Green's Functions of the Face-Centered-Cubic Heisenberg Ferromagnet with Second-Neighbor Interactions*

Robert H. Swendsen[†] and Herbert Callen

Department of Physics, University of Pennsylvania, Philadelphia, Pennsylvania 19104

(Received 10 April 1972)

Green's functions for a fcc Heisenberg ferromagnet with both first- and second-neighbor interactions are given in terms of accurate but simple polynomial approximants. These polynomial approximations greatly simplify the application of sophisticated theory to real physical systems of interest. Our procedure for the calculation of the lattice Green's functions is described. We have computed 24 Green's functions (corresponding to 24 values of the lattice vector \mathbf{R}), each for a range of values of the first- and second-neighbor exchange constants $(J_1 > 0, 0 > J_2 > -J_1)$, and each as a function of energy within the spin-wave band. This enormous quantity of data is condensed by fitting the functions to polynomials in the energy variable, and we tabulate the coefficients of these polynomials. The polynomials not only provide compact representations of the Green's functions (without which Green's-functions theories are useless for applications), but they provide representations which permit Green's-functions theories often to be evaluated analytically. As the polynomials have been formulated to have the rigorously correct analytic behavior at band edges and at Van Hove singularities, results obtained by use of our polynomial approximants are similarly rigorous at the crucial regions of the spectrum, and are highly accurate (~0.2%) everywhere.

I. INTRODUCTION

An extremely useful tool in the study of the propagation of particles or excitations in crystals is the lattice Green's function¹

$$G_{\vec{\mathbf{k}}}(E) \equiv \frac{1}{N} \sum_{\vec{\mathbf{k}}} \frac{e^{i\vec{\mathbf{k}}\cdot\vec{\mathbf{R}}}}{E - E(\vec{\mathbf{k}}) + i\delta} .$$
(1)

These functions are also prominent in the theory of thermodynamic properties² and in the theory of impurities.^{1,3,4} Unfortunately, the explicit applications of all of these theories are severely hampered because extensive numerical evaluations of the Green's function have been confined mainly to the simple cubic lattices and to systems with nearest-neighbor interactions only.⁵⁻⁸

In this paper we describe a general procedure for accurate calculation of the lattice Green's function. We apply the technique to a fcc lattice with a Heisenberg exchange interaction between both first and second neighbors. We have carried out extensive numerical calculations of the Green's function for 24 lattice vectors \vec{R} , over ranges of values of the exchange constants J_1 and J_2 and as a function of the energy E inside the spin-wave band.⁹ Rather than tabulate this immense collection of data, we have fit our calculated results to simple polynomials in the energy and we tabulate the coefficients of these polynomials. They provide not only a convenient and compact representation of the numerical data, but we believe that the polynomial approximations will be very useful in facilitating explicit theories involving Green's functions.

The polynomial approximations to the Green's functions introduce an error of not more than 0.2%,

whereas the underlying numerical calculations of the Green's function are accurate to better than six significant figures.

We also give rather detailed analytic descriptions of the behavior of the Green's functions at Van Hove singularities and at the band edges.

In our specific calculations we have restricted our attention to positive values of the nearestneighbor exchange constant $(J_1 > 0)$ and to negative values of the next-nearest-neighbor exchange constant $(J_2 < 0)$, such that the ratio J_2/J_1 is between 0 and -1:

$$J_1 > 0$$
, $-1 < J_2/J_1 < 0$. (2)

Through this range of values the system is ferromagnetically ordered.¹⁰

The excitation energy $E(\vec{k})$, which appears in the denominator of the Green's function, is given by

$$E(\vec{k}) = 8SJ_1[3 - \cos(\frac{1}{2}k_1a)\cos(\frac{1}{2}k_2a) \\ -\cos(\frac{1}{2}k_2a)\cos(\frac{1}{2}k_3a) - \cos(\frac{1}{2}k_3a)\cos(\frac{1}{2}k_1a)] \\ + 4SJ_2(3 - \cos k_1a - \cos k_2a - \cos k_3a) .$$
(3)

The quantities J_1 and J_2 are simple constants in standard spin-wave theory, but in other theories ^{4,11,12} J_1 and J_2 are considered as self-consistent functions.

We define dimensionless quantities. The ratio of the exchange constants will be defined as

$$\gamma \equiv J_2/J_1 , \qquad (4)$$

which will be limited to the range - 1 to 0 [Eq. (2)]. Dimensionless vectors in real space are mea-

2860

FIG. 1. Volume of integration. This region has the volume of $\frac{1}{48}$ the Brillouin zone (see Ref. 13).

sured in units of half the lattice constant

$$\vec{\mathbf{r}} = 2\,\vec{\mathbf{R}}/a \,\,, \tag{5}$$

and the corresponding dimensionless vectors in reciprocal space are

$$\vec{\kappa} = \frac{1}{2} \vec{k} a \quad . \tag{6}$$

The natural unit of energy is the maximum excitation energy E_m which, in the range $-1 < \gamma < 0$, is given by

$$E_m = 32 S J_1$$
 (7)

Then a convenient dimensionless energy variable is

$$\omega = E / E_m \tag{8}$$

and the dimensionless Green's function is

$$g(\mathbf{\tilde{r}}, \omega) \equiv E_m G_{\mathbf{\tilde{r}}a/2} (E_m \omega) \equiv g_{\mathbf{\tilde{R}}}(\mathbf{\tilde{r}}, \omega) + i g_I(\mathbf{\tilde{r}}, \omega) .$$
(9)

Finally, the excitation energies of Eq. (3) become

 $\omega(\bar{\kappa}) = \frac{3}{4}(1+\gamma)$

$$-\frac{1}{4}\left(\cos\kappa_{1}\cos\kappa_{2}+\cos\kappa_{2}\cos\kappa_{3}+\cos\kappa_{3}\cos\kappa_{1}\right)$$

$$-\frac{1}{4}\gamma(\cos^2\kappa_1+\cos^2\kappa_2+\cos^2\kappa_3) \ . \ (10)$$

Since the vectors \vec{k} are quasidense in reciprocal space, the summation which defines the Green's function [Eq. (1)] can be expressed as an integral over the Brillouin zone:

$$g(\mathbf{\bar{r}}, \omega) = \frac{1}{4\pi^3} \iiint d^3\kappa \; \frac{e^{i\vec{\kappa}\cdot\mathbf{\bar{r}}}}{\omega - \omega(\vec{\kappa}) + i\delta} \; . \tag{11}$$

The range of integration can be contracted drastically by invoking the point-group symmetry:

$$g(\mathbf{\tilde{r}}, \omega) = \frac{12}{\pi^3} \iiint d^3 \kappa \frac{f(\mathbf{\tilde{r}}, \mathbf{\tilde{\kappa}})}{\omega - \omega(\mathbf{\tilde{\kappa}}) + i\delta} \quad , \tag{12}$$

where

$$f(\vec{\mathbf{r}},\vec{\kappa}) \equiv \frac{1}{48} \sum_{\boldsymbol{\varphi}} e^{i\vec{\boldsymbol{r}}\cdot\boldsymbol{\varphi}\vec{\boldsymbol{\kappa}}} .$$
(13)

Here \mathcal{O} is an element of the point group and the sum is over the 48 elements of the cubic group. The integral in Eq. (12) is over $\frac{1}{48}$ of the Brillouin zone, or over the alternate volume region suggested by Andersen¹³ and shown in Fig. 1. The advantages of the latter volume region will become evident subsequently.

II. METHOD OF NUMERICAL CALCULATION OF GREEN'S FUNCTION

We first calculate the imaginary part of the Green's function, later to calculate the real part by a dispersion relation.

Taking the imaginary part of Eq. (12) and letting $\delta \rightarrow 0$,

$$g_{I}(\mathbf{\tilde{r}}, \omega) = (-12/\pi^{2}) \int \int \int d^{3}\kappa f(\mathbf{\tilde{r}}, \kappa) \,\delta(\omega - \omega(\mathbf{\tilde{\kappa}})) \,.$$
(14)

The δ function defines a surface of constant energy within the volume of integration. Denoting the element of area on this surface by dS, the integral normal to the surface is eliminated by the δ function, giving

$$g_{I}(\vec{\mathbf{r}},\,\omega) = (-12/\pi^{2}) \iint dS f(\vec{\mathbf{r}},\,\vec{\kappa}) \left| \nabla_{\kappa}\omega(\vec{\kappa}) \right|^{-1} \,.$$
(15)

It is now advantageous to project the surface of integration onto some convenient plane. For example, if the chosen plane is the $\kappa_1 - \kappa_2$ plane, the surface element dS projects onto an element $d\kappa_1 d\kappa_2$ for which

$$d\kappa_1 d\kappa_2 = \frac{|\hat{\kappa}_3 \cdot \nabla_{\kappa} \omega(\bar{\kappa})|}{|\nabla_{\kappa} \omega(\bar{\kappa})|} dS .$$
 (16)

Then the integral becomes

$$g_{I}(\mathbf{\tilde{r}}, \omega) = (-12/\pi^{2}) \int \int d\kappa_{1} d\kappa_{2} f(\mathbf{\tilde{r}}, \mathbf{\tilde{\kappa}}) \left| \mathbf{\hat{\kappa}_{3}} \cdot \nabla_{\kappa} \omega(\mathbf{\tilde{\kappa}}) \right|^{-1}.$$
(17)

The area of integration is the projection of the surface of constant energy onto the $\kappa_1 - \kappa_2$ plane. For any integration point (κ_1, κ_2) the function $f(\mathbf{r}, \mathbf{k})$ is to be evaluated on the surface of constant energy (at that point \mathbf{k} which projects to the point κ_1, κ_2); similarly with the last factor in Eq. (17).

Returning to the area of integration, the shape of the projected area is considerably simplified by choosing the alternate Brillouin zone of Fig. 1 in place of the more familiar one.

The choice of projection planes over which the integrals are to be performed is subject to one important restriction. Clearly the factor $|\hat{\kappa}_3 \cdot \nabla_{\kappa} \omega(\vec{\kappa})|^{-1}$ diverges if the constant energy surface is anywhere orthogonal to the $\kappa_1 - \kappa_2$ plane; it is therefore necessary to choose a projection plane which is nowhere orthogonal to the energy surface. Furthermore, since the shape of the constant energy

surface depends upon the energy, it is sometimes necessary to use different projection planes for different energy regions. The natural projection planes are the coordinate planes (such as the $\kappa_1 - \kappa_2$ plane) or the planes bounding the zone of Fig. 1. Providing the chosen plane satisfies the restriction that it be nowhere orthogonal to the energy surface, there is little to choose between one plane or another.

In our calculations we carried out the integrals by successive one-dimensional Gaussian quadrature. The order of integration is important to ensure that the intermediate integrand is smoothly varying. A net of as few as 16 points (four-point one-dimensional Gaussian quadrature) is sufficient to give the Green's function to within 1%. We used 100 points, giving an accuracy which is considerably beyond 1 ppm.

Because the areas of integration and the denominators of the integrands are the same for all $\mathbf{\tilde{r}}$, many Green's functions can be evaluated simultaneously. We have evaluated the 24 Green's functions which are needed for a solution of the impurity problem in the fcc lattice.

The 24 Green's functions which we have computed are not all independent.⁴ Nevertheless, we chose to compute each directly, invoking the relations among them only as a check of the consistency of the calculations.

The dispersion relation which yields the real part of the Green's function is

$$g_{\vec{\mathbf{R}}}(\vec{\mathbf{r}},\,\omega) = (1/\pi) \int_0^1 g_I(\vec{\mathbf{r}},\,\omega') (\omega'-\omega)^{-1} \,d\,\omega' \,. \tag{18}$$

Before performing this integration numerically it is necessary to remove the singularity analytically when ω is between 0 and 1. Therefore, we used the formula

$$g_{\rm R}(\mathbf{\tilde{r}}, \omega) = \frac{1}{\pi} g_I(\mathbf{\tilde{r}}, \omega) \ln\left(1 - \frac{1}{\omega}\right)$$

$$+\frac{1}{\pi}\int_0^1 \frac{g_I(\vec{\mathbf{r}},\,\omega') - g_I(\vec{\mathbf{r}},\,\omega)}{\omega' - \omega} \,d\,\omega'\,.$$
 (19)

The integration of Eq. (19) was carried out by sixpoint Gaussian quadrature, using the polynomial approximations for the imaginary parts of the Green's functions. The accuracy of the polynomial approximations thereby determined the accuracy of the integration, as the Gaussian quadrature had a much higher precision.

The integrand in Eq. (19) is strongly peaked when ω is near a Van Hove singularity. The regions of integration therefore must be chosen carefully, according to considerations which we now review.

III. VAN HOVE SINGULARITIES

Green's functions are nonanalytic at a few particular values of the energy. These singularities were first investigated by Van Hove¹⁴; a clear and elementary discussion can be found in Weinreich's text. 15

The integrand of Eq. (15) has a singularity when the gradient of the energy vanishes:

$$\nabla_{\kappa} \omega(\vec{\kappa}) = 0 \quad . \tag{20}$$

The solutions of this equation, determining the energies of the Van Hove singularities for an fcc lattice with first- and second-neighbor interactions, are given in the first column of Table I.

Van Hove singularities can be classified in four "types" ^{14,15} according to the functional behavior of the Green's functions. These four types are listed in Table II, and the six Van Hove singularities of $(-1/\pi)g_I(0, \omega)$ (the density-of-states function) are classified in Table I. It will be noted from Table I that a particular singularity may change type as a function of γ .

Classification of the singularities is based on expansion of the energy ω as a function of \vec{k} , in the

TABLE I. Types of Van Hove singularities for the fcc lattice. The energies $\omega \equiv E/32SJ_1$ are given in column 1 as a function of $\gamma \equiv J_2/J_1$. The same information is given in column 2 in terms of the alternate variables $\omega' \equiv \omega/(1+\gamma)$ and $\zeta \equiv \gamma/(1+\gamma)$. The type (0, 1, 2, 3) of each singularity is then given in each range of γ (or of ζ) in which the singularity exists; dots imply that the singularity does not exist in the relevant range of γ . The types of singularities are defined in Table II. The top of the band is always a type-3 singularity, and in each range of γ the top of the band is determined by that unique Van Hove point which is of type 3.

ω	$\omega' = \frac{\omega}{1+\gamma}$	$-1 < \gamma < 0$ $\zeta < 0$	$0 < \gamma < \frac{1}{2}$ $0 < \zeta < \frac{1}{3}$	$\frac{\frac{1}{2} < \gamma < 1}{\frac{1}{3} < \zeta < \frac{1}{2}}$	$\gamma > 1$ $\frac{1}{2} < \gamma < 1$
0	0	0	0	0	0
$\omega_A = \frac{3}{4} (1 + \gamma)$	$\omega_A' = \frac{3}{4}$	1	1	3	3
$\omega_B = 1 + \frac{1}{4}\gamma$	$\omega_B' = 1 - \frac{3}{4} \zeta$	2	3	1	0
$\omega_{C} = 1$	$\omega_C'=1-\zeta$	3	1	1	0
$\omega_D = \frac{1}{2} + \frac{1}{4}\gamma + \frac{1}{4}\gamma^2$	$\omega'_{D} = \frac{1}{2} - \frac{1}{4}\zeta + \frac{1}{4}[\zeta^{2}/(1-\zeta)]$	• • •	•••	• • •	
$\omega_E = \frac{3}{4} + \frac{1}{2}\gamma - \frac{1}{4}\left[\gamma/(1+2\gamma)\right]$	$\omega'_{E} = \frac{3}{4} - \frac{1}{4}\zeta + \frac{1}{4}\zeta (1 - \zeta) / (1 + \zeta)$	•••	2	2	2

TABLE II.	Types of Van Hove singularities (Refs. 1	13
	and 14).	

Type of Van Hove singularity [number of negative coeffi-	Functional density of $(-1/\pi)g$	form of t states μ(0, ω)
cients in Eq. (21)]	$\omega \lesssim \omega_c$	ω≳ω _c
0	$\pm (\omega_c - \omega)$	$(\omega - \omega_c)^{1/2}$
1	$-(\omega_c-\omega)^{1/2}$	$\pm (\omega - \omega_c)$
2	$\pm (\omega_c - \omega)$	$-(\omega-\omega_c)^{1/2}$
3	$(\omega_c - \omega)^{1/2}$	$\pm (\omega - \omega_c)$

vicinity of a root of Eq. (20). Choosing local axes so as to eliminate cross terms, and carrying the expansion to second order,

$$\omega - \omega_c = A \left(\Delta \kappa_1\right)^2 + B \left(\Delta \kappa_2\right)^2 + C \left(\Delta \kappa_3\right)^2 . \tag{21}$$

The number of negative coefficients on the righthand side of this equation determines the functional behavior of the density-of-states function near the critical point. The type of singularity is therefore designated in Table II by the number of negative coefficients in Eq. (21) (from 0 to 3). The functional behavior of $g_I(0, \omega)$ just below the singularity $(\omega \leq \omega_c)$ and just above $(\omega \gtrsim \omega_c)$ is given in Table II.

Under very special conditions one or more of the coefficients in Eq. (21) may vanish. If one coefficient vanishes the next term in the expansion dominates, and the singularity may be "stronger" than the simple square-root behavior. If two coefficients vanish the density of states becomes infinite; such infinities occur in our model for $\gamma = -1$, 0, and $\frac{1}{2}$. This effect can be seen in Fig. 2. As $\gamma \rightarrow 0$ the spectral weight shifts toward the top of the band presaging a divergence in the limit $\gamma = 0$. Similarly, the spectral weight is seen to shift to the bottom

of the band as $\gamma \rightarrow 1$, again forecasting a divergence for $\gamma = 1$.

Another effect requiring special comment is the "suppression" of the square-root singularity at a Van Hove point under certain conditions. This suppression of the square-root behavior at ω_A occurs in 13 of the 24 Green's functions which we evaluated. The effect originates in the numerator of the integrand in Eq. (19), which may vanish at a Van Hove point. The Van Hove point at ω_A arises from the point $\vec{k} = (\frac{1}{2}\pi, \frac{1}{2}\pi, \frac{1}{2}\pi)$ and we observe that the numerator $f(\vec{r}, \vec{k})$ does vanish at that \vec{k} whenever \vec{r} has one or more odd-integral coordinates. Thus the Green's function $g(\vec{r}, \omega)$ do not have square-root singularities at ω_A if \vec{r} has an odd-integral coordinate.

The rules above permit one to form at least a qualitative picture of the Green's functions based solely on the location and type of the Van Hove singularities. In Fig. 3 we give such a schematic representation of $-(1/\pi)g_I(0, \omega)$ for a much wider range of γ . The behavior for large γ is interesting. and it can be understood by considering the limit $\gamma \rightarrow \infty$ (or $J_1 \rightarrow 0$). In that limit the fcc lattice reduces to independent interpenetrating simple cubic lattices with nearest-neighbor interactions. The two lowest-energy Van Hove singularities are both of type 0. In the limit $\gamma \rightarrow 0$ they coalesce to form a single Van Hove singularity at the bottom of the band. This leads to an infinity of the derivative of the ferromagnetic Curie temperature with respect to J_1 at $J_1 = 0.^{12}$

Finally, we consider the appearance of the Van Hove singularities in the real parts of the Green's functions. From the dispersion relation [Eq. (18)] we see that the singularity in the real part arises from the integral over the corresponding singularity in the imaginary part. The relevant integrals are of the form (for small ω)

FIG. 2. Density of states, $(-1/\pi) \times g_I(0, \omega)$, for the pure fcc ferromagnet for various values of $\gamma = J_2/J_1$.

TABLE III. Green's functions for $J_2/J_1 = -0.10$. The Green's function is listed in column 1, by number and by the vector $\tilde{\mathbf{r}}$. The energy region is specified in column 2, along with the particular function $(G \equiv g_I, H, J, \text{ or } K)$ being tabulated [Eq. (28)]. The coefficients $c_0 \dots c_5$ for this function and the values of $g_I(\omega_A)$ and

R. H. SWENDSEN AND H. CALLEN

<u>6</u>

(Continued)	
Ш.	
TABLE	

			Coel	fficients fo	r imaginar	v parts					Coefficie	ents for rea	ul parts		
Green's function	Regio type	n- c ₀	c_1	c_2	c^3	c_4	c_5	$g_I(\omega_{m A})$	$g_I(\omega_B)$	c_0	c_1	c_2	с ³	c_4	c5
#13 (420)	3-K	-3.8226 0.2062 -54.8929-	-2.6198 -0.3117 138.0549	-2.0060 0.1829 -9.7704	0.0395 -0.4389 -4.2146	-0.2295 -0.1057 0.5499	-0.1106 -0.0413 -0.4916	1.0659	- 0 . 5883	0.1158 -0.1597 -0.0212	0.2405 -0.2504 1.0033	0.2530 -0.2315 0.7419	0.2125 -0.2569 0.1022	-0-0681 0.1869 0.0093	0-0210 0-0132 0-0020
#14 (330)	1-1 2 2	-0.2778 0.2529 -19.0749	0.2852 -0.2664 37.3474-	-0.4553 0.4649 10.2766	0.5052 0.9347 3.4569	0.0453 0.1949 -2.0067	0.0169 0.0590 0.7889	0.1611	1.6685	0.1094 0.2873 -0.2638	0.2246 0.2391 -0.6903	0.2391 0.9208 -0.0534	0.2370	-0.0640 -0.3140 0.0019	-0.0146 -0.1167 0.0060
#15 (440)	2-6 3-K	2.7157 -0.1925 52.5885-	3.2321 0.1056 207.2395-1	1.3570 -0.3300 22.8136	1.2536 -0.2255 -7.9392	-0.1981 -0.3963 0.3403	0.0969 -0.0371 -0.7824	-0.7649	-1.1138	-0.0816 -0.0490 0.1410	-0.1735 -0.0354 -0.0757	-0.1883 -0.2168 1.0436	-0.1948 -0.0425 0.2255	-0.1616 0.0916 0.0154	0.0481 0.2155 0.0077
#16 (431)	2-1 3-5	-0.0941 0.0595 -19.7332	0.4948 -0.0202 84.1952	-0.1707 0.2394 16.4008	0.5048 -0.2295 1.6021	-0.2487 -0.1646 0.9996	-0.0260 -0.0430 -0.1086	0.3445	-0.1665	0.0173 -0.1713 -0.0474	0.0241 0.0171 0.4220	-0.0083 -0.2966	-0.0736 -0.2701 -0.1080	-0.1803 0.0117 -0.0064	0.0227 0.0377 -0.0075
#17 (620)	2 - G 3 - K	3.1264 -0.0754 -80.5864	3.0519 0.3844 -52.5065-	1.0185 -0.1984 74.1165-	0.8069 0.0923 11.2752	-0.3786 -0.3038 -0.7404	0.2540 -0.0491 -0.7008	-1.0137	-0.2599	-0.0898 -0.0373 -0.0951	-0.1833 -0.2812 0.6960	-0.1768 -0.2498 0.2595	-0.1420 -0.1337 0.4442	-0.0467 -0.1593 0.0755	0.0840 0.1251 0.0020
#18 (521)	1-J 2-J 3-K	-0.0800 -0.0989 84.5490	0.4695 -0.1675 10.1740	-0.1583 0.0140 5.4841	0.4327 -0.2272 -0.3301	-0.3447 -0.0599 0.7833	0.0039 -0.0396 -0.2122	0.2322	-0.5935	-0.0049 -0.0678 0.1987	-0.0221 0.2476 -0.7056	-0.0590 -0.0641 -0.1387	-0.1225 0.0355 -0.0035	-0.1597 0.0977 -0.0086	0.0535 0.0476 -0.0024
#19 (600)	1-H 2-G 3-K	-3.1643 -0.0746 23.5678	-1.4362 -0.1542 -77.2378-	-1.0621 0.0559 59.5107-	-0.1399 -1.4293 15.4290	-0.9742 -0.5605 2.4532	-0.1685 -0.1747 -1.8156	1. 1442	-2.5664	-0.0064 -0.4976 0.3192	-0.0300 -0.1207 0.7248	-0.0826 -1.2400 0.1441	-0.1316 -0.4947 0.4536	-0.0797 0.4999 0.0655	0.1325 0.2201 -0.0086
#20 (530)	1-1 3-1	-0.1065 -0.1886 -3.3955	0.3645 0.2602 52.6559	-0.2679 -0.2601 -9.4815	0.2455 0.1028 2.5916	-0.4606 0.6652 -2.4748	0.0454 0.1654 0.7931	-0.2272	0.9082	-0.0814 0.0871 0.0512	-0.1675 0.3603 -0.6359	- 0. 1726 0.0701 - 0. 1723	-0.1648 0.6855 -0.0054	-0.1046 0.0974 0.0070	0.0964 -0.2103 0.0090
#21 (800)	1-H 2-G 3-K	1.6851 0.1082 33.7099-	1.6572 -0.0734 124.0149	0.5785 0.0851 0.1500-(0.9509 0.1864 65.8009	0.4071 -1.0369 -1.9086	0.7485 -0.4320 -2.9584	-0-6119	-1.7408	0.0412 -0.0909 -0.0660	0.0842 -0.5890 C.8079	0.0913 -0.0506 0.0539	0.0841 -0.9610 0.1145	0-0269 -0-4889 0-3368	-0.0413 0.3977 0.0341
#22 (611)	1-J 2-J 3-K	-0.0746 -0.0970 11.7905	0.3928 0.2150 2.8766	-0.2127 -0.0753 77.7348	0.2414 -0.5873 7.1395	-0.4504 -0.2003 1.9988	0.1137 0.0096 0.0150	-0-028	-0.6230	-0.0586 -0.1945 -0.0090	-0.1282 -0.0873 0.7197	-0.1477 -0.6148 -0.0681	-0.1475 -0.1308 -0.4304	-0.0658 0.2149 -0.0642	0.1078 0.0873 -0.0055
#23 (710)	2-1-1 3-5-1	-0.1943 -0.1137 -9.4468	0.0867 0.2004 - 42.0946	-0.4188 -0.3550 -9.5713	0.0613 0.5333 4.7698	-0.3577 0.7286 -2.5095	0.3008 0.1704 0.9947	-0-5057	1.2674	-0.0482 0.2727 0.0126	-0.0852 0.1690 -0.7457	-0.0441 0.4917 -0.0652	0.0291 0.7432 -0.0120	0.1140 -0.0512 -0.0031	0.1376 -0.2444 0.0084
#24 (510)	1-1 3-1-1	-0.1370 0.2781 -25.3131	0.4271 - -0.2925 32.3782 -	-0.1554 0.8087 -8.5366	0.6092 0.8798 3.8457	-0.1552 0.1656 -1.9594	0.0076 0.0420 0.8105	0.5182	1.8936	0.1169 0.1848 -0.3620	0.2219 0.5459 -0.6742	0.1728 0.8319 -0.0144	0.0380	-0.1533 -0.3269 -0.0004	0.0125 -0.1202 0.0058

<u>6</u>

GREEN'S FUNCTIONS OF THE FACE-CENTERED-...

TABLE IV. Green's functions for $J_2/J_1 = -0.30$. The Green's function is listed in column 1, by number and by the vector $\tilde{\mathbf{T}}$. The energy region is specified in column 2, along with the particular function $(G \equiv g_I, H, J)$ or K) being tabulated [Eq. (28)]. The coefficients $c_0 \dots c_5$ for this function and the values of $g_I(\omega_A)$ and $g_I(\omega_a)$ are listed. The last six columns give the coefficients for $\sigma_1 \tilde{\mathbf{f}}_{-1}$.

		c_5	0.0024 0.1057 0.0035	0.0007 0.0251 0.0007	0.0069 0.0126 0.0028	0.0015 0.0135 0.0029	-0.0089 0.0336 -0.0058	0.0040 -0.0397 0.0011	-0.0095 0.1323 0.0010	-0.0018 0.0273 0.0016	0.0172 -0.0895 -0.0059	0.0034 -0.0109 -0.0050	-0.0034 -0.0273 0.0040	0.0132 0.0040
		c_4	-0.0009 - 0.1071 -0.0173	-0.0008 - -0.0691 - 0.0054 -	-0.0005 0.1814 -0.0024 -	-0.0015 0.0370 -0.0075	-0.0060 - -0.0775 0.0101 -	-0.0011 -0.0772 - 0.0042	-0.0366 - 0.1634 -0.0151	-0.0191 0.0566 -0.0068	0.0122 -0.0658 0.0207	-0.0571 0.0342 0.0077	-0.1973 -0.3913 0.0061	-0.1749 0.1680
	al parts	c3	-0.0046 - 0.5222 0.0364 -	0.0065 - -0.1201 - -0.0119	-0.0031 0.0952 0.0107	0.0019 0.0734 0.0121	0.0387 0.1951 -0.0121	0.0874 - -0.3190 - -0.0097	0.2176 0.6333 0.0462	0.2477 0.1889 0.0069	0.2452 -0.7128 -0.0294	0.2528 0.1866 -0.0334	-0.0101 -0.0607 0.0430	0.0212
	ents for re-	c_2	-0.0584 - 0.4440 -0.0541	0.0181 -0.4129 0.0221	-0.1322 1.0093 -0.0115	-0.3634 0.3740 -0.0464	-0.4385 -0.5677 0.0926	-0.4091 -0.2720 0.0153	-0.1310 -0.6129 0.4021	-0.0102 0.0926 -0.0742	-0.0336 -0.5197 0.2205	0.1001 -0.1821 -0.3954	0.0059 0.3980 0.5732	0.0047-0.1087
	Coefficie	c_1	-0.3839 3.3191 -0.0664	0.8500 -0.7219 -0.1111	0.7892 -0.6569 1.0192	0.0946 0.3394 -0.5803	-C.2889 -O.6164 1.3821	-0.3757 0.9463 -0.3405	-0.4036 -0.9766 0.4876	-0.0734 -0.1090 -0.4504	0.0196 0.2292 1.4450	-0.0496 -0.5319 0.3283	-0.0176 0.1100 0.3800	-0.0101
		c_0	-2.6113 0.6645 5.8885	0.1714 0.6721 -1.0627	0.5150 -0.9357 1.0305	0.0862 -0.1749 0.3566	-0.1412 -0.2202 -0.1698	-0.1528 0.0792 -0.3048	-0.2370 -0.0071 0.1694	-0.0420 0.0736 0.1933	0.0258 -0.0777 -0.7160	-0.0452 0.0065 0.0230	-0-0127 0.1893 -0.2870	-0-061
		$g_I(\omega_B)$	-5.8658	1.8291	-2.7967	-0.6212	-0.2434	1.3627	-1.7687	-0.5649	1.8605	-0.3554	1.3608	-0 • 7665
		$g_I(\omega_A)$	- 4. 8677	-0.3789	2.3416	0.5541	-1.0556	0.0625	-1.7900	-0.3467	0.8500	-0.4863	-0.6643	0.1333
w).	10	c_5	0.0249 -0.0030 -0.2729	0.0030 0.0012 0.1115	-0.0533 -0.0046 -0.2579	-0.0034 0.0028 -0.0158	0.0680 -0.0073 -0.1082	-0.0052 0.0008 0.1806	0.1032 -0.0184 -0.3844	0.0116 0.0042 -0.0650	-0.1013 -0.0115 0.1538	0.0106 0.0133 -0.0489	0.1239 -0.0156 0.2627	-0.0297
S IOF $g_R(\mathbf{r},$	ținary parts	c_4	0.0604	0.0089 0.0020 -0.2646	-0.1289 -0.0185 0.6116	-0.0142 0.0093 0.0386	0.1544 -0.0304 0.2544	-0.0251 0.0080 -0.4283	0.1958 -0.0835 0.9051	0.0208 0.0034 0.1556	-0.2455 -0.0491 -0.3684	-0.0353 0.0642 0.1208	0.1478 0.0433 -0.6328	-0.2292
coerricient	s for imag	c_3	0.1366 -0.0346 -1.3290	0.0322 0.0248 0.5451	-0.2554 -0.0690 -1.2579	-0.0330 0.0553 -0.0817	0.3236 -0.1000 -0.5206	0.0113 0.0032 0.8758	0.6898 -0.4536 -1.8606	0.3321 -0.0188 -0.3022	-0.4756 -0.0882 0.7494	0.4915 -0.0884 -0.1988	1.9086 0.7267 1.0833	0.6375
is give the	Coefficient	c_2	0.3822 -0.1550 2.9980	0.0920 -0.0532 -1.2382	-0.6181 -0.4029 2.8084	-0.3537 0.1013 0.2649	0.3310 -0.5818 0.9842	-0.8514 0.9064 -2.0374	-0.7468 -1.3928 3.3965	-0.9395 -0.3783 1.0072	-2.7007 1.0487 -2.2087	-0.9474 -0.5477 1.6145	0.7937 0.2103 -5.5643	-0.4893
SIX COLUMI		c_1	1.7706 -0.4605 -9.5558	0.7870 1.1860 3.7620	-0.8491 -2.4944 -8.9984	1.5094 -0.7640 C.5277	4.8473 0.5152 -6.7350	1.1332 0.6610 5.9783	3.5715 0.4858 -35.3984	0.4938 -0.0407 0.7748	-1.5654 0.6071 -2.9244	0.2448 0.2235 20.3576	3.0664 0.3073 -22.0800	0.6015
d. The last		c^0	7.7553 -5.1999 44.8840	-1.4533 0.7402 13.6854	-7.8590 0.1959 3.5471	-0.3324 -0.0522 21.1382	3.7483 -0.0346 31.4303	-0.1566 -0.1566 -9.1044	5.3033 -0.2971 16.0591 -	-0.4194 -0.1595 19.5385	-3.7916 0.3600 -60.9490	-0.4437 -0.0419 -3.5256	2.3976 0.1045 -31.9277	-0.2386
re liste	Region-	type	2-6 2-6 3-5	1-J 2-J 3-K -	1 - H 1 - H 1 - H	1-J 2-J 3-K	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	77 117 14	1 - C - C - C - C - C	3 - 7 - 7 - 7	1 - H - H - K - K - K - K - K - K - K - K - K - K	1-1- 2-1- 3-4	1-H 2-6 3-K	
<i>g</i> I(ω _B) a.	Green's	function	# 1 (000)	# 2 (110)	# 3 (200)	# 4 (211)	#_5 (220)	# 6 (310)	# 7 (400)	# 8 (321)	# 9 (222)	#10 (411)	#11 (422)	#12

2866

	ul parts	3 C4 C5	499 -0.0783 0.0195 096 0.1585 -0.0096 420 -0.0040 0.0015	694 -0.0687 -0.0028 304 -0.2450 -0.0451 021 0.0042 0.0027	872 -0.1867 0.0598 433 0.0997 0.1709 437 -0.0088 0.0056	232 -0.1835 0.0342 473 0.0038 0.0157 617 0.0042 -0.0050	942 -0.1055 0.0992 670 -0.1607 0.0852 920 0.0305 -0.0048	711 -0.1752 0.0596 207 0.0860 0.0361 017 -0.0076 -0.0002	999 -0.1467 0.1004 002 0.3007 0.1396 037 0.0154 -0.0104	799 -0.1494 0.0986 179 0.1007 -0.1542 065 0.0094 0.0039	703 0-1102 0-0521 445 -0.6518 0.2023 596 0-2164 0-0036	591 -0.1253 0.1083 551 0.1320 0.0534 792 -0.0232 0.0022	183 0.0431 0.1639 274 0.1401 -0.1565 173 0.0014 0.0051	401 -0.1423 0.0241 203 -0.2369 -0.0606
	Coefficients for rea	c1 c2 c	1935 0.2426 0.2 1368 -0.1691 -0.2 4834 0.4892 0.0	.1925 0.2254 0.2 0465 0.7489 -0.0	.1175 -0.1520 -0.1 0817 -0.1049 -0.0	0167 -0.1765 -0.0 0167 -0.1765 -0.2 3230 -0.3023 -0.0	.1542 - 0.1800 -0.1 .0083 -0.1356 -0.1 .2919 0.1558 0.2	.0597 0.0262 -0.0 .0583 -0.0198 0.0	2074 0.0833 -0.0 0685 -0.6828 -0.7 4106 0.0882 0.3	.1291 -0.1533 -0.1 .2618 -0.0772 0.5 .2920 -0.1441 -0.0	-1005 -0.0307 0.0 3787 0.1939 -0.3 2850 0.1060 0.0	.0020 -0.0698 -0.1 1358 -0.3248 -0.2 3791 0.0443 -0.2	2062 -0.1935 -0.1 1708 -0.0312 0.6 3311 -0.0994 -0.0	-2700 0-2782 0-1 0918 0-7794 -0.0
) c ₀	83 0.0893 0. -0.0276 -0. -0.1448 0.	92 0.0883 0. 0.2376 0. 0.0369 -0.	12 -0.0507 -0. -0.0350 0. 0.1027 -0.	31 0.0442 0. -0.1005 -0. -0.1141 0.	15 -0.0705 -0. -0.0272 -0. -0.1355 0.	97 0.0341 0. -0.0711 0. 0.1628 -0.	80 0.1227 0. -0.3352 0. -0.0928 0.	94 -0.0591 -0. -0.0377 0. 0.1206 -0.	22 -0.0610 -0. 0.1230 -0. -0.1390 0.	92 0.0139 0. -0.1326 0. -0.1461 0.	72 -0.1017 -0. 0.0276 0. 0.1467 -0.	0.2022 0.
IV. (Continued)		$g_I(\omega_A)$ $g_I(\omega_B)$	0.7527 - 0.04	-0.1093 0.71	-0.4564 -0.79]	0.3424 0.143	-0.6501 0.201	0.2880 -0.60	1.4720 -0.951	0.0922 0.21	-1.2077 -0.43	0.3818 0.03	-0.2694 0.22	0.1302 0.73(
TABLE	rts	c 5	402 -0.0743 451 -0.0177 217 -0.0976	021 0.0206 388 0.0092 676 0.2395	751 0.1436 094 0.0076 871 -0.2298	154 0.0057 145 -0.0069 095 -0.0393	580 0.2877 070 -0.0252 957 -0.0765	135 0.0412 525 -0.0279 042 -0.1243	257 -0.0271 621 -0.1122 514 -0.5063	699 0.0835 335 0.0745 080 0.2418	183 0.8703 841 -0.3940 411 -0.5967	608 0.1463 652 0.0380 798 -0.0543	091 0.3298 712 0.1403 139 0.2959	949 0.0367 815 0.0370
	or imaginary par	c_3 c_4	0.3005 -0.2 -0.3100 -0.0 -0.5359 0.2	0-6148 -0.0 0.7475 0.0 1.0707 -0.5	1.7449 -0.3 -0.1651 -0.3 -1.5736 0.4	0.7034 -0.3 -0.1336 -0.1 0.0471 0.1	1.3131 -0.6 0.1612 -0.2 -1.3282 0.0	0.6719 -0.4 -0.2068 -0.0 -0.4595 0.3	0.6927 -0.9 -0.8529 -0.4 -2.8610 1.1	0.4819 -0.5 -0.1068 0.5 0.7155 -0.6	0.4530 -0.2 0.6028 -0.4 -14.4876 0.8	0.5382 -0.5 -0.3515 -0.1 0.4954 0.1	0.1505 -0.6 -0.0490 0.5 1.3058 -0.7	0.8026 -0.1 0.7280 0.0
	Coefficients f	c1 c2	5700 -2.5953 0687 0.2247 3081 -0.6694	3495 -0.7473 3074 0.1477 5533 -3.0712	6101 1.3982 0056 -0.1807 4618 -3.4950	6263 -0.3275 0248 0.2929 7545 2.9013	6370 1.2672 3030 0.0217 1198-15.9334	5855 -0.2794 2818 -0.0330 7513 1.7768	9498 -1.0118 2345 0.5706 4123-11.2825	6227 -0.2841 0795 -0.2199 0948 -2.3654	6246 0.1233 2710 -0.1491 5816 2.3451-	6604 -0.1538 0572 0.3477 1202 16.2997	3961 -0.4052 2077 -0.4282 9638 -2.1638	3221 -0.4633 4454 0.2204
		с ⁰ с	-3.9213 -2.5 0.1803 -0.(-9.7656 -29.3	-0.4426 0.3 0.1121 -0.3 -3.1656 9.5	2.3307 3.6 -0.1323 -0.6 17.9939 -43.6	-0.1899 0.6 0.1289 -0.6	2.8881 3.(-0.0221 0.5 17.1170 -9.1	-0.1703 0.5 -0.0327 -0.2 18.4436 1.1	-5.0832 -1. 0.1810 -0.2 2.7902 -17.	-0.1123 0.6 -0.1539 0.6	3.7691 2.1 -0.0068 0.2 6.3346 -29.5	-0.0752 0.4 0.0779 0.4 0.2556 -4.1	-0.1373 0.	-0.3482 0.
		Green's Region- function type	#13 1-H · (420) 2-G 3-K ·	#14 1-J · (330) 2-J · 3-K ·	#15 1-H (440) 2-G - 3-K	#16 1-J · (431) 2-J · 3-K ·	#17 1-H (620) 2-G 3-K -	#18 1-J (521) 2-J 3-K	#19 1-H · (600) 2-G 3-K	#20 1-J · (530) 2-J · 3-K ·	#21 1-H (800) 2-G . 3-K	#22 1-J . (611) 2-J . 3-K	#23 1-J (710) 2-J 3-K	#24 1-J (510) 2-1

GREEN'S FUNCTIONS OF THE FACE-CENTERED-...

TABLE V. Green's functions for $J_2/J_1 = -0.50$. The Green's function is listed in column 1, by number and by the vector $\tilde{\mathbf{1}}_*$. The energy region is specified in column 2, along with the particular function $(G \equiv g_I, H, J, \text{ or } K)$ being tabulated [Eq. (28)]. The coefficients $c_0 \dots c_5$ for this function and the values of $g_I(\omega_A)$ and $\sigma_*(\omega_A)$ are listed. The last six columns give the coefficients for $\sigma_*(\omega_A)$.

	ئ	0.0034	0.0003 0.0149 0.0006	0.0021 0.0051 0.0023	0.0027 0.0108 0.0022	0 -0001 0-0307 0-0046	0.0065 0.0299 0.011	0-0106 0-0953 0-0001	0.0062 0.0201 0.0011	0.0117 0.0761 0.0042	0.0159 0.0167 0.0038	0.0277 0.0029 0.0038	0.0346 0.0109 0.0001
		0.0136 -	-0.0031 -0.0516 - 0.0042 -	-0.0098 0.1446 -	-0.0067 0.0280 -0.0056	-0.0087 -0.0826 0.0075 -	-0.0163 -0.0354 - 0.0030	-0.0457 0.1294 -0.0113	-0.0437 0.0386 -0.0048	-0-0258 -0-0061 - 0-0150 -	-0.0746 0.0180 - 0.0063 -	-0.2001 -0.3419 0.0029	-0.1885 0.1363 -0.0039
eal parts	. ئ	0.0258 -	0.0122 -0.0645 -0.0085	0.0106 - 0.0112 0.0074 -	0.0402 0.0343 0.0091	0.0833 - 0.1887 - -0.0101	0.1135 - -0.2804 - -0.0067	0.2395 - 0.5406 0.0257 -	0.2662 0.1654 0.0053	0.2506 - -0.6008 - -0.0229	0.2836 0.1627 -0.0186	0.0438 -0.0153 0.0326	0.0556 0.1964 0.0062
cients for r	č	-0.0332 0.1528 -0.0318	-0.0554 -0.3269 0.0160	-0.1883 0.8991 -0.0199	-0.3902 0.3311 -0.0262	-0.4772 -0.4731 0.0617	-0.4825 -0.1725 0.0067	-0.2961 -0.7183 0.3220	-0.0873 0.0544 -0.0591	-0.0933 -0.4079 0.1671	-0.0042 -0.2797 -0.2920	-0.0017 0.3515 0.4456	-0.0182 -0.1390 -0.1060
Coeffic	2	-0.0813 2.8105 -0.1588	0.9262 -0.6034 -0.0854	0.9702 -0.7378 0.7917	0.2387 0.1829 -0.4322	-0.2230 -0.5358 1.0476	-0.3211 0.8754 -0.2739	-0.6500 -0.5205 0.3605	-0.1159 -0.0516 -0.3238	0.0689 0.2636 1.0441	-0.2160 -0.3077 0.2599	-0.0696 0.0955 0.1978	-0.0349 -0.0180 -0.2383
	č	-2.8815 -2.8815 0.4781 4.3720	0.0627 0.6491 -0.6904	0.6411 -0.7026 0.6240	0.1491 -0.1075 0.2371	-0.1291 -0.1633 -0.2053	-0.0810 -0.0252 -0.1331	-0.3529 -0.0638 0.0280	-0.0574 0.0221 0.1535	0.0687 -0.0745 -0.5263	-0.1243 -0.0177 -0.0380	-0-0454 0.1911 -0.1744	-0.0154 -0.0706 0.1469
	a.(.,.)	51/0B/ -4.5549	1.3850	-2.0513	-0.4829	-0.0498	0.9244	-1.1459	-0.4821	1.5303	-0.1474	1.0315	-0.6125
	a . 101. 1	8 MuA	-0.6110	2.0959	0.5542	-0.8964	0.4179	-1.5608	-0.2992	0.9248	-0.5207	-0.7407	0.1505
• /m •	į	0.0444 -0.0010 -0.1197	0.0031 0.0019 0.0533	-0.0377 -0.0013 -0.1283	0.0006 0.0020 -0.0097	0.0612 -0.0018 -0.0520	0.0024 -0.0009 0.0949	0.0772 -0.0057 -0.2030	0.0204 0.0035 -0.0381	-0.0798 -0.0025 0.0920	0.0313 -0.0012 -0.0250	0.1678 -0.0244 0.1521	0.0112 -0.0102 -0.0614
tis tot <u>SR</u>	ċ	0.1006 -0.0051 0.2836	0.0010 -0.0067 -0.1266	-0.1099 -0.0086 0.3044	-0.0218 -0.0027 0.0237	0.1036 -0.0165 0.1221	-0.0508 0.0120 -0.2248	-0.0110 -0.0284 0.4775	-0.0421 0.0092 0.0905	-0.2607 -0.0356 -0.2196	-0.1213 0.0841 0.0600	-0.1481 0.0113 -0.3588	-0.3761 0.1290 0.1455
pinary nar		0.2293 -0.0096 -0.5824	0.0408 0.0481 0.2613	-0.1540 -0.0175 -0.6264	0.0371 0.0452 -0.0516	0.3922 -0.0495 -0.2458	0.1309 -0.0915 0.4609	0.8043 -0.4226 -0.9613	0.5210 -0.0028 -0.1848	-0.1371 -0.1239 0.4578	0.6997 -0.1025 -0.1222	2.6373 0.6265 0.6828	0.9280 -0.3208 -0.3068
nts for ima		0.4581 -0.1159 1.3188	-0.0275 -0.1973 -0.5938	-0.7172 -0.2753 1.4097	-0.6039 0.1285 0.1307	-0.2712 -0.4895 0.5208	-1.1902 0.9206 -1.0540	-2.0074 -1.0240 2.0130	-1.3934 -0.3423 0.5187	-3.6263 0.9324 -1.1536	-1.5243 -0.4592 0.5676	0. C787 0. 0998 -2. 7999	-0.8695 -0.2316 0.7246
Coefficie	ć	2.1667 2.1667 0.0034 -4.3210	1.2552 1.1890 1.8006	0.3327 -2.0546 -4.0428	2.2175 -0.7580 -0.0956	6.7544 0.4751 -2.8510	2.0145 0.2452 3.1039	5.5444 0.6364 -16.8741	1.0052 -0.0144 0.2668	-0.8064 0.4294 - C.8498	0.6370 0.4499 8.9415	4.1991 0.2854 -9.7864	1.0043 -0.1192 1.0992
	,	c ₀ 8.0976 -4.4260 22.1895	-2.2755 0.4456 -6.5819	-10.4911 0.3069 1.8215	-0.7184 0.0685 9.7441	3.8750 0.0336 -14.7501	-0.2076 -0.0976 -3.8733	6.7299 -0.2996 7.0252	-0.6151 -0.1689 9.0761	-5.4577 0.3321 -28.1904	-0.5755 -0.1308 -2.3675	3.1704 0.0384 -13.7488	-0.3936 -0.1031 9.1654
	Region-	1 - H 3 - K 3 - K	1-1 2-4 3-5	1 - H - H - K - H - K - H - K - K - K - K - K - K - K - K - K - K	1-1- 2-1-1 3-K	1-H 3-K	1-7 3-1 3-1 1-7	9-16 9-16 9-16	1-1 3-1	1-H 2-G 3-K	1-7 2-7	1-H 2-6 3-K	1-7 2-7 3-5
SIVWB/ 6	Green's	# 1 (000)	# 2 (110)	# 3 (200)	# 4 (211)	# 5 (220)	# 6 (310)	(005) (400)	# 8 (321)	# 9 (222)	#10 (411)	#11 (422)	#12 (332)

2868

					•	-	TABLE	V. (Contri	nued)				-		
Coefficients for imagin Region-	Coefficients for imagint	Coefficients for imagina	officients for imagine	r imagina	ម្ព	y parts					Ö	officients f	or real par	ts	
type c_0 c_1 c_2 c_3	c_0 c_1 c_2 c_3	c_1 c_2 c_3	c_2 c_3	c_3		c_4	c5	$g_I(\omega_A)$	$g_I(\omega_B)$	c0	c_1	c_2	<i>c</i> 3	c_4	c 5
1-H -4.6240 -2.4846 -4.0106 0.8128 2-G 0.1230 0.0317 0.2138 -0.2565 3-K -4.2926 -13.5990 -0.1906 -0.2140	-4.6240 -2.4846 -4.0106 0.8128 0.1230 0.0317 0.2138 -0.2565 -4.2926 -13.5990 -0.1906 -0.2140	-2.4846 -4.0106 0.8128 0.0317 0.2138 -0.2565 -13.5990 -0.1906 -0.2140	-4.0106 0.8128 0.2138 -0.2565 -0.1906 -0.2140	0.8128 -0.2565 -0.2140		-0.3700 -0.0226 0.1044	-0.0200 -0.0130 -0.0452	0.5501	0-0730	0.0560 0.0101 -0.1304	0.1216 -0.0492 0.3123	0.2076 -0.1547 0.3863	0.2956 -0.1737 0.0270	-0.1016 0.1385 -0.0038	0.0249 -0.0167 0.0011
I-J -0.7502 0.5719 -1.2737 0.8658 2-J 0.0375 -0.2115 -0.7302 0.7302 3-K -1.1773 4.7449 -1.4706 0.5578	-0.7502 0.5719 -1.2737 0.8658 0.0375 -0.2115 -0.0503 0.7302 -1.1773 4.7449 -1.4706 0.5578	0.5719 -1.2737 0.8658 -0.2115 -0.0503 0.7302 4.7449 -1.4706 0.5578	-1.2737 0.8658 -0.0503 0.7302 -1.4706 0.5578	0.8658 0.7302 0.5578		-0.0915 -0.0530 -0.2867	0.0420 0.0054 0.1223	-0-3630	0.4274	0.0555 0.2083 0.0675	0.1469 -0.0592 -0.3059	0.1977 0.6324 -0.0443	0.3144 -0.0134 0.0015	-0.0859 -0.2240 0.0026	0.0120 -0.0136 0.0022
1-H 1.9547 4.6311 1.4142 2.8705 2-G -0.0785 -0.0964 -0.0867 -0.1297 3-K 9.2988 -19.6926 -1.5921 -0.7746	1.9547 4.6311 1.4142 2.8705 -0.0785 -0.0964 -0.0867 -0.1297 9.2988 -19.6926 -1.5921 -0.7746	4.6311 1.4142 2.8705 -0.0964 -0.0867 -0.1297 -19.6926 -1.5921 -0.7746	1.4142 2.8705 -0.0867 -0.1297 -1.5921 -0.7746	2.8705 -0.1297 -0.1746	• •	-0.7572 -0.2727 0.2927	0.2780 0.0376 -0.1290	-0.2486	-0-6345	-0.0055 -0.0205 0.0919	-0.0318 0.0816 -0.2261	-0.0920 -0.0209 0.4780	-0.1639 -0.0809 0.1133	-0.2218 0.1100 -0.0075	0.0810 0.1446 0.0032
1-J -0.3944 0.8944 -0.6824 1.0668 2-J 0.1458 -0.0561 0.2845 -0.0835 3-K -4.2418 7.4212 1.2091 0.0070	-0.3944 0.8944 -0.6824 1.0668 0.1458 -0.0561 0.2845 -0.0835 0.1458 -1.2418 7.4212 1.2091 0.0070	0.8944 -0.6824 1.0668 -0.0561 0.2845 -0.0835 7.4212 1.2091 0.0070	-0.6824 1.0668 0.2845 -0.0835 1.2091 0.0070	1.0668 -0.0835 0.0070		-0.4711 -0.1137 0.0329	0.0633 0.0142 -0.0138	0.2715	0.1829	0.0624 -0.0459 -0.0975	0.1198 -0.0528 0.2408	0.0986 -0.0844 -0.2197	0.0361 -0.2274 -0.0444	-0.1988 0.0081 0.0041	0.0551 0.0156 -0.0034
1-H 2.6480 4.6608 1.4887 2.4967 - 2-G 0.0120 0.1577 0.0770 0.1841 - 3-K -7.5295 -3.9752 -7.5667 -0.4375	2.6480 4.6608 1.4887 2.4967 - 0.0120 0.1577 0.0770 0.1841 - -7.5295 -3.9752 -7.5667 -0.4375	4.6608 1.4887 2.4967 - 0.1577 0.0770 0.1841 - -3.9752 -7.5667 -0.4375	1.4887 2.4967 - 0.0770 0.1841 - -7.5667 -0.4375	2.4967 - 0.1841 - -0.4375	1 1	-1.1676 -0.1647 0.0396	0.4525 -0.0190 -0.0230	-0-4002	0.2305	-0.0270 -0.0076 -0.0869	-0.0675 0.0406 0.1419	-0.1134 -0.0187 0.1263	-0.2048 -0.1483 0.2296	-0.1690 -0.1494 0.0186	0.1199 0.0687 -0.0037
1-J -0.3708 0.7747 -0.6337 1.0776 - 2-J -0.0022 -0.2520 -0.0744 -0.1731 - 3-K 8.2976 0.9127 1.0676 -0.3114	-0.3708 0.7747 -0.6337 1.0776 - -0.0022 -0.2520 -0.0744 -0.1731 - 8.2976 0.9127 1.0676 -0.3114	0.7747 -0.6337 1.0776 - -0.2520 -0.0744 -0.1731 - 0.9127 1.0676 -0.3114	-0.6337 1.0776 - -0.0744 -0.1731 - 1.0676 -0.3114	1.0776 - -0.1731 - -0.3114) T	0.5827 0.0482 0.1831	0.1086 -0.0187 -0.0775	0•2000	-0.5262	0.0453 -0.0398 0.1146	0.0961 -0.0647 -0.1991	0.1024 -0.0019 -0.1017	-0.0036 0.0119 -0.0015	-0.1976 0.0740 -0.0052	0.0783 0.0290 -0.0006
1-H -7.2846 -3.1472 -1.7632 2.0351 -1. 2-G 0.2651 -0.3614 0.6036 -0.4702 -0. 3-K 0.7904 -8.3505 -5.1293 -1.2464 0.	-7.2846 -3.1472 -1.7632 2.0351 -1. 0.2651 -0.3614 0.6036 -0.4702 -0. 0.7904 -8.3505 -5.1293 -1.2464 0.	-3.1472 -1.7632 2.0351 -1. -0.3614 0.6036 -0.4702 -0. -8.3505 -5.1293 -1.2464 0.	-1.7632 2.0351 -1. 0.6036 -0.4702 -0. -5.1293 -1.2464 0.	2.0351 -1. -0.4702 -0. -1.2464 0.		0844 4611 5977	0.2027 -0.0785 -0.2584	1.3134	-0.5133	0.2483 -0.1428 -0.0973	0.4713 -0.0748 0.2465	0.3348 -0.1981 0.0869	0.0078 -0.7557 0.2358	-0.1972 0.1924 0.0059	0.0917 0.1280 -0.0085
1-J -0.1852 1.0422 -0.4290 0.9090 -0 2-J -0.0762 -0.0315 -0.0930 -0.2391 0 3-K -0.3141 6.2371 -0.9346 0.3708 -0	-0.1852 1.0422 -0.4290 0.9090 -0 -0.0762 -0.0315 -0.0930 -0.2391 0 -0.3141 6.2371 -0.9346 0.3708 -0	1.0422 -0.4290 0.9090 -0 -0.0315 -0.0930 -0.2391 0 6.2371 -0.9346 0.3708 -0	-0.4290 0.9090 -0 -0.0930 -0.2391 0 -0.9346 0.3708 -0	0.9090 -0 -0.2391 0 0.3708 -0	909	.7957 .5113 .2843	0.1612 0.0247 0.1197	0.3649	0.0893	-0.0206 -0.0755 0.0861	-0.0604 0.2114 -0.1623	-0.1033 -0.1263 -0.1221	-0.1710 0.3989 -0.0095	-0.1977 0.1101 0.0068	0.1159 -0.1405 0.0027
1-H 5.7939 5.1550 0.4014 0.3003 -1 2-G -0.1483 0.4062 -0.3122 0.4825 -0 3-K 3.6037 -13.7455 0.8814 -6.6806 0	5.7939 5.1550 0.4014 0.3003 -1 -0.1483 0.4062 -0.3122 0.4825 -0 3.6037 -13.7455 0.8814 -6.6806 0	5-1550 0-4014 0-3003 -1 0-4062 -0-3122 0-4825 -0 -13-7455 0-8814 -6-6806 0	0.4014 0.3003 -1 -0.3122 0.4825 -0 0.8814 -6.6806 0	0.3003 -1 0.4825 -0 -6.6806 0	190	.4579 .1022 .5414	1.0849 -0.3981 -0.2794	-1.1621	-0.2536	-0.1978 0.0474 -0.0599	-0.3820 -0.0586 0.0874	-0.3116 -0.0298 0.1042	-0.1204 0.1280 0.0515	0.0967 -0.6278 0.1674	0.1464 0.0770 -0.0022
1-J -0.2528 0.8713 -0.2998 1.0516 -0 2-J 0.1904 -0.1893 0.4656 -0.1823 -0 3-K 0.0574 -2.7218 7.1850 0.1234 0	-0.2528 0.8713 -0.2998 1.0516 -0 0.1904 -0.1893 0.4656 -0.1823 -0 0.0574 -2.7218 7.1850 0.1234 0	0.8713 -0.2998 1.0516 -0 -0.1893 0.4656 -0.1823 -0 -2.7218 7.1850 0.1234 0	-0.2998 1.0516 -0 0.4656 -0.1823 -0 7.1850 0.1234 0	1.0516 -0 -0.1823 -0 0.1234 0	99°	.7745 .2014 .0479	0.2273 0.0625 -0.0188	0.4744	0.1504	0.1028 -0.0407 -0.1066	0.1846 0.0841 0.2110	0.0926 -0.0471 0.0702	-0.1087 -0.3043 -0.2099	-0.1777 0.0932 -0.0126	0.1242 0.0553 0.0022
1-J -0.0680 0.9975 -0.2651 0.5553 -0 2-J -0.1058 0.0105 -0.0745 -0.4078 0 3-K -0.2427 5.9018 -0.6439 0.6071 -0	-0.0680 0.9975 -0.2651 0.5553 -0 -0.1058 0.0105 -0.0745 -0.4078 0 -0.2427 5.9018 -0.6439 0.6071 -0	0.975 -0.2651 0.5553 -0 0.0105 -0.0745 -0.4078 0 5.9018 -0.6439 0.6071 -0	-0.2651 0.5553 -0 -0.0745 -0.4078 0 -0.6439 0.6071 -0	0.5553 -0 -0.4078 0 0.6071 -0	000	• 9745 • 4943 • 3304	0.4267 0.1562 0.1401	0.3367	0-0602	-0.0398 -0.1044 0.0897	-0.1166 0.2536 -0.1495	-0.2043 -0.2185 -0.1014	-0.2374 0.3966 -0.0223	-0.0554 0.2579 0.0012	0.1921 -0.1190 0.0036
1-J -0.6781 0.42511 -1.0972 1.1399 -0 2-J 0.0388 -0.2109 -0.1869 0.7197 0 3-K -1.0799 4.8360 -1.2338 0.5962 -0	-0.6781 0.2511 -1.0972 1.1399 -0 0.0388 -0.2109 -0.1869 0.7197 0 -1.0799 4.8360 -1.2338 0.5962 -0	0.2511 -1.0972 1.1399 -0 -0.2109 -0.1869 0.7197 0 4.8360 -1.2338 0.5962 -0	-1.0972 1.1399 -0 -0.1869 0.7197 0 -1.2338 0.5962 -0	1.1399 -0 0.7197 0 0.5962 -0).3126).0457).3087	0.0856 -0.0137 0.1320	- 0. 3666	0.3712	0.0584 0.2179 0.0836	0.1793 -0.1419 -0.2875	0.3186 0.6321 -0.0450	0.2406 0.0952 -0.0076	-0.1477 -0.2213 0.0023	0.0428 -0.0403 0.0027

<u>6</u>

GREEN'S FUNCTIONS OF THE FACE-CENTERED-...

TABLE VI. Green's functions for $J_2/J_1 = -0.70$. The Green's function is listed in column 1, by number and by the vector $\hat{\mathbf{r}}$. The energy region is specified in column 2, along with the particular function $(G \equiv g_I, H, J)$, or K) being tabulated [Eq. (28)]. The coefficients $c_0 \dots c_5$ for this function and the values of $g_I(\omega_A)$ and $g_I(\omega_B)$ are listed. The last six columns give the coefficients for $g_R(\hat{\mathbf{r}}, \omega)$.

2870

(Continued)	
VI.	
TABLE	

	ر <u>5</u>)471)209)009	0439 1189 0020	1273 1327 0018	1017 0261 0026	1669 1612 1027	1255 0269 0009	1162 1512 0070	1669 1453 3021	2473 3507 3039	1732 0831 0019	2525 0718 0026	0834 0302
	3	000	000	000	000	000	000	000	000	000	000	000	000
urts	c4	-0.1535 0.1208 -0.0032	-0.1292 -0.2254	-0.2866 0.1288 -0.0055	-0.2410 0.0078 0.0036	-0.2608 -0.1461 0.0134	-0.2459 0.0576 -0.0038	-0.2658 0.0763 0.0026	-0.2705 0.1338 0.0048	-0-0443 -0-4614 0-1387	-0.2506 0.0438 -0.0079	-0.1909 0.3645 0.0011	-0.1840
for real pa	c3	0.3762 -0.1395 0.0205	0.3969 0.0162 0.0005	-0.1048 -0.1400 0.0957	0.1299 -0.2121 -0.0351	-0.1561 -0.1288 0.1925	0.1057 0.0225 -0.0038	0.2042 -0.7212 0.1956	-0.1194 0.2941 -0.0114	-0.4292 0.3275 0.0490	0.0202 -0.3060 -0.1680	-0.2664 0.1037 -0.0264	0.3756
efficients 1	c ₂	0.1219 -0.1711 0.3237	0.1306 0.5411 -0.0427	0.0038 0.0832 0.3844	0.1323 -0.0166 -0.1726	0.0178 0.0821 0.1067	0.1545 -0.0152 -0.0923	0.6204 0.1481 0.0833	-0.0146 -0.1212 -0.1048	-0.4848 -0.2807 0.0861	0.3129 0.1697 0.0749	0.0359 -0.1044 -0.0892	0.2663 0.4119
ပိ	c_1	0.0207 0.0476 0.2238	0.0775 0.1103 -0.2346 -	0.0944 0.0113 -0.2108	0.1381 -0.0900 0.1879	0.0041 -0.0176 0.0692	0.0435 -0.1182 -0.1260	0.5741 -0.3268 0.1535	0.0439 0.1564 -0.0971	-0.3520 0.2708 0.0110	0.1210 0.1210	0.2389 0.1488 -0.0671	-0.1196 -0.1618
	c_0	0.0293 -0.0012 -0.1103	-0.0092 0.1854 - 0.0686 -	0.0504 0.0188 0.0847	0.0653 -0.0048 -0.0800	-0.0067 0.0369 -0.0532	0.0109 -0.0169 0.0821	0.2522 0.0524 -0.0739	0.0402 -0.0740 0.0598	-0.1479 -0.1118 -0.0179	0.1257 0.0730 -0.0707	0.1438 -0.0844 0.0517	-0.1173
	$g_I(\omega_B)$	0.1129	0.2886	- 0. 5342	0.1793	0.2002	-0.4478	-0.3378	0.0503	-0.2278	0.1561	0.0386	0.2172
	$g_I(\omega_A)$	0.4645	-0.6478	-0-1956	0.1168	-0.3800	0.0138	0.4923	0.5877	-0.0846	0.1104	0.7862	-0-8398
	c_5	0.1939 -0.0144 -0.0258	0.1348 0.0322 0.0750	0.7914 0.0707 -0.0837	0.2300 0.0435 -0.0057	1.0790 -0.0162 -0.0079	0.2968 -0.0115 -0.0534	0.8075 -0.0472 -0.1567	0.3817 -0.0242 0.0714	2.0165 -0.3990 -0.1655	0.4600 0.1152 -0.0061	0.7242 0.2329 0.0804	0.2298-0.0351
ry parts	c4	-1.0138 -0.0042 0.0594	-0.3646 -0.1713 -0.1752	-2.0535 -0.2731 0.1929	-0.9204 -0.1476 0.0126	-2.7716 -0.1466 0.0143	-1.0724 -0.0515 0.1251	-2.1248 -0.5097 0.3613	-1.4026 0.5482 -0.1659	-4.3895 0.2108 0.3563	-1.3570 -0.3220 0.0137	-1.7899 0.3687 -0.1871	-0.6804 0.0246
or imagina	c_3	2.5054 -0.2340 -0.1139	1.5779 0.8306 0.3439	6.3235 -0.0844 -0.4769	1.9885 -0.0177 0.0055	6.1205 0.2196 -0.2019	2.0744 -0.1234 -0.2225	5.4041 -0.1064 -0.6969	1.9741 -0.3888 0.2312	2.7471 0.1099 -3.9206	2.2602 0.0800 0.0559	1.8094 -0.6247 0.3523	2.0175 0.7868
efficients f	c2	-8.4561 0.2119 -0.1041	-2.5962 -0.2872 -0.8532	0.6315 -0.0383 -0.9800	-1.7274 0.2381 0.6583	0.7876 0.0433 -4.5642	-1.7509 -0.1613 0.7434	-5.8837 0.3697 -3.0544	-1.0849 0.0782 -0.4423	3.0349 -0.1115 0.3298	-1.2185 0.3245 4.0240	-0.3413 0.3840 -0.1638	-2.7221 -0.6114
C	c1	-1.2551 0.0733 -8.0138	1.4212 -0.0271 2.9009	7.7540 -0.1550 -11.3766	1.7161 -0.0523 4.2373	7.3526 0.0947 -2.2407	1.4257 -0.1146 0.5867	-5.8539 -0.2539 -4.9767	2.0382 -0.1720 3.6774	10.7228 0.1961 -7.8993	1.0864 -0.2184 -1.8111	1.8187 -0.4327 3.4794	0.6469 0.2618
	c ₀	-7.2476 0.0805 -2.4577	-1.5613 -0.0545 -0.5885	1.3562 -0.0381 5.7531 -	-0.9753 0.1361 -2.5991	2.8636 0.0162 -4.1499	-0.8573 -0.0384 4.7020	-9.3746 0.2066 0.4128	-0.5082 0.0169 -0.3075	4.0271 -0.0938 2.5572	-0.8965 0.1953 0.1651	-0.3664 0.1598 -0.4279	-1.2449 -0.1954
Region-	type	1-H 2-6 3-K	1-1 2-1 3-K	1-H 2-G 3-K	3-K 3-K	1-H 2-6 3-K	1-J 2-J 3-K	3-6 3-5 3-5	1-J 2-J 3-K	1-H 3-K 3-K	1-7 2-5 3-5	1-5 2 2	1-J 2-J
Green's	function	#13 (420)	#14 (330)	#15 (440)	#16 (431)	#17 (620)	#18 (521)	#19 (600)	#20 (530)	#21 (800)	#22 (611)	#23 (710)	#24 (510)

GREEN'S FUNCTIONS OF THE FACE-CENTERED-...

2871

TABLE VII. Green's functions for $J_2/J_1 = -0.90$. The Green's function is listed in column 1, by number and by the vector \tilde{T} . The energy region is specified in column 2, along with the particular function $(G \equiv g_I, H, J, \text{ or } K)$ being tabulated [Eq. (28)]. The coefficients $c_0 \dots c_5$ for this function and the values of $g_I(\omega_A)$ and $g_I(\omega_5)$ are listed. The last six columns give the coefficients for $\sigma_n(\tilde{T}, \omega)$.

		c_5	0.0594 0.1252 0.0024	0.0869 0.0751 -0.0006	0.0776 -0.0166 -0.0019	0.1144 0.0244 0.0013	0.1087 0.0403 -0.0032	C.1438 -0.0915 0.0013	0.1656 -0.0144 -0.0008	0.1767 -0.0021 0.0005	0.1323 -0.0879 -0.0021	0.2089 -0.1162 -0.0022	0.2439 0.0118 0.0036	0.2771 -0.1087 -0.0001
	rts	c_4	-0.0998 -0.1196 -0.0086	-0.1171 -0.0966 0.0033	-0.1550 0.1444 -0.0008	-0.1539 0.0410 -0.0032	-0-1771 -3-0807 0-0050	-0.1911 0.0975 0.012	-0.2540 0.1908 -0.0066	-0.2534 0.0374 -0.0029	-0.2579 0.1031 0.0091	-0.2875 0.0580 0.0032	-0.4131 -0.3096 0.0005	-0.3807 0.1337 -0.0030
	for real pa	c_3	0.2334 - 0.5215 - 0.0151 -	0.2576 - 0.0583 - 0.0067	0.2698 - 0.1420 0.0045 -	0.3594 -0.0612 0.0051	0.4292 0.1432 -0.0071	0.4538 -0.3998 -0.0030	0.5925 0.3717 0.0117	0.5857 0.1101 0.0036	0.5146 -0.5493 -0.0149	0.6455 0.1172 -0.0070	0.3995 0.0751 0.0259	0.3787 0.1417 0.0035
	oefficients 1	c_2	-0.4471 -0.3432 -0.0115	-0.6158 -0.2759 0.0134 -	-0.7807 0.9358 -0.0196	-0.8794 0.4152 -0.0112	-0.9536 -0.2683 0.0406 -	-1.0433 0.1167 -0.0035	-1.0968 -0.8393 0.2380	-0.6031 0.0421 -0.0456	-0.5952 -0.1972 0.1205	-0-6375 -0-4318 -0-1923	-0.3508 0.1856 0.3151	-0.3615 -0.1875 -0.0831
	ŭ	c_1	1.4686 - 2.4623 - 0.1873 -	1.9453 - -0.4999 - -0.0764	2.1009 - -1.0183 0.5636 -	1.2192 -0.1806 -0.2908	0.4548 -0.5798 0.7216	0.4135 0.5403 -0.1950	-0.9773 0.1903 0.2326	0.1217 - -0.0141 -0.2070 -	0.7045 0.1587 0.6783	-0.4964 0.1371 0.1738	-0.3446 0.1889 0.0712	0.0520 0.0483 -0.1227
		c_0	-5.1970 0.2013 2.9703 -	-0.8313 0.6316 - -0.3783 -	1.0675 -0.2716 0.3374	0.2747 0.0970 - 0.1389 -	-0.2576 -0.0101 -0.1893	0.5667 -0.0296 -0.0328	-0.1401 -0.2878 -0.0298	0.0320 -0.0221 0.1078	0.4523 -0.0169 -0.3515	0.0069 -0.1724 -0.0543	-0.1751 0.1067 -0.0892	0.1295 -0.1070 0.0815
		$g_I(\omega_B)$	-3.2090	0.9411	-1.3552	-0.3213	0.0607	0.5353	-0.6336	-0.3694	1.1241	-0.0062	0 • 6952	-0.4327
		$g_I(\omega_A)$	-5.4584	-1.8916	1.2547	0.1812	-0.9526	1.4166	0.4346	0.0395	1.3003	0.5199	-0.6297	0.6562
, 6/.		c_5	1.6407 0.0235 -0.0421	0.4482 0.1697 0.0214	1.7813 0.0204 -0.0536	0.5749 0.0584 -0.0049	2.3296 0.0161 -0.0214	0.7127 -0.1001 0.0415	3.0790 -0.0506 -0.0877	0.9120 -0.0216 -0.0179	2.7309 0.0041 0.0437	1.0676 -0.2016 -0.0097	4.9705 -0.0510 0.0713	1.3232 -0.1974 -0.0306
TAR TOT CIT	ury parts	c_4	-2.5837 -0.0664 0.0997	-1.1026 -0.4109 -0.0508	-4.2885 -0.0561 0.1273	-1.4597 -0.1143 0.0118	-5.3924 -0.0436 0.0503	-1.8368 0.2959 -0.0983	-8.6953 0.1661 0.2055	-2.2718 0.0660 0.0426	-7.3943 -0.0002 -0.1044	-2.6731 0.4851 0.0231	-12.5576 0.0172 -0.1675	-3.6491 0.4741 0.0725
Ternitiano	or imagina	c_3	8.3784 0.1495 -0.2044	2.3875 0.8268 0.1052	9.3577 0.1008 -0.2623	3.1404 0.1419 -0.0257	12.6710 0.0471 -0.1011	3.9074 -0.7587 0.2012	16.7927 -0.6772 -0.4112	5.2383 -0.0751 -0.0882	15.3232 -0.2072 0.2175	5.9403 -0.6717 -0.0483	27.9325- 0.4732 0.3307	6.7415 -0.7000 -0.1495
	efficients f	c_2	11.1583 -0.4273 0.4666	-5.1237 -1.5444 -0.2402	20.0793 -0.2737 0.5864	-7.2755 0.1144 0.0625	25.8815 -0.4513 0.2239	-9.1942 1.8820 -0.4529	-39.8330 -0.2130 0.9127	-10.1788 -0.1489 0.2234	-37.2980 0.8632 -0.5074	-11.4585 0.2473 0.1506	-31.6451 0.0190 -1.2208	-9.0299 0.2146 0.3716
	ပိ	c_1	43.6451- 0.9348 -1.6284	13.2347 2.8173 0.7339	47.5276- -1.4427 -1.5598	16.0039 -0.8033 -0.1625	69.1899- 0.4279 -1.0800	17.2001 -1.3880 1.3747	74.4839- 0.2040 -6.7579	12.9578- -0.2038 0.1140	40.6743- 0.1018 -0.2446	12.7835- 0.0711 3.2425	51.1972- 0.2588 -3.6904	11.7771 -0.4090 0.4204
		c_0	-2.8021 -3.8178 9.0699	-16.6576 -0.7513 -2.5837	-75.6049 0.3009 0.6817	-10.1878 0.2521 3.7093	-12.6051 0.0688 -5.8376	-5.4382 0.6565 -1.2720	-0.8725 -0.0712 2.4433	-6.3341 -0.0407 3.5277	-53.3401 0.3646 -10.8818	-3.5333 0.0171 -1.1689	2.1940 -0.0313 -4.8878	-4.4020 0.0818 3.3953
1011 DTE	Region-	type	1-H 3-K 3-K		1-H 2-C 3-K	1-7 2-7 3-5	1 H 1 H 3 H 3 H 4 H 1	1	1 - H 1 - H 3 - H	1-5 1-5 1-5 1-5 1-5 1-5 1-5 1-5 1-5 1-5		1-1- 1-1- 1-1-1-	1-H 2-G 3-K	1-7 2-7 3-K
SIVWB/ 1	Green's	function	# 1 (000)	# 2 (110)	# 3 (200)	# 4 (211)	# 5 (220)	# 6 (310)	# 7 (400)	# 8 (321)	# 9 (222)	#10 (411)	#11 (422)	#12 (332)

2872

			Coet	fficients fo	r imaginar	v parts	TABLE	VII. (Cont	imed)		Č	efficients f	or real par	rts	
Green's function	Regio type	c ⁰	c1	c_2	° °S	c_4	C 5	$g_I(\omega_A)$	$g_I(\omega_B)$	<i>c</i> 0	c_1	c ₂	с ³	c4	C5
#13 (420)	1-H 2-G 3-K	-33.9939 0.0933 -1.6012	28.2281- 0.0077 -5.3286	-48.1420 0.2830 -0.0765	21.4967- -0.2735 -0.0692	-10.4144 0.0415 0.0377	3.9370 -0.0316 -0.0165	0.7401	0.1258	0.1374 -0.0473 -0.0937	-0.0507 0.1658 0.1703	-0.2342 -0.2092 0.2798	0.6607 -0.1122 0.0171	-0.3528 0.1150 -0.0028	0.1880 -0.0370 0.0007
#14 (330)	1-J 2-J 3-K	-7.1036 -0.2986 -0.3444	9.3605 0.4815 1.9759	-10.7134 -0.8318 -0.5523	6.4431 1.2426 0.2332	-2.7096 -0.4869 -0.1186	1.1188 0.1649 0.0508	-1.0372	0.2094	-0.2149 0.1567 0.0664	0.0437 -0.1084 -0.1909	-0.1755 0.4423 -0.0390	0.6793 0.0864 -0.0012	-0.3106 -0.2656 0.0018	0.2104 0.0994 0.0016
#15 (440)	3-4 1-4 3-6	-4.3183 -0.0518 3.9363	37.5998 -0.1050 -7.4448	-20.4283 -0.1013 -0.6868	35.9404- 0.0423 -0.3270	-16.1113 -0.3506 0.1364	6.8502 0.1354 -0.0589	-0.6793	-0.4635	0.0102 0.0943 0.0802	0.2540 -0.1288 -0.1962	0.0986 0.2224 0.3233	0.1424 -0.2101 0.0830	-0.5177 0.1392 -0.0038	0.3151 0.1566 0.0009
#16 (43 1)	3-1-1 3-1-1	-5.1393 0.0638 -1.7502	8.8890 0.0757 2.7547	-9.1129 0.0734 0.4108	7.6612 0.1526 0.0060	-4.0454 -0.2734 0.0050	1.5371 0.1188 -0.0025	-0.1593	0.1663	0.0157 0.0152 -0.0651	0.1156 -0.0985 0.1507	0.0099 0.0135 -0.1412	0.4283 -0.1757 -0.0296	-0.4202 -0.0139 0.0034	0.3101 0.0658 -0.0022
#17 (620)	1-H 3-K	5.4928 -0.0533 -2.5798	34.5838 0.1891 -1.4318	-23.5717 -0.0953 -3.0978	37.4084- 0.2915 -0.1122	-18.9829 -0.1446 0.0039	7.8986 -0.0178 -0.0024	-0.6591	0.1639	-0.1660 0.0482 -0.0325	-0.2956 -0.0262 0.0306	0.1450 0.0784 0.0913	0.1340 -0.0394 0.1672	-0.5313 -0.1919 0.0105	0.3666 0.0736 -0.0020
#18 (521)	3-1-1 3-5-1	-3.6049 -0.1495 3.0066	8-2741 0-1274 0-4111	-9.7196 -0.2813 0.5565	8.1040 -0.0993 -0.1669	-4.4141 -0.0138 0.0917	1.7051 -0.0359 -0.0393	-0.0219	-0.3 83 7	-0.0697 -0.0577 0.0592	-0.2703 -0.0354 -0.0821	0.0235 -0.1195 -0.0843	0.4429 0.0856 -0.0049	-0.4370 0.0212 -0.0030	0.3425 0.0198 -0.0010
#19 (600)	9 H H	-8.6609 -0.0413 0.3091	-3.3421 0.2017 -3.3120	-53.7537 -0.1134 -2.0713	33.0118- 0.2964 -0.4432	-15.9127 -0.5855 0.2404	6.8436 -0.0264 -0.1048	-1.0236	-0.2551	-0.2380 0.0981 -0.0544	-0.2439 -0.3279 0.0986	0.7066 0.1437 0.0773	0.6980 -0.4477 0.1686	-0.5030 -0.1669 0.0010	0.2947 0.2364 -0.0059
#20 (530)	3-4 3-4	-3.5025 0.1613 -0.2856	8-8485 -0-4287 2-4277	-7.3134 0.3677 -0.2288	8.3029 -0.6432 0.1591	-5.2159 0.6834 -0.1088	1.9531 -0.1079 0.0474	0.6879	0.0368	0.1577 -0.0491 0.0411	0.1746 0.0820 -0.0588	0.0785 -0.0766 -0.0918	0.1528 0.1829 -0.0120	-0.4840 0.1748 0.0033	0.4036 -0.1740 0.0019
#21 (800)	1 H 1 H 1 H 1 H 1 H 1 H 1 H 1 H 1 H 1 H	-17.1678 0.0871 1.9250	27.2609 -0.1918 -5.0929	6.6262 0.1940 0.1146	40.4135- -0.1653 -2.6096	-26.1008 0.2764 0.2513	12.0504 -0.2734 -0.1111	0.6011	-0.2238	0.2178 -0.0242 0.0068	0.5520 0.0878 -0.0231	0.2615 -0.0527 0.0701	-0.5768 0.0771 0.0454	-0.5085 -0.1074 0.1202	0.5020 -0.1394 -0.0048
#22 (611)	3-K	-3.9415 -0.2336 0.2263	4.7917 0.5957 -1.2649	-9.4340 -0.5269 2.5560	9.1665 0.8038 0.0347	-5.1439 -0.7261 0.0017	2.0906 0.2873 -0.0011	-0.8102	0.1374	-0.1952 0.1025 -0.0440	-0.2431 -0.0976 0.0665	0.4471 0.1675 0.0744	0.4356 -0.1342 -0.1406	-0.4787 -0.1080 -0.0049	0.4067 0.1979 0.0114
#23 (710)	1-1 2-1	-3.9535 0.1068 -0.4749	3.7531 -0.2259 2.2663	-6.0034 0.0847 0.0119	9.5129 -0.0601 0.2345	-6.4100 -0.3221 -0.1199	2.6898 0.6312 0.0520	-0.2999	0 • 046 4	0.0766 0.0843 0.0376	0.3869 -0.1672 -0.0373	0.7033 0.1928 -0.0690	0.0595 -0.1293 -0.0322	-0.5067 0.3699 0.0026	0.5185 0.1497 0.0011
#24 (510)	1-1 2-1	-3.3496 -0.5207 -0.2802	8.0895 0.8683 2.0917	-12.3663 -0.9935 -0.4263	7.6797 0.7644 0.2363	-3.5215 0.1560 -0.1239	1.4474 -0.1589 0.0535	-0-6319	0.1406	-0.3637 0.0062 0.0599	-0.8621 0.1122 -0.1456	-0.1271 0.0320 -0.0546	0.7424 0.4237 -0.0053	-0.3705 -0.2922 0.0004	0.2770 -0.0654 0.0024

GREEN'S FUNCTIONS OF THE FACE-CENTERED-...

FIG. 3. ¹ Density of states, $(-1/\pi) \times g_I(0, \omega)$, (schematic) for positive values of $\gamma = J_2/J_1$.

$$\int_{0}^{a} \frac{(\omega')^{1/2} d\omega'}{\omega' - \omega} = \begin{cases} 2a^{1/2} - \pi |\omega|^{1/2} + \cdots, & \omega < 0\\ 2a^{1/2} - (4/a) \omega + \cdots, & \omega > 0. \end{cases}$$
(22)

Clearly the square-root singularities appear on opposite sides of the Van Hove point in the real and imaginary parts, and have opposite signs. The factor of π cancels with the factor in Eq. (18), so that the square-root terms have the same coefficient in both real and imaginary parts of the Green's function.

IV. APPROXIMATE GREEN'S FUNCTIONS

Reference to Table I reveals that for $-1 < \gamma < 0$ there are but two Van Hove singularities within the spin-wave band (in addition to the singularities at the bottom and top of the band). These singularities therefore divide the spin-wave band into three energy regions, bounded by singular points. Region 1 is the range $0 < \omega < \omega_A$; region 2 is $\omega_A < \omega$ $< \omega_B$; and region 3 is $\omega_B < \omega < 1$.

The square-root singularities of the imaginary parts of the Green's functions fall on the low-energy side of ω_A and on the high-energy side of ω_B (see Table I). Hence region 1 has square-root singularities of $g_I(\vec{r}, \omega)$ at each of its limits, as does region 3, but region 2 contains no square-root singularities whatever.

The polynomial approximants for the Green's functions have been calculated separately for each of the three energy regions.

The Green's functions with a square-root singularity at ω_A have been approximated by a somewhat different procedure from those in which the singularity is suppressed. Consider those with the square-root singularity at ω_A (i.e., those in which \vec{r} contains no odd coordinates). To improve the accuracy of the polynomial approximation we have removed the square-root singularities analytically, and the polynomial fit in region 1 has been made to the function

$$H(\vec{\mathbf{r}}, \ \omega) = (\omega_A - \omega)^{-1/2} [\omega^{-1/2} g_I(\vec{\mathbf{r}}, \ \omega) - \omega_A^{-1/2} g_I(\vec{\mathbf{r}}, \ \omega_A)].$$
(23)

Given $H(\vec{r}, \omega)$ from our tables, then the Green's function is to be computed from the inverse formula

$$g_{I}(\vec{\mathbf{r}}, \ \omega) = \omega^{1/2} \left[\omega_{A}^{-1/2} g_{I}(\vec{\mathbf{r}}, \ \omega_{A}) + (\omega_{A} - \omega)^{1/2} H(\vec{\mathbf{r}}, \ \omega) \right].$$
(24)

In region 2 the Green's function has been approximated directly, and in region 3 the square-root dependence has again been removed analytically, so that the function which is approximated is

$$K(\vec{\mathbf{r}}, \ \omega) = (\omega - \omega_B)^{-1/2} [(1 - \omega)^{-1/2} g_I(\vec{\mathbf{r}}, \ \omega) - (1 - \omega_B)^{-1/2} g_I(\vec{\mathbf{r}}, \ \omega_B)].$$
(25)

Inversely,

$$g_{I}(\vec{\mathbf{r}}, \ \omega) = (1 - \omega)^{1/2} [(1 - \omega_{B})^{-1/2} g_{I}(\vec{\mathbf{r}}, \ \omega_{B}) + (\omega - \omega_{B})^{1/2} K(\vec{\mathbf{r}}, \ \omega)].$$
(26)

For the 13 Green's functions with an odd coordinate of \vec{r} there is no square-root behavior at ω_A , and in both regions 1 and 2 we have approximated the function

$$J(\vec{\mathbf{r}}, \ \omega) = \omega^{-1/2} g_I(\vec{\mathbf{r}}, \ \omega).$$
⁽²⁷⁾

In region 3 we have again approximated the function $K(\vec{r}, \omega)$, defined in Eq. (25).

It was found empirically that sufficient accuracy could be obtained if we approximated the real parts of the Green's functions directly in all energy regions, which we have done.

The polynomial approximants which we employ are six-term expansions in a Tchebyshev series:

$$g_I(\vec{\mathbf{r}}, \omega)[\text{or } H, J, \text{ or } K] = \sum_{n=0}^5 c_n T_n(\omega),$$
 (28)

where $T_n(\omega)$ is the *n*th Tchebyshev polynomial:

$$T_{0}(\omega) = 1 , \qquad T_{1}(\omega) = \omega ,$$

$$T_{2}(\omega) = 2\omega^{2} - 1 , \qquad T_{3}(\omega) = 4\omega^{3} - 3\omega ,$$

$$T_{4}(\omega) = 8\omega^{4} - 8\omega^{2} + 1 ,$$

$$T_{5}(\omega) = 16\omega^{5} - 20\omega^{3} + 5\omega .$$

(29)

The coefficients c_n of Eq. (28) are tabulated in Tables III-VII. Additional tables, for intermediate values of J_z/J_1 , can be obtained from Callen.

The various approximation functions can be evaulated from the tabulated coefficients c_n and the definitions (29) of the Tchebyshev potentials. However, there is a simpler, and extremely convenient, evaluation procedure¹⁶ based on the properties of Tchebyshev polynomials. Given the six coefficients c_n (n = 0, 1, ..., 5) we form a sequence of numbers a_m (m = 0, 1, ..., 5) by the rule

*Work supported in part by the U. S. Office of Naval Research.

[†]Present address: Institut für Theoretische Physik der Universitat zu Köln, 5 Köln 41, Germany.

- ¹I. M. Lifshifz, Usp. Fiz. Nauk <u>83</u>, 617 (1964) [Sov. Phys. Usp. <u>7</u>, 549 (1965)].
- ²D. N. Zubarev, Usp. Fiz. Nauk <u>71</u>, 71 (1960) [Sov. Phys. Usp. <u>3</u>, 320 (1960)].

³Yu. A Izyumov, Advan. Phys. <u>14</u>, 569 (1965).

⁴D. Hone, H. Callen, and L. R. Walker, Phys. Rev. <u>144</u>, 283 (1966).

 5 T. Morita and T. Horiguchi, J. Phys. Soc. Japan 30, 957 (1971), and references therein.

⁶I. Mannari and C. Kawabata, Department of Physics, Okayama University, Japan Research Notes No. 15, 1964 (unpublished).

⁷G. F. Koster and J. C. Slater, Phys. Rev. 96,

$$a_m - 2\omega a_{m+1} + a_{m+z} = c_m , \qquad (30)$$

2875

with
$$a_6 = a_7 = 0$$
. (31)

Then the sum is simply given by

$$\sum_{n=0}^{5} c_{n} T_{n}(\omega) = a_{0} - a_{1} \omega .$$
 (32)

Now it will be noted that solution of Eq. (30) is quite trivial, since for m = 5 we have $a_5 = c_5$; then $a_4 = 2\omega c_5 + c_4$, etc. Hence the *a*'s can be evaluated one by one until a_1 and a_0 are obtained.

The derivatives of the Green's functions are also obtainable through a similar algorithm. Again, given the six coefficients in Eq. (28) we form a sequence of numbers b_m (m = 0, 1, ..., 5) by the rule

$$b_m - 2\omega b_{m+1} + b_{m+2} = (m-1)c_m, \qquad (33)$$

with

$$b_6 = b_7 = 0$$
 . (34)

Then

$$\frac{d}{d\omega}\sum_{n=0}^{5}c_{n}T_{n}(\omega)=b_{1}$$

1208 (1954).

⁸E. M. Baroody, J. Math. Phys. 10, 475 (1969).

⁹Calculation of the Green's functions outside the spinwave band is relatively easy, by this or by other methods. Extensive compilations have been given by Mannari and Kawabata (Ref. 6).

¹⁰R. A. Tahir-Kheli, H. B. Callen, and H. Jarrett, J. Phys. Chem. Solids <u>27</u>, 23 (1966).

¹¹H. B. Callen, Phys. Rev. <u>130</u>, 890 (1963).

¹²R. H. Swendsen, Phys. Rev. B <u>5</u>, 116 (1972).

¹³O. Krogh Andersen, Phys. Rev. B <u>2</u>, 883 (1970).

¹⁴L. Van Hove, Phys. Rev. <u>89</u>, 1189 (1953).

¹⁵G. Weinreich, Solids: Elementary Theory for Advanced Students (Wiley, New York, 1965), pp. 73-80.

¹⁶Carl-Erik Froberg, Introduction to Numerical Analysis (Addison-Wesley, Reading, Mass., 1969).