/(1 -~),
where XQ

is the Pauli ' s paramagnetic spin sus cep-
tibi lity and

n= (2' /q )D(a )=0.166r, , (28)

where x, is the electron density parameter. The
(1 —u) is the factor by which the spin suscepti-
bi lity is enhanced due to electron -electron inte rac-
tion. It is very interesting to note that our result
for Stone r -enhanced spin susceptibility coincides
with that obtained from consideration of the ground-
state energy in the Hartree -Fock approximation.

The agree ment of the enhanced paramagnetic
susceptibility with experimental results on simple
metals is not good. It is obvious from E I. (28)
which gives n = 0. 66 for ~, = 4. This value of
corresponds to metallic sodium. The experi-
mental value of n for sodium is 0.42. It is also
known from the theory of Singwi et al . that
does not depend linearly on x,. It is more or less
constant for entire metallic density range . The
wave -vector dependence of the exchange -enhanced
susceptibility is governed by the function f(q). The
importance of this function has been discussed in
detai l by Lowde and Windsor and others s 4 We
have plotted this function in Fig. 1~ The q depen-
dence of this function is the same as obtained by
Toigo and Woodruff in the case of dielectric func-
tion of an interacting electron gas . It is different
fro m the q dependence obtained by Singwi e t al .
These authors find that l(q) has a gentle dependence
on q, a resu lt consistent with the experimental ob-
se rvation s of Low de and Windsor .

G(q, o)-
( ) (

Z W, .(f()

(24)
which can be simplified to give

1 2m (3w')
( Gt0q)

2 (g)D( ) U( 0) 2 2 ~ e( ~i )

IV. CONCLUDING REMARKS

The enhancement of paramagnetic susceptibility
as predicted by E Is. (27) and (28) is not in good
agreement with experimental results . This may
be due to following reasons . First, in the evalua-
tion of the coefficient A;, (g) from E I. (15) we have
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FIG. 1. Enhancement function
I(q) vs q for &~=4.
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ignored for simplicity the contributions which are
quadratic in the interaction. It has been clearly
demonstrated in this paper that the result then
obtained in the static and long-wavelength limit
coincides exactly with the result obtained from
consideration of the ground-state energy in Har-
tree-Fock approximation. This is one of the
important conclusions of the present paper. The
terms which are omitted in Eq. (15) will, there-
fore, give the explicit Coulomb correlation con-
tributions. This will also modify the q dependence
of I(q) obtained here. Secondly, we have made use
of simple Hartree -Pock decoupling approximation

in calculating the averages involved in Eq. (15).
Lastly, although the moment-conserving decoupling
scheme of Toigo and W'oodruff has given reason-
able result for the compressibility of an electron
gas, this may not be a good approximation for the
problem of spin susceptibility of an interacting
electron gas. It is hoped that efforts will be made
to clarify some of the points mentioned above.
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