
2900 C. H. STEPHAN AND B. W. MAXFIELD

*Work supported by the Advanced Research Projects
Agency through the Materials Science Center, Cornell
University, MSC No. 1735.

~ Present addres s; Department of Physics, Michigan
State University, East Lansing, Mich.

~Alfred P. Sloan Research Fellow.
'M. I. Azbel', M. I. Kaganov, and I. M. Lifshitz, Zh.

Eksperim. i Teor. Fiz. 32, 1188 (1957) ISov. Phys.
JETP 5, 967 (1957)].

2T. Amundsen, Phil. Mag. 20, 687 (1969).
~C. H. Stephan and B. W. Maxfield, Solid State

Commun. 7, 1039 (1969).
N. W. Ashcroft, Physik Kondensierten Materie 9, 45

(1969).
'J. C. Garland, Phys. Rev. 185, 1009 (1969).
A similar expression holds for the Hall coefficient,

with Rl. ; and f('; replaced by RH; and a„respectively,
where 0.; is the electrical conductivity of the ith band.
In this case T; represents the electrical relaxation time
for a carrier in the ith band. (See Refs. 4 and 5. )

'E. S. Borovik, Zh. Eksperim. i Teor. Fiz. 23, 83

(1952).
K. Fgrsvoll and I. Holwech, Phil. Mag. ~10 921 (1964).
R. Luck, Phys. Status Solidi 18, 49 (1966).

~ J. N. Cooper, P. Cotti, and F. B. Rasmussen, Phys.
Letters 19, 560 (1965).

"Borovik (Ref. 7) reported a sign reversal in the Hall
coefficient of bulk polycrystalline indium, but this obser-
vation is not in agreement with later measurements by
others (Refs. 5, 9, and 10).

'2B. W. Maxfield and J. R. Merrill, Rev. Sci. Instr.
36, 1083 (1965).

' P. Wyder, Physik Kondensierten Materie 3, 292
(1965).

' For further discussion of this point, see R. E. Jones
and A. M. Toxen, Phys. Rev. 120, 1167 (1960)."J. E. Hammerberg (private communication).

' N. W. Ashcroft and W. E. Lawrence, Phys. Rev.
175, 938 (1968).

W. E. Lawrence, Ph. D. thesis (Cornel University,
1969) (unpublished).

PHYSICAL REVIEW B VOLUME 6, NUMBER 8 15 OCTOBER 1972

Theory of Spin Waves in Nonferromagnetic Metals

L. Weisenthal" and A. M. de Graaff
DePaxtment of Physics, Wayne State Uniuersity, g)etyoit, Michigan 48202

(Received 28 February 1972)

A simple quantum-mechanical theory of spin waves in nonferromagnetic metals has been
developed. This theory consists of a description of the spin-wave excitations superimposed
on the paramagnetic Hartree —Fock ground state of an interacting electron gas subjected to
a constant uniform magnetic field. Use has been made of a gauge-independent density-ma-
trix formalism. It is shown that to first order in the magnetic field the transport equation
for the transverse spin magnetization has the same form as the corresponding phenomeno-
logical Fermi-liquid equation proposed by Silin and by Platzman and Wolff. It is also shown
that for large fields, such that the cyclotron radius is smaller than the interelectronic dis-
tance, the term in the transport equation related to the cyclotron motion of the electrons is
not affected by the exchange interactions. The theory presented here lends additional cre-
dence to the validity of Platzman and Wolff's phenomenological analysis of the experimental
spin-wave spectra in the alkali metals.

I. INTRODUCTION

In 1958 Silin predicted the existence of spin-
wave excitations in nonferromagnetic metals. '
These excitations were subsequently observed by
Schultz and Dunifer as a series of spin-wave side-
bands in conduction-electron spin-resonance ex-
periments performed on sodium and potassium. ~

Platzman and Wolff interpreted the data success-
fully by means of a phenomenologica1. theory of
transport for the transverse spin magnetization
in a Landau Fermi liquid. ' lt was shown that this
type of experiment provides a means to measure
the important Fermi-liquid parameters Bo,
B„.. . , i. e. , those parameters which determine
the spin-dependent part f(k, k ) of the Fermi-liq-
uid interaction function. Since it is the transport

+ I, v ~ ~ — (v&& H, ) ~ V, - iflo I (p+ «g)et g Sc

= —,'yo(v ~ V —iQ,) h, . (1)

Here, v is the quasiparticle velocity, Ao is the
applied constant magnetic field (taken in the z
direction),

yo -=gea/2mc, Qo = y+0/(1+ Bo),

h, is the rf magnetic field h„+ ih„and Ra is the
change in the quasiparticle energy resulting from

equation for the transverse magnetization itself
that will be the subject of this paper, we will re-
produce here Platzman and Wolff's transport equa-
tion for ease of discussion:
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a change in the distribution function. The quantity
p, is defined as m, = —(&f0/sf~) p, where .m, is the
transverse spin magnetization m„+ im„ f0 is the
equilibrium distribution, and E~ is the unperturbed
quasiparticle energy. For simplicity we have
omitted in Eq. (1) terms due to orbital and spin-
flip collisions, since these will not play a role in
the following considerations.

Equation (1) is very important, because it de-
scribes the propagation of spin waves in nonferro-
magnetic metals. In particular, significant in-
formation about the electron-electron interaction
in sodium and potassium has already been ob-
tained by analyzing the experimental spin-wave
spectra of these metals with the help of this equa-
tion. However, Eq. (1) is also phenomenological.
A first-principles quantum-mechanical derivation
is highly desirable, so that one may have added
confidence in the experimentally determined values
of the Fermi-liquid parameters. Van Zandt, in a
recent series of papers, ' has attempted to justify
Eq. (1) by generalizing Thomas's theory' of trans-
port in a magnetic field to an interacting electron
gas. This author has reached the conclusion that
in Eq. (1) the term

(e/Sc)(vx Ha) ~ v, (p, + «,)

is incorrect and should be replaced by

(e/mc) (k && H,) .Y, p,

This is rather puzzling, since this fact would seem
to indicate that the cyclotron motion of a quasi-
particle (which gives rise to the k&& Ha as well as
of course to the v&& HD term) is not affected by the
electron-electron interaction. ' Other authors,
however, have argued that it is the quasiparticle
mass that is measured in a cyclotron-resonance
experiment, ' apparently implying the correct-
ness of the v && H~ term in Eq. (1}.

The purpose of this paper is to describe an al-
ternative attempt to justify Eq. (1}. Our method
consists of studying spin-wave excitations super-
imposed on the paramagnetic Hartree-Fock ground
state of an interacting electron gas by means of a
gauge-independent density-matrix technique (Sec,
II). If the deviations from this ground state due to
the spin-wave excitations are sufficiently small,
one should obtain a reasonably good approximation
to the predictions of the more accurate Fermi-
liquid theory. We shall find that the terms in the
equation of motion for the transverse magnetiza-
tion which result from the cyclotron motion of the
el.ectrons, are negligibly affected by the exchange
interactions when the applied field Hp is of the
order of or higher than ez/ps, ez being the Fermi
energy. This is understandable, since this con-
dition implies that the free-particle cyclotron
radius (mv~/eH~} is of the order of or smaller

than the interparticle distance. If the field is this
large, each individual electron is spiraling about
Hp without ever being influenced by the exchange
interactions with the other electrons. This sim-
ple argument of course tacitly assumes that the
electrons are not diffusing away from their respec-
tive field lines due to orbital scattering. However,
in this paper we are not interested in the effects of
orbital scattering, but rather in the orbital driving
term in the transport equation for the transverse
magnetization. If, now, the magnetic field is low-
ered, the cyclotron orbits will become larger and
the electron wave functions will begin to overlap.
We should expect(perhapsnaively) that then the
cyclotron motion of an individual electron will be
affected by the exchange interactions with the
other electrons. Our theory shows that this is
precisely what happens. Moreover, we shall
demonstrate that our transport equation for the
quantity p, has, to first order in Hp, exactly the
same form as Eq. (1). Higher-order terms are
expected to become important only at hitherto ex-
perimentally unattainable fields. We believe there-
fore that our theory lends additional credence to
the values of the Fermi-liquid parameters for
sodium and potassium obtained from experimental
spin-wave data employing Platzman and Wolff's
method of analysis.

Since our formalism is much simpler than the
elaborate (representation-free) operator treatment
of Ref. 4, a detailed comparison of the two ap-
proaches wouM be a rather complicated matter
and will not be attempted in this paper.

II. THEORY OF THE TRANSVERSE SPIN MAGNETIZATION

Our model consists of a uniform interacting elec-
tron gas subjected to a uniform constant magnetic
field H0 (taken in the z direction). We also apply
a small x-directed field H, (r, t) to this system.
This latter field depends on the spatial coordinate
r as well as on time. We write the vector poten-
tial describing the constant magnetic field as

X(r) = H0(sy, x+ sx, 0)+ v&(r),

where s is an arbitrary real number and &(r) is
an arbitrary twice differentiable function (so that
0&&X is defined). The equation of motion for the
single-particle density matrix p(x, x ) is then

iS —p(x, x') = [K,(x) —K, (x')] p(x, x )

+iV 1 [ V(r —r, ) —V(r' —r~)] p&z, (x, x';x„x,) d x, ,

(3)
where

e-
3'.,(x) =

~

—. V + —A(r) 1+ p, v (HD+H, ) . (4)2m &i c
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1 and {o,) are the unit matrix and the Pauli spin
matrices, respectively. p, , is the intrinsic mag-
netic moment of the free electron. V(r —r ) is the
Coulomb interaction energy between two electrons,
and p&z) is the two-particle density matrix. The
coordinate x includes both the spatial coordinate r and
the spin coordinate. The integral over x, implies an
integration over r, and a sum over spin. InEq. (3) we
have neglected (a.s is usually done) the effect of the
field H, on the orbital motion of the electrons. Other-
wise, Eq. (3) is exact. We now make the Hartree-
Fock approximation by setting'

p(p&(xenix yx/pixy) = p(xyx ) p(x$(x, ) —p(xenix, ) p(x[, x ) .
(6)

Before proceeding it proves convenient to express
the single-particle density matrix in a somewhat
different form. Wilson has shown that in the ab-
sence of H, and electron-electron interactions the
equilibrium density matrix has the form

p(r, r ) =exp[-ieHO ~ (r mr)/2hc]E(r —r ),

where F is a translationally invariant function. "
We also introduce a function E(x, x ) defined as

p(x, x ) = e'"" 'E(x, x'), (6)

where the phase

8(r, r ) = (e/Rc) {2[Xo(r +r)] ~ (r -r)+ A. (r ) —X(r) ]
(7)

is the appropriate generalization of Wilson's phase
conforming with the class of vector potentials
given in Eq. (2). The function F(x,x ) is not
tr anslationally invar iant, s inc e H, depends on
position. It should be noted that the diagonal ele-
ments of p and E are identical since 8(r, r) =0.

At this point the introduction of the function F
seems rather arbitrary. However, the impor-
tance of the function becomes apparent when one
substitutes Eqs. (6) and (7) into Eq. (3) in order
to obtain the equation of motion for F. Using
Eqs. (4) and (5) we find

+ p, ,[c ~ (Hq+H, ), F(x, x )] +N [ V(r —r, ) —V(r —r, ) ]F(x,x )E(x„x,) d x,

e'"[ V( r —r&) —V( r —r&) ]E(x, x&) F(x&, x ) d x&, (8)

where p is given by

y = (e/25c) Ho ~ [(r —r, ) && (r —r, )]

E(x, x') = E,(x —x') + F,(x, x'), (10)

where Eo is the exact solution of Eq. (8) in the ab-
sence of the perturbing field H, . F, is the small
deviation of the function F from its equilibrium
value Fo, caused by the small field H, . We ob-
serve that the Fourier component m, (q) of the
transverse magnetization m, can be expressed
in terms of F, as

Pe
~

i(k+f)'r' e-((( rF (ry r y)dsy d'(&
t

(11)
which follows from the fact that the total transverse
magnetization density of electron gas is ~,(r)

The first integral in Eq. (8) is due to the Hartree
field, while the second integral results from the
Fock-exchange interactions among the electrons.

Equation (8) is the key equation of this paper, since
we will be able, as we shall show below, to obtain
information from it about the transverse magnetiza-
tion rn, . We try to solve it by means of a perturba-
tion method. We set

t

= —2Np, F,(rf, r4). Here, we have made use of the
fact that 8(r, r) =0. This shows that indeed the
transverse magnetization is related to the solu-
tions of Eq. (8).

In the remainder of this section we shall explore
the properties of the equation of motion for the
function F, i. e. , Eq. (8), in somewhat more de-
tail. First of all we notice that Eq. (8) is indepen-
dent of s and A(P), which implies that the function
F is gauge independent, at least for those gauges
defined by Eq. (2). Therefore, the magnetization
m, will also be gauge independent. Next, we would
like to draw attention to the factor e'" occurring in
the exchange term of Eq. (8), where y is the field-
dependent quantity given in Eq. (9). Suppose that
the potential energy V(r —r, ) is large in an inter-
val 0& l r —r, i &l„where l, is a length typically
of the order of the screening length. If the mag-
netic field Bo is so large that e'" oscillates rapidly
in this interval, then the exchange term will be
negligibly small, thus confirming our speculation
in the Introduction that the cyclotron motion is not
affected by exchange interactions at sufficiently
high fields. In order to assure a significant con-
tribution of the exchange term we must require
that (eH, la/2hc) «I, which corresponds to the
condition that the cyclotron orbits be larger than
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the interelectronic distance. Finally, we wish to
make contact with the transport equation for the
magnetization [Eq. (1)]. To this end we expand
e'~ to first order in the field and take matrix ele-
ments of Eq. (8) with respect to the plane-wave
states [expik ~ r] 0 and (exp[i(k+ q) ~ r ]j4, where
4 and 0 indicate the spin direction. Making use
of Eqs. (10) and (11), we find to first order in q

ep, |' . e
et I, nc

+
~

-iv ~ q ——(v&& H ) ~ V —i& (p+ Q )2

= —,'y, (-iv ~ q —if', ) h, . (12)

Here, v= (1/h)l„e~, e~ being the Hartree-Fock
single-particle energy. '2 0 is the exchange-en-
hanced spin-precession frequency, ' and 6&2 is
given by

Her e, v(k) is def ined as

V(r) =Qf, e'"'"v(k) .

Equation (12) has the same form as Eq. (1). They
are not identical, because quantities such as v,

Ao, and ~c2 are to be calculated with the methods
of the Fermi-liquid theory when used in Eq. (1).
However, when substituted into Eq. (12) they must
be evaluated in the Hartree-Fock approximation.
Nevertheless, predictions based on Eqs. (1) or
(12) are qualitatively the same. Since the spin-
wave excitations occur close to the Fermi surface,
the velocity v in Eq. (12) is to be taken at the Fer-
mi surface. A drawback of the Hartree-Fock ap-
proximation is that this velocity diverges. How-
ever, the divergence can be avoided by replacing
(as is customarily done) the bare Coulomb inter-
action V(r —r ) by a screened interaction. Pre-
dictions of Eqs. (1) and (12) can then actually be
made quantitatively the same by chosing an ap-
propriately screened interaction, and we may re-
iterate our assertion in the Introduction that our
theory provides additional confirmation of the va-
lidity of Platzman and Wolff's analysis of the spin-
wave experiments in the alkali metals. In closing
we remark that the (field-dependent) phase factor
in the exchange term of Eq. (8) has led to the ap-
pearance of the v&& 1Toterm in the transport equa-
tion for the magnetization. In the absence of this
phase factor, the exchange term would not have
contributed to the orbital term in the transport
equation, and a k&& Ho term would have resulted.
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